PostgreSQL 9.5.25 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.5.25 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2021 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2021 by the PostgreSQL Global Development Group.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

| 24 =Y = o] < ST XX

A b L TR 013 o =1) I XX
2. A Brief History of POStgreSQLcouniiiiiiiiiii et e et e e e e et e e ae e e e et e st eaaesnnaeans XX
2.1. The Berkeley POSTGRES PIrOJECE ...ccuuiiiiiiiiiiiiieeiie et e et e e et e et e e et e e teereeaneeanns xxi
A o 1S W0 1 =11 1 PP xxi
PG T oo 1] e 1 o' =1 I PPN xxii

G T 0703 s k7=] a1 10) o - TN PP TP xxii
4. Further INformationoouiiiiiiiii ettt e e et e et e e et e e et e eeaaees xxii
5. Bug Reporting GUIAELINEScoiiiniiiiiiieei et e et e e e et e et e e e e et e eane e e e sanesrneannnns xxii
5.1. TAentifying BUGS ..iiuniiiiiiiiiie ettt e et e e et e et e et e et e et e et e e e et eaeaanaranas xxiii
STV AV o B) A o T 2 U)o 10) o PN xxiii
5.3. Where t0 REPOTE BUGS ..uoivniiiiiiiiiii e e e et e e e e e et e et e e e e aen e san e e e eaans XXV

| B I 01 o) i T 1 RO OP PR PPRRPTRRRPR 1
I LY o o o S =Y =T 2
I T 5T =Y < L o) s OO TPPOTR PPN 2
1.2. Architectural FUNAamentalsccoouuiiiiiiiiiii ettt et e et e e e e 2
1.3. Creating @ Dat@basec..ciiuiiiiiiiieiiie e e et e et e et e et e e e et e et e e e e et aanaas 2
1.4. AccesSing @ Data@basecouiiiiiiiiiii i a e eaans 4

N N T 1@] I - oo 1D =Y [T S 6
P20 I § 01 0 1o L1 (o o) o KOOSR PPNt 6
W 00 1 1o1<] o] %SO 6
2.3. Creating @ NEeW Tableccuiiiiiiiii et e et e e e e e et e e e e saneeaneeaaaaannaes 6
2.4. Populating a Table With ROWSccuiiiiiiiiiii e e e ee e e et e e a e e e aees 7
S T O 0 1Y v o o = T = o] LSRN 8
2.6. JOINS BEtWEEN TaDIESccuniiiiiiiiiii et e e e e et e et e et e et e et e e e e ean e et eaae e e aaens 9
2.7. Aggregate FUNCEIONS ...t et e et e e et et e e e e e e e e eans 11
PR & T U o Y b= 1 - SN 12
P8 B B 1= (<] 5 L) o T T OO OPPRUUPPRPRt 12

3. AdVANCEA FEATUTESoiiiiiiiiiiiii ettt e et e et e et e ett e e et e e et s e et e eetnneaananas 14
G 700 I § 0 1 0 1o 11 (o v o) + KPP PP 14
32, VB ittt ittt et ettt et et e et e e e et e et e et et e et e et e th e th et a et et e eha e et et e th e taeeanaaneanes 14

G TR T a0 o= To o N 05) 2= S RN 14
3.4, TTANSACEIONS ..eeniiiiiiiieiiie ittt ettt ettt e et e et e et eta e et e et s ean e etneeraeeeaneennaaneaarasesnaennnns 15
3.5. WINAOW FUNCEIONS ...iiiiiiiiiieiii ettt et e et e et e et e e et e e eeaa s e et s eeeaeseaennes 16
3.6, INNETIEATICE ..euiiiiiiiie ettt e et e et e e et e e et e e et e e aba e e et s eeebaaees 19
I 00 s Tod 11 153 (o) s KSR PP 20

L TSR T I I o U 1 - Vo £SO 21
T 1 0) I 4 01 - - QPPN 22
7 R =) Lo 1 S w (o 1 o SRR 22
V£ T LT b q o) =TT 0) o - SNt 30
G T OF-Y 15 Vo B Vs Lod [0 F= SN 41

5. Data DEfINITION civuuiiiiiiiii ettt et e et et et e et e et e et e et e eaaans 44
5.1, TADIE BASICS .uuiiiiuiiiiiieii ettt ettt ettt ettt e et e et e et e et e e aaaeeaaas 44
5.2, DEfAUll VALUES ..couniiiiiiiieee e ettt e et e e et e e et e e et e e e e e ebeeees 45
5.3, COMSITAINES .eueiiiiiieii et ettt et et e et et e et e et e et e et e eaneeaneeneeanaaananas 46
5.4, SYSEEIM COIUITIIIS ...cvuniiiiiiiiiii it et e e et e et e et et e et e et e tt e st eetneatanesnnasenasanasanssnnessnsssnnssnneeen 53
TR T\ (oo b7 b Vo B =] 1Y S 54
N T o 7 1 (=T £ 56
5.7. ROW SECUTILY POLICIES ..cvuiiiiiiiiiiiiiie et e et e e et e e e et e et e e aaeeaeeeanaeanns 57
RS T o 1 1< o < 1< SO OTPTRTPTPPPR 62
5.9, INNETILATICE «.euiiiiii ettt e et e et e e et s e et s e et e e eba e e et s eeebaaaes 66

T O o= iy o) s Lo SO RUPRPN 69

o A O o) 4 =) o 1 s B D = - PN 75
5.12. Other Database ODJECES ...ccuuiiiiii e e e et e e e e et e e e eaneeaans 76
ST G T D 1= oY= o [=3 0 Lo VA I = Yod L« 1 o o N 76

6. Data ManipuUlationcoiuiiiiiie e e et e et e et e et et e et e et e et e et e et et e e raaaas 78
6.1, INSETTING DAt cuuivniiniiiiii ettt et et et st te et e e s e et et seneeaaanaaneeaaenns 78
ST U o Yo k= h Vo B D 1<) - 79

iii

PostgreSQL 9.5.25 Documentation

LS TC T B TCY =] o Yo D - 1 - Nt 79
6.4. Returning Data From Modified ROWSiiiniiiiiiii e e e eaas 80
0 1§ 1<) o 1Y SN 81
T 1. OVEIVIEW .ttt ittt et e et et e et e et e et e et e et e et e ea e eaa s etn s eanseasaeeenaanneanaeasanesnesnnenns 81
7.2. Table EXPIESSIONS ..ivuuiiiiiiiieiiieiie e et et et e et e ete e et e et e et e et e st estnaaannaannesenasanasanassnnassnnsrnnns 81
I T 1= (= To Al I £ TP PPPN 94
7.4. CombiniNg QUETIESiiniiiiiiiii ettt e e e et e et e e e e st e eta e eaeaatneeaneeanaeannssnnassnaarnnns 95
7.5, SOTEIIIG ROWS ..iuiiiiiiiiii ettt ettt et e ettt e e e et et et e et et et aaaanaeneaneaanaenesnanns 96
A T T I - T @] 97
7. 7. VALUES LISES .itiiiiiiiiiii ittt ettt ettt e et e et e et e e et e e et e eea e e eean s eatan s eetanseasaneaennnans 97
7.8. W TH Queries (Common Table EXPIreSSIiONS)ciuueiiiiiiiiiiiiieiiieiiieeiieeeee e eve e e e e e eereeees 98
T D F 1 = T Y 01T SN 103
T A 01 s 0 =) o (o 7 o 1= T PP 104
I LY o) aTc) =1 oy A 7 o 1= T RN 108
TG T O o ¥ = Yo =Y a5 1= SNt 109
8.4. BINATY Data TyDES cuniiniiiiiiiiiiiit ettt et et e et e e et e et et e e e eae et e e e et aanaaaaas 110
TR D E T b s Lo 4 0 1= T PP 112
I T 5 To o] L= N B 74 o 1= TN 121
8.7. ENUMETAtEA THPES .uevniiiiiiiiieiii et e et e et e e et e et e e ae e st e st e et e saesanastnaasneannasenasennees 122
8.8. GEOMEITIC T PES tiuiiniiiiii ittt ettt ettt et et e ee et e e e et et eanseae et aansaneaaasenaaneeannenns 124
8.9. NetWOTK AAATESS THPES ..cevuiiiiiiiiiiieiiiee et e e et e e et e et e et e et e et e et e aenesaneeanaesnasnnasnnnns 126
T O = s vt o Lo B I 01T ST 127
T R =) AT Y- B o] o 7 o 1= TSR 128
B.12. TUID THDE wuuiitinetiiitetie et e et e et e e et e e et e e et e ettt e e etun s e etaa s eatueseatanseasnsaessnsaaesansaasanaeannaes 130
TR T €1 I I 74 o1 TP PR PPN 131
814, JSON THPDES -utttuetiiiietii ettt e et e e et e et e e et e e et e ettt e e etaa s eataa s eatta e aaan s eeaaneeetanseasanaensnnaes 133
T TR AN ol = 7/~ SN 138
8.16. COMPOSITE TYPES .euniuniiniiiiiieeiieie ettt e et eee et et et et eaa et et eansaneanassnsenesneeeneeneennenns 146
T A - a o [74 01T TP 151
8.18. ODbject TAENTIfiET TYPES .uuiveniiiiiiieiiie ettt et e e e et e e e e et e st e e s e et e et esaneesnesnnnns 156
LTS T o o J £S5 s N 4 o 1 T PP 158
T R Y=Y Lo Ko Tl 74 o Y= S 158
1O 2 VE o Toa o) a F= NaTe MO o1=Y = 1 o) =S 160
1S BRI o Yo Tt Y B @ o T=) i< 1 o) PR 160
9.2. COmMPATISON OPETALOTS ..euiuiiiiiiiieiieeietie et ete et et eae et etaeaaetneetaeeneanesnassnsenesnsesnsenseneenns 160
9.3. Mathematical Functions and OpPeratorsccc.ceeieiiiiiiiiieiieeiie e e e e reeean e 162
9.4. String Functions and OPEeTatorseeiiiiiiiiiiieiii e et et e e et e et e e e eaneeaneeanns 165
9.5. Binary String Functions and OPeratorsccccuiiiiiiiiiiiieiieeie e e e e e e 178
9.6. Bit String Functions and OPeratorsccceiiiiiiiiiiiiiieiie et e e e e e e e e e eannaes 180
1 IV ==Y =Y o o LY) od 1o Vo [Nt 180
9.8. Data Type Formatting FUNCLIONSc..iiuiiiiiiiiiii et e e e e 194
9.9. Date/Time Functions and OPeTatorsccc.eiiiiiiiiiiiiieiie et e e e e e et e e e e aanas 200
9.10. Enum SUuppOTrt FUNCEIONS ..cvuiiiiiiiiii e et e et e e et e e e et e e e eneeanaans 211
9.11. Geometric Functions and OPeratorscccuiiiuiiiiiiiiieii e e et e e e e e e e e eens 212
9.12. Network Address Functions and Operatorsccceiueeiiiiiiieiiieiiie et eere e e e eaas 215
9.13. Text Search Functions and OPeTatorsccc.cevieiiiiiiiiiiiiieeiie et e e e e e e e e e e eenas 217
.14, XML FUINCEIONS ..ituiitiieiieiieii ettt et et et e et et e et e et e eauettaeataeetaeetunetnneesaaeenseanaenneenanns 220
9.15. JSON Functions and OPETatorsScccuueeiiieiieiiieiieetieetieeeteete e st e et eereeeeeessneraeesnaesnnnes 230
9.16. Sequence Manipulation FUNCLIONSoiiuiiiiiiiiiii e e 237
9.17. Conditional EXPIreSSIONS ...cuuiiiuiiiiiiiiiiiie it et et e et e e et e e te e s e st e et e et ereeeaneeanaeanns 239
9.18. Array Functions and OPETatorscceiiuiiiiiiiieiiie e et e e e et e et e e e et e e ae e e e eeneeraaenes 241
9.19. Range Functions and OPETatorsSceiiueiiiieiieeiieeiiee et eeieeiee et e eteeeeeenaesteeaneesnaernnaees 244
9.20. Aggregate FUNCEIONSc.oiiiiiiiiii ettt et et et e et et e e e et et eenseneaenaansannns 246
9.21. WINdOW FUNCEIONS ..ciiiniiiiiiii ettt et e et e et e e et e e et e eeaaseeaaanaee 252
9.22. SUDQUETY EXPIESSIONS ..cvuiiiiiiiiiiiiiieiie et et e et e e te et et e ete et e st e st estnaesnaeannesenasanaeenesens 253
9.23. RowW and Array COMPATISOIS ...uiiuuiireiiieiieetieetneeteeetieetneeteeenssnaesrneernasrnaessessaersnesnnesens 256
9.24. Set Returning FUNCTIONSouiiiiiiiiii et e et et e e e eae s e e e e aanas 258
9.25. System Information FUNCEIONSccuniiiniiiiiie e e e eae e 261

iv

PostgreSQL 9.5.25 Documentation

9.26. System Administration FUNCLIONSccuniiiiiiiiii e e e 272

1 727N b o [0 £ ol 21 01 o] 1 (o) o - SN 285
9.28. Event Trigger FUNCEIONS ...c.iiiiiii et e e e e e e e e e e e e e eans 285
O 74 o TR 0] 1177 /= 0) o PP 289
L0.1. OVEIVIEW ..ttt ettt et ettt et e et e et e e tu e ta e taa e et etae e et setaseaneenneesaeeeneanneennaenes 289
IO @) 013 =1 Mo) o PP 290

J RGO o 1 o Lo o) o < S T TSP PP PT PP 293
LR V=Y L TR) i Lo £ SRS 297
10.5. UNI ON, CASE, and Related CONSEIUCESuviiiiniiiiiieiii ettt e e s 297
R 1T 1) = TP OPRR TR 300
) 00 PR a1 oo Yo 1 o v (o) s PP 300
1 o =l 7 o 1= T SN 301
11.3. MulticOlumNn INAEXES ..ceuuiiiiiiiiiieiie ettt et e et e et e et et e e et s e et e eeeanes 303
11.4. Indexes and ORDER BY ...c.uuiiiiuiiiiiiiiii ettt e et e et e et s e et s e et e e eaiseaaaneeeaanaes 303
11.5. Combining MUultiple INAEXEScouiiiiiiiiiiiei e e e e e e et eea e e e e aaeeens 304
L T U o b o O TR Y0 o) =Y 305
11.7. IndeXeS ON EXPIESSIONS ..ovuuiiiniiiieiiieeiieeiieeteete et et eete et e et estaeetnaasnesenessnassnaeanaesnnasnnnes 305
11.8. Partial INAEXES ..uviieniiiiiieiiiie ettt e e et e et e e et e e et e e et e e et e e eba e eebaeeeaanas 306
11.9. Operator Classes and Operator Familiesccccoiiviiiiiiiiiiiiiiieee e 308
11.10. Indexes and COLlAtiONScouuiiiiiiiiiie et ettt e et e e et s eeaa e eeaanes 309
11.11. Examining INAeX USAQE ...ccuuiiiuiiiiiiiiieiiieeiieeie et et et ie et e e st e et e eaeaeeaneeanaeaneesnaeannasannns 309
12, FUIl TEXE SEATCI ...uniiiiie et ettt e et e e et s e et s e et e eeaanes 311
102200 IR a1 /o To 1 Ton v (o) s SO OO 311
12.2. Tables and INAEXES ...cccuuuiiiiiieiie ettt et e e e e et e e et e e ea e e eaa e eeaaeeeeaans 314
12.3. Controlling TeXt SEATCRciuiiiie e e e e e eaeeaaaas 315
12.4. AddItional FEATUTES ..c.uiiiiiiiiiii ettt et e e et s et s e et e e et e eeaneeaba e 320
12,5, PATSETS ..ttt ettt et et e e e et e et e et e ea e et s et e th e e b et et et e eaa e aaneanaes 324
12.6. DICLIOTIATIES .uevuuiiiiiitieiiieiie ettt et et e et e et e et e et e eta e etue e et seansetnsetnneeeaeeenaenneenasasasesnnenns 326
12.7. Configuration EXAMPLEcouuiiiiiiiiiiiiie e e et e e et e e ae et e et e et e et e aa e e aaanas 333
12.8. Testing and Debugging TeXt SEATCRccuuiiiiiiiiiii e eae e 334
12.9. GIN and GiST INAEX TYPES .ueeuniiuniiiiiiieeieeiieeeieetie et e et e ete et e st e et saeaeseaestnaernaernaerenasen 338

{2 O o 1Yo | U] o Yo i APt 339
12,17, LIMIEAETIONS ..eeiiriiiiieiiie et ettt et et e et e et e et e eb e ee e e e e et e ebeebeeaaeens 341
12.12. Migration from Pre-8.3 TexXt S€arChcoivuiiiiiiiiiiii e e 341
IRCT 70} Toi ¥ hiu =Y o Loyt A o) s 1 o'] EEU SN 343
G 00 I a1 /o Yo 1 Fon v (o) s SRR 343
13.2. Transaction ISOLATIONceiiuuiiiiiii et ettt e et e e ee e e eaa e 343
IRCTRC TN 25" o] § (o3 | A o Yo -« 1o o [T 348
13.4. Data Consistency Checks at the Application Levelccooviiiiiiiiiiiiiiiiieee e, 353
RS I T O 17T | SO OO TR PPN 355
13.6. LoCKING @Nd INAEXES ...uoiiniiiiiiiiiiii et e et e e e et e e te e et e et e e s e et e et eeanaeanerenesenneen 355
I oY a0 0 0 N Lo SR) o =N 356
14,7, USING EXPLAIL N ..oiiiiiiiiiie ettt et et e et e e et e e et s e et e e eea e e et s eetan s eataeeasnaeeanseennans 356
14.2. Statistics Used Dy the PLanmnercc.iiiiiiiiiieie et e e e e e e e e eaanas 366
14.3. Controlling the Planner with Explicit JO N ClauSesccccoeviviiiiiiiieeiieiiieeieeeie e e, 367
14.4. Populating @ Dat@basecccuuiiiiiiiiiiiiiiii e a e aaaaas 369
14.5. Non-Durable Settingscccuiiiiiiiiiiiii e et e e et e e a e e e e e e e e e e eaens 371
ITI. Server AdMINISTTATION ...uiiii ittt e e et e e et e e et e e eeae e e et e e et e eebaeeaannsaas 372
15. PostgreSQL Installation from Source Codec.eiiuiiiiiiiiiieii e e e e e e e ees 373
15,1, SROTE VBISION ..uiitiiiiiiei ittt et et et e et e et e e et s e et s e et e e aaa e eeeaeeataneeees 373
15.2. REQUITEINEIIES ..ouiiiiiiiiiiiieiieiie et et ettt e et e e et et et etaean et st sanetnesnsansanssnaasnsanssnsennsens 373
15.3. GettiNg The SOUTCEcvvuiiiiiiiieii ettt et e e e et e et e et e et e st e st e et e st esanaesnaaannns 375
15.4. Installation PTOCEAUTEc...viiiiiiiiiiiiii ettt ettt e e e e e et e e et e eeaaees 375
15.5. Post-INStallation SELUD ...ccuniiiiiiiiei et e e e e e e e e aaaaas 386
T ST 1o i o o)) =T RN 387
15,7, WHRAE NOW? ittt ettt e et e et e et e ettt e e eta s e et s eata s eataeeeaanneeesnneeenanaeeen 388
(RSTR TS0 o] oJo) Yo B K= o) o 00 TNt 388
15.9. Platform-SpecCific NOLESiieiii i e et e e et e e e e e et e e aeeraeeaanees 388

PostgreSQL 9.5.25 Documentation

16.

17.

18.

19.

20.

21.

22.

23.

Installation from Source Code 0N WINAOWSccouueiiiiniiiiiiiiiieeiii ettt eetie e et e et e eeaieeeens 397
16.1. Building with Visual C++ or the Microsoft Windows SDKc.ccoeiiiiiiiiiiiiiiiiieeieennnns 397
16.2. Building libpg with Visual C++ or Borland CH+cooiiiiiiiiiiii e, 401
Server Setup and OPETrationcciuiiiiiiiii e e e e et e et e e s e et e eaeraeaaaanas 403
17.1. The PostgreSQL USET ACCOUNLc..iiiuiiiiiiiie it et et e e e e et e et e et e et e s esaneeanaaannas 403
17.2. Creating a Database ClUSLETiiiiiiiiii et e e e e e e e eaaaea 403
17.3. Starting the Database SEIVET ... et e e e eaa e 404
17.4. Managing Kernel RESOUICESc..ciiuiiiiiiiiiie et ee e e e e e e e e e et e et e e aeesaneeannees 407
17.5. Shutting DOWN the SETVETciniiiiii e e e e e e e et e e e e s e eanaas 415
17.6. Upgrading a PostgreSQL CIUSEETcuuiiiiiiiiieiiie et e e e e e e aeeaanas 416
17.7. Preventing Server SPOOTIIIG ...oiuuiiiiiiii e e e et e e et e e e et e et e e e e e e eaneeanns 418
I T 25 s Lol oy 74 01w 10} A B @] o] 10} s 1~ SN 418
17.9. Secure TCP/IP Connections With SSL ..ot 420
17.10. Secure TCP/IP Connections with SSH Tunnelsc.c.ooiuiiiiiiiiiiiiiiii e, 422
17.11. Registering Event Log 0N WINAOWSceiuiiiiiiiiiiiiiie et er e e e e e e e 423
STy A=) ol O a N (o LU b= 1 w10) o NP 424
18.1. Setting ParaIELerScu.iiniiiiiiiiiiiii et e et et et et e et et e e s et et senseneaanaansanaeanns 424
18.2. File LOCATIONS ..cetuiiiiiiieiie ettt ettt e et e et e et e e e et e e et s e eta s eetaeeeenneeeens 427
18.3. Connections and AuthentiCationccceiiiuiiiiiiiiiiii e 428
18.4. ResSoOUICe CONSUIMPEIOTL tuuivuiiniiiiiiitie ittt te e et et e te et et et et et eaneeneesnsaneeneenneenernesnneensens 432
[T T4 L AN Y=Y o B o Yo Tt 437
[T T A V=Y o) Tok=1 L) o P 442
R T @10 1Y oy v o F a1 o o PR 445
18.8. Error Reporting and LOGQingccuceiieiiiiiiiieiiie et e e et et e e e et e et e et e et e et e e s aannnas 449
18.9. RUnN-time STATISTICS ..ciuuiiiiiiiieiiiiii ettt ettt e e et e e e eene e e eenes 457
18.10. AUtOmMAtIiC VACUUINIIIQ «.uivniiniiiiiiie it e e et et e et et e et et e e et eaneaneeneaneanasnesnneeneens 458
18.11. Client Connection Defaultsooiiiiiiiiiiiiiii e e 460
ST D2 o o LY, K- N = Vo 1= 00 =Y o N 467
18.13. Version and Platform Compatibilityccccceiiiiiiiiiiiiiii e 468
RS 700 7 S 5 v oo 3 ol = o 1 0 o P 470
RS T B TR o 4 T Y A) o] o) o - S PN 470
18.16. CUStOMIZEA OPLIONIS ..vvniiiiiiiiie et e et e et e et e e e e een e st e eaneeansennesanaennnns 472
18.17. DEVEIOPET OPEIONIS ..iiuniiiiiieiiie ittt et e et e et e et e e e e et e et e e s e st eeanasanaasnnssenassnaerneeen 472
TR R T o o) it A) o] T) o TSNt 474
Client AUthentiCationcoouuiiii ettt e e et e e et e eeae e eeaae s 476
19.1. The pg_hba. CONT File oeuniiiiiiieie et e e et e e e e e et e e ae e e e snaaannas 476
19.2. USET NAIME MADS tiuiiuiiiiiiiiiiiiiit ettt ettt e ee et et et et et sanaatttnetneatataneeneennteaseneesneens 482
19.3. Authentication Methodsooiiiiiiiiiiii et et eeas 483
19.4. Authentication Problemsoouiiiiiiiiii e e 489
Database ROLEScouuiiiiiiiie ettt ettt e et e et e et e et e e et aeas 491
20.1. DAtabase ROIESciiuiiiiiiiiiiie et et ettt et e et e et e e e e eeas 491
20.2. ROLE ATITIDULES ..ottt ettt e et e et e et s e et e e eea e e eann e 492
O RC T 2 UoY (oI (=Y 0 o 1= =] o 11 o PP 493
O D) /o] o) 01 h Yo N 2 Vo 1= T SRR 494
20.5. FUNCEION SECUTILY ..iuiiiniiiiiiiiiieiii et e et e et et et e ee et e e e et et aaneeneesnaaneannees 495
Managing Dat@bhasSEScuuiiiuiiiiiiiiieii et e et et e et et aaaaaans 496
210, OVEIVIEW ittt ettt et et et e et e et et e et et e et e et e et eeaaeeaasean s eannetrataaeannaenaeananesnnennnas 496
21.2. Creating @ Databasecccuuiiiiiiiiie e e e e e et e e e 496
21.3. Template Databasesc.iiuiiiiiiiiii et e e e e e e e e e e e e e e aaaaen 497
21.4. Database Configurationc.ceiiiiiiiiiii e e e e e e e et e re e e e aans 498
21.5. Destroying @ Databasecieuiiiiiiiiiieiiie e et e e e aaas 498
B B T =Y o] (=T o ¥ o =X Nt 499
| o Tof=Y i b2 1 (o) s KOOSR TPPRPPPION 501
P T e Vo Y (SR 10} o) 10) o PR Nt 501
A OFo Y 1 - 1o To) N TV 1 o] o Yo i AU 503
22.3. Character St SUPPOTT ...uuiiiiiii et e e te e e e e e et e e s e saeeaneeraenes 505
Routine Database Maintenance TaSKSceiiuuiiiiiiiiiiiiiieiie et e e e e e 512
P20 TR I 2 (o) kb s L V= Yot R a1 o RN 512

vi

PostgreSQL 9.5.25 Documentation

23.2. RoOUtINe REINAEXING ..uiivniiiiiiiiiiiieie et e e et e e e et e e te e s e et e eaneeaneaenns 519
23.3. Log File MaiNtENANCEcivuniiiiiiieiieeiie et e e et e e e et e et e et e et e et e eae e et eeaneeanaeanneeens 519
24. BacKup and RESEOTEcuuiiiiiiiiiiiie ittt e e e et e et e e e e et e et e et e aaneeanasansannasnnasrnaannnns 521
24. 1. SQL DUIND tttuttiitiitiiiet ettt ettt ettt et e e et s e et s e eti e e eaaa s e et e ettan e aetaneeetaeeannseesanseannnns 521
24.2. File System Level BACKUDcovuiiiiiiieii ettt e e e e e e et e e e e aan s 523
24.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccoceviiiiiiiiiiiiiniiieeeeeee, 524
25. High Availability, Load Balancing, and Replicationccccooeiiiiiiiiiiiiiiin e, 534
25.1. Comparison of Different SOIULIONSccouiiiiiiiiii e 534
25.2. Log-Shipping Standby SEIVETSc..ciiiiiiiiie ettt e e et e e e et e e aeeannas 537
25.3. FAIlOVET ..ottt e e et e et e e e e et et b e et e e et e aba s 544
25.4. Alternative Method for Log Shippingcceoiiiiiiiiiii e 544
A T T (o) = Lo I o720t 546
26. Recovery ConfigUuTationcoouiiiiiiiiiii et e et e e e et e e e e e e et e st e e e eranaeenns 553
26.1. Archive ReCOVETY SELEINQS c.uuiiiniiiiiiii ittt e et e et e et e e e et e e e e e e aenas 553
26.2. Recovery Target SetEingsS ..ot e e e e e ans 554
26.3. Standby Server SEettiNgScccviiiiiiiiiiiie e e e e e e e aans 555
27. Monitoring Database ACEIVILYccuuiiiiiiiiiiii e e e e e e e et e e e eaans 557
27.1. Standard UnixX TOOLSiiiiiiiiiiiii ettt et e et e et s e et e e et e eaaa s 557
27.2. The StatistiCs COllECTOTiiiuiiiii et e e e e et e e e e eeaas 558
ARG T VA T=Y T4 b o N o Yo < SN 572
PAVAR: TR D)2 0 TV o N (o I o= Lol 1 1o AP 573
28. Monitoring DiSK USAQGE ...ccuuiiiuiiiiiiiiiiie ittt ee e et e e et e et e et e et e et e et e ean e st eanasnnasenaarnnns 583
28.1. Determining DiSK USAQE c.uuiiuniiiiiiiiiiiieiiieiiie et e et e e e et et e et e eae et e st e saaesenesanasrnaarnnns 583
28.2. DiSK FUIl FAIIUTE ...uuiiiiiiiiiiei ettt e et e e et e et s e et e e eai e eeaan e 584
29. Reliability and the Write-Ahead LOgccuuiiiiiiiiiiee e et e et e e e e e eaans 585
20,1, REHADIIEY cetuniiiiiiiie et e et e et e et e e et e et e et e e e e e aa e eeaaees 585
29.2. Write-Ahead Logging (WAL) ...couuiiiiiiieii et e e e e e et e e et e st e eaneeaasennesanaannnas 586
29.3. AsSynchronous COMIMILiiiiiiiiiiii e e e e e et e e r e e e e et e san e et eaenesnnesanaennnns 587
A I S VIVZAN IR @) a N (o 10 Niar=1 w10) o NSNS 588
20.5. WAL INEEITIALS ...ttt ettt et e e e et e et e e e et e e et s e et s e etaeeaanneeennn e 591
30. REgTESSION TESES .iuiiiiiiiiiiiie ettt e et et e te et e e et e et eaa e e et aaneanesnasnsaneanesnnaeneens 592
30.1. RUNNING The TeSES couniiiiiiiiii e e et e et e et e et e sa e et e e e s st e eanaeraaesnnaeen 592
30.2. TeSt EVAlUATION .euuiiiiiiiii ettt et et e et e e et s e et e e e e e e eeas 594
30.3. Variant CompariSOn FileSccuiiiiiiiiiiii et e e e e e e et e e e e e 596
0.4, TAP TeSES teutiiiiiiiiiie ettt ettt et ettt e e e et e et e et e e et e e et e e et e et e ath e aan e aaanae 597
30.5. Test Coverage ExXaminationcooeiiiiiiiiiiiiniiiiie e e et ee et e e e eeeeaeean e e aanas 597

TV, CLIENE INEETTACES ..unieiiiiiiiee ettt e et e et e et s e e ta e e et e e et s e et e eaaneaenannas 599
NI 10 oo S O IR 1 o) -) o7 600
31.1. Database Connection Control FUNCEIONScc.viiiiiiiiiiiiiii ittt 600
31.2. Connection Status FUNCLIONScouuiiiiiiiiiiiii e e 610
31.3. Command Execution FUNCLIONSccoiuiiiiiiiiiii ettt eee e 615
31.4. Asynchronous Command PrOCESSINGccuuiiuniiiieiiieiiieiiieeiieete e e e et eeteereeeeeraesaneeaneeens 628
31.5. Retrieving Query Results ROW-BY-ROWciiuiiiiiiiiiii et eaaas 631
31.6. Canceling QUETIES IN PrOQgTESS ..ciuuiiiuiiiiiieeiieeee et e eiee e et e st e ete et e st esrnaeseaereaeeenessnnees 632
31.7. The Fast-Path INTETTACEccieiuniiiiiiiii et eae s 633
31.8. Asynchronous NOtIfiCAtionccccuiiiuiiiiiii e e e e e 634
31.9. Functions Associated with the COPY Commandoeeeuviiiiiiiiiiiniiiinniiiineeei e, 634
31.10. CONtrol FUNCEIONS ...civuiiiiiiiiiiieiii ettt e e et e e et s e eba s e et e eebaeaeenaas 638
31.11. Miscellaneous FUNCLIONSiiiiiiiiiiiiiiie ettt et e e e e et e e eea e eeaan e 639
31.12. NOTICE PrOCESSINIQ ..iuuiiiiiiiiiiiiiiii ittt et e e e et e et et e e e et eanaeneanaeaneanaeneeaneens 641

G R T T c) o L 7451 V<) 1 0 PP 642
31.14. Environment Variables ... e aeas 648
31.15. The PasSWOTA Filecoiuuiiiiiiiiiiiieii et et e e et e e e e e e eeaa e 649
31.16. The Connection ServiCe Fileccuiiiiiiiiiiiiiiiiii et 650
31.17. LDAP Lookup of Connection Parametersccocueeiiiiiiiiiiieiiie e e e e e e 650
G I S 1] I 1) 0 o 10) ol PP 651
31.19. Behavior in Threaded Programsccccueiiiiiiiiieiieiiieei e iee e et e ete e e e et e st e eaneeanneeannees 654
31.20. Building libpPg PTOQTAIMScouiiiiiiiiiiii et et e e et e et e e e e et e et e e e esaneerneeaaneees 655

vii

PostgreSQL 9.5.25 Documentation

32.

33.

34.

N IRV I =5 & 10 o] (ST o0 o Yo 1 =Y 4 =S 656
I o (SR @] o) =Y ol =Pt 666
G120 IR § o o o 1§ Toa v o) o U 666
32.2. Implementation FEAtUTIEScoeuiiiiiiii e e e e et e e et e ea e e e e eens 666
G I T O 1Y o L 31 =) o ir= o - SRR 666
32.4. Server-side FUNCLIONSoiiiiiiiiiie et e et e e e et e et e et e et e e e e e e eaanas 670
Y AN TN 5= 100} o] (T o o o i< 11 s NSRRI 671
ECPG - Embedded SQL In € ..ottt et et e et e et s e eas e e et e eebaeeeees 676
G 6 T I I s L= o) s o] o) A 676
33.2. Managing Database CONNECLIONScccuuiiiiiiiiiiiiiii e e e e e e e eaaas 676
33.3. Running SQL COMMANAS ...ccuuiiuniiiieiiieeiieeiie e et e ete et eeieete et estaestestnesraaesenesenessnassnaesnnaes 679
33.4. Using HOSt Variablescouiiiiiiiii et e e e e e et e e e e e aens 681
G0 28 TR B2 0 o 0 1 (o 1 ©) PN 693
G T O T oTo 10 74 o =TI IR o) -) 7 ANt 695
33.7. USING DESCTIPLOT ATEAS ..euiiniiiiiiiiieiie ettt ettt et e e et et e et et et e e et eaneanaeeseneenneens 706
ICTC 7= TR 5 ol) alll & = 1o 1 o o 1Nt 718
33.9. PreproCesSSOT DITECTIVESiiuiiiiiiiiieiii et e e e et e e e et e e e et et e eae e eanaans 724
33.10. Processing Embedded SQL Programsccccuuiiiniiiieeiieeiieeieeieeieeieeaeeaneesneeeneennneees 725
G 76 T N U 5 o) = iy 0 0 T T) o T P 726
6 T IR oo (R @) o [T o1 =S RNt 727
G601 B T OF TE V.Y o) o] § of 1 (o) s 1= NNt 728
33.14. Embedded SQL COMINATIIAS t.ouiuiininininiii ettt ettt ettt e eaea et eaeasteenensasteenensaeeaenens 732
33.15. Informix Compatibility MOdecivvniiiiiiieii e e 753
G 6 T G T 1 1Y o o = 1 =N 766
The Information SChemacovuiiiii e e e e e et e e e e e e e eaanas 768
O N s L= o 1Y oo - RN 768
G N D -1 = B 74 o =T T PP 768
34.3. informati on_schema_cat al 0g NaAME ..ot e e e e e e e ees 769
34.4. adnministrable role authori Zati ONS ..oo.iiiiiiiiii i ae e 769
7 o T Yol o I A oX=1 o | T o] == PP 769
34.6. At LT DUL S ittt e et et et e e e e e e ea e eaeans 770
7 A o o - T - Yol =T =Y =Y A= S 772
34.8. check _CONStrai Nt _FOULTi NE _USAQGE ciuiuiriiniiiiieiiieeee e ee e e e e e et et eeeae e sneaeresneaneanans 773
G 7 ® I od o= Tod S ol o] 4 13 A -V 1) A= SRS 774
K O B o o] I = A o 4 - S O PO OP PP PPPPPIN 774
34.11. col lation_character_set _applicabi l ity i 775
G 7 o oo WY o g e FoT ¢ - VI o J U S = Vo [PN 775
G 7 0 G T oo ¥ T o o o o o] 1= T PPN 775
34.14. COlL UMM_PIi Vil BOBS iiniiiiiiiiieiiie ettt e et e et et et e et et e e s et et eensaneasnaansanaeanns 776
G o o oo WY o U o | AU LY Vo = PR 776
34.16. COI UMMS ettt ettt et et e et et e e et e et e et s eta e taa e eaa e ean e ehe e et setasesnaanneenneeeneennaenns 777
G 79 R oTo] o F=) = U o R oX o IV 1 40 0 LV ESX- Vo [T N 781
34.18. conStrai Nt _tabl @ USAQE .iuiiniiiiiii it et e et e e e e et e e e eaens 781
34.19. dat @_t Y PE_Pri Vil BOES ittt et et et e et et e e e et et e e e e et e e e aaaanas 782
34.20. dOMBI N_CONSE I AI NME S 1ttt ie ettt e e et et et et et etestesnetastesnasnenasnesnerasnesnenns 783
7 0 e (o] a0 VI o U (o | AR U LY Vo = PP 783
34.22. OMBI NS ettt ettt ettt et et e et e e e et e et e eta s etaetaaeeaa e eaneaneeetaeetasetnatnneerneeeneannaenns 783
7 A T =TI =Y 111 o L A 00V o 1= N 786
7 =T o F-1 o I =To I o] I =T ST 788
34.25. forei gn_dat a_ W appPer _OPL i ONS ..iiuiiiiiiiiiiie ettt eie e e e et et e e et ean s e anaanes 789
7 A S T o L =TI [e = L= W =Y o] o L= = PP 789
34.27. fOrel GN_SEIVEI _OPL i ONS tiuiiiiiiiiiiie ettt ettt et e e e e e et e e e e et eaneenaeneaneaneeneeenaens 789
G X T o] =T [Y= VA= TP 790
34.29. forei gn_tabl @_0Pti ONS .ottt e e e e e e ans 790
7 e T O B o] =TI [T A= L o] =T SRS 791
34.31. KEY_COl UMM _USBOE .iuiiiiniiiiieii ettt e te e et et e tte et e e et eaeaa e e saasnsanesnaaensenssnaanneaneens 791
7 G N o T =11) =T G TN 792
34.33. referential _CONSTT Al NS .ot e e e e e et e te s et etesneaeaasnnan 794

viii

PostgreSQL 9.5.25 Documentation

34.34. 10l ©_COl UMM ANt S 1iuiiiiiiiiiiiit ettt et et e et et e e e et et e e eanaaneeneaanaansenaeneaneens 795
7 e o T oo | I o U N o =T o [=V o | A PN 795
34.36. 10l ©_tabl @ _gr ANt S ouniiniiiiiiiiii it e e e et e et e e e aaaas 796
7 NG I o] = Lo Ao | =V 4 | A T PSPPI 797
34.38. IOl @ _USAGE _gF @NT S iiuiiniiiiiiiiii ettt ettt e et et et et e et et ean et et sansetstnsensaneesnsanseneeenns 797
34.39. TOULT NE_PIi Vil ©OBS ciniiiiiiiii ittt et e ettt e e e et et et e et e e e e e aaaaneeneannaanaens 798
O B o1V} A I ¢ 1= S T TP UPRPPRUPRt 798
K Y o 1= 112 L - L USROS UPRPPRURt 803
R Y Yo 1= o (o = PSP 804
R G =Y o | I T L AT =Y PP 805
34.44. sql _impl @mMBNt At i ON_i N O cuiiiiiii et e e e e e e 805
G R S =Y o | I B Vg o [- Vo = N 806
G R S T Y o | I o T- Ued €= Vo 1= PP 806
R = Yo | I o T- Y A= PP 807
G R =Y o | =Y 4 I [PN 807
7 e =Y o | I B4 I o o T o] oo 1 =T S PN 807
7 YO A= o] I T T o] 1 13 A 4 VI | 08NN 808
7 I - Lo] I = T o G B VA I =T TP 808
34,02, 1A B ittt et et ettt e e it et et e eb e een e e aana s 809
34,03, LT ANST OF B ettt et ettt et et e et et e et e et e ta e eaa e ean e eaneeneeneeaaeans 810
34.54. triggered_updat @ _COl UMNS ..ottt et e et e e e s et e e e eeean e e eaneaanaens 811
7 e T T A e o = = PPNt 811
7 N 1O T T o LA o] g IRV A T =Y = T PN 812
G W 1= T- Vo [I o T G B VA I =T o [P 813
34.58. USer _Aef I NBA L Y POS tiniiiiiiiii ittt e et et e et et et e e e e e e e e eaean e e eenaanaens 814
34.59. USEer _IMBPPI NO_OPL T ONS ittt ettt et et et et e et e et et ettt etnsanettestnsaneraasansensaneesarenns 815
7 ST O T I =Y g 1 1Y o] oL g o [TN 816
34.61. Vi EW _COl UMM _USAOE .ituiiniiniiiiieieiie ettt ettt et ettt et seteetastastnsttastnsanseeasensensenessasenseneeenns 816
34.62. Vi EW T OUL T NE_USAOE tiuiiniiiiiniiiiiieeie et ee ettt ettt et e enaatttaetuaaanetnetneestansensssnteneeneesereneens 817
G G PRV I AV -V I Y U LY Vo = PR 817
T G SV I - PRI PPPRINt 818
AV T=) a77=) all oo 1=V 0N 011 o o E PRSP 819
G T o5 ¢ =Y o b o o 1 820
35.1. How ExXtensibility WOTKSciiuiiiiiiiiiiie et e e e e et e et e e e et e e a e e e e aanaas 820
35.2. The PostgreSQL TYPE SYSLEIM ...cuuiiiiiiiiiii et e e e e et e e e e e e eens 820
35.3. User-defined FUNCLIONSuoiiuniiiiiiiii ettt e e et e e et e et e e e et e et e eanaeannas 822
35.4. Query Language (SQL) FUNCLIONS ..cvuiiiniiiiiiiieiie et e et e ea e e e eeanes 822
CTo T T 2V b o wTo) o @ A7 Y ol o Vo o o RN 834
35.6. Function Volatility Cat@goTieseiiuiiiiiiiieiiieii et e e e et e et e e e et e e e eaana s 835
35.7. Procedural Language FUNCLIONScciiiiiiiiiiieiie et e e e e 836
35.8. Internal FUNCLIONS ...c.uiiiiiiiiice et e e et e et e e e e et e et e et e e s eenneaenaeanns 837
35.9. C-Language FUNCEIONSoouiiiiiiiieii ettt et et e e e e e e et e e e e e ea e e e aneaanannns 837
35.10. User-defined AQQTegatesc.uiiiiiiiiiiee et e e et e eeae et e s e st e eaneeaeeaenaees 858
35.11. USEr-defiNEd TYPES toueiuniiiniiiiiiieiie et et ee et et et e et e e te e e e et e st e eaneaeestnasanaernnesnnassnasenns 863
35.12. User-defined OPETatorsccuuiiiiiiiiiiiiie et et e et e et e e e et e e ae e s esanesanaaanaannnns 867
35.13. Operator Optimization INformationc.cceiiiiiiiiiiiii e 868
35.14. Interfacing Extensions TO INAEXESc.coiiiiiiiiiiiiiiieiie e e e e e e e e e eaaaas 871
35.15. Packaging Related Objects into an EXtensionccccoceiiiiiiiiiiiniiieiie e, 883
35.16. Extension Building INfrastruCtureooiiiiiiiiiiii e eaas 889
GG T 5 o o [0 (=) TN 893
36.1. Overview of Trigger Behaviorceiiiiiiiiiiiii et e e et e e e e e eens 893
36.2. Visibility of Data CRANgesccivuiiiiiiiieiiie e et e e e et e et e e ae e e e eaaeeanns 895
36.3. Writing Trigger FUNCEIONS 1IN €oiiiiiiii et e e e e e e e e e e e eans 896
36.4. A Complete Trigger EXAMPLEcouniiiiiiiiiiiiii et e e e et e e e e e ea e e e eeens 898
G I A v/ L I 0 o [0 1) SRR 902
37.1. Overview of Event Trigger BEhaviorc.cceiiiiiiiiiiiii e 902
37.2. Event Trigger FiliNg MatTiXccociieiiiiiiiiie et et et eae et e e et easeneaaaeansaneeanaes 903
37.3. Writing Event Trigger FUnctions in Ccciiiiiiiiiiiiiiiine e e eea e e 906

ix

PostgreSQL 9.5.25 Documentation

38.

39.

40.

41.

42.

43.

44.

37.4. A Complete Event Trigger EXampleooouiiiiiiiiiiiiie et e e e eees 907
37.5. A Table Rewrite Event Trigger EXamplecoouiiiiiiiiiiiiieeiiee e e ea e e eees 908
B oI R oI 41 1= oo TNt 910
38.1. The QUETY TIEE ..ouiieiiiiiiieeiie ettt e et e e et e et e et e et e et e st estnastnaernnesenasanaeanaaennasenns 910
38.2. Views and the Rule SYStEIMcouiiiniiiiiii et e e e e e e e eees 911
38.3. MaterialiZed VIBWS ...couuiiiiiiiiii ettt et et e et e et e e et e e et e e eaa e eaaaneees 917
38.4. Rules on | NSERT, UPDATE, and DELETEcccuiiiiiiiiiiiieii ettt eetie et e eeie e 920
38.5. Rules and PriVIIEgESccuuiiiiiiiiiii ettt et e e e et e et e et e e e e b e aaaans 929
38.6. Rules and Command SEAtUScceiuuiiiiiiiiiiieii ettt e e et e et e e e e eeaaans 931
38.7. RULES VETSUS TTIGUETS touuiiuniiiniiiiiieeiee et tieete et e et e e te e s eeteetnaeanaesenesanesanaesnessnasrnaarnnns 931
Procedural LanQUAagESc.ueeiuiiieiiieeiee e eieeete et et e st e et e eatestn e et sanssenssensstnearnesenersnasenaeenns 934
39.1. Installing Procedural LanQUagesceeuueiiueiieeiieeiieeiieeeiieeieesieeeaneeaneeenessnaesnaesnaesnnaees 934
PL/pgSQL - SQL Procedural LanGUAagEccuueiuueiiueeiieiieeieeiieeiieeeieetnestnesenaeseesnasrnaernnesnneees 936
0.1, OVEIVIEW ..ttt ettt et et et et e e e et e et e et etu e et e taa s eaueaneeasaaetnseaneennaarnsrenseenneenneenes 936
40.2. Structure of PL/PGSQL ..ot e et e et e et e e e e et e st e et e s e et e sanaeanaaannaes 937
Z OGO D T=Tod F 1 = 1 [0} o 1 TP 938
I o 4 0} ST 1T 10) s £ SRR PRUPRN 943
40.5. BaSIC STAtEIMEIILS ..euuiiiiiiiii et ettt e e e et et e e e e e e eanns 944
40.6. CONLTOL SITUCLUTES ...eiiiiiiiiieiii ettt et e et s e et e et s e eaa e e eaan s eananeees 951
ZU0.7. CUTSOTS ..ttuituitiette et ettt et e et e et etu e et e et s etaetasetaaeteaseanaennatnesatasetaetnneenneesnseenseeneeennnes 963
40.8. ETTOrS And MESSAGES ..uevuneiuniirieiiieeiieetiaeeteetaeteaesenettnaeanaeteasseestsstnssrnnesenessnessneesneesenaes 968
/LTS T I o T o (=Yl o 0 Yol <o LU bl Y= RN 970
40.10. PL/pgSQL Under the HOOGccuuiiiiiiiiiiiieiiiie ettt et e e et e eeieeeenae e 977
40.11. Tips for Developing in PL/PGSQLouiiniiiii et e et e e e et e e v e e saeeaaaas 980
40.12. Porting from Oracle PL/SQLcouniiiiiiieiiieee e et e e e e e e et e e e et e e e eaens 983
PL/Tcl - Tcl Procedural LanNQUAgEceuueiiueeiieiieeieeiieeiieeeteeete et estneetneesnssenessnassneesnassnnassnnes 992
1.1, OVEIVIEW ..ttt ettt et et e et e et et e et e et e tu e et e taa et eaueearasetasetneenneaenseenseenneenneenes 992
41.2. PL/Tcl Functions and ATQUINENTScccuuiiiiieiiiiiieeieeiiee e eteeteeee e st e et eereeesnnesanaeanaaannns 992
41.3. Data Values in PLITCL ...ttt e e et e e e e e et e eebeeeees 993
41.4. Global Data in PL/TCL ...ciuiiiieiiiiie ettt ettt e et e et e e et s e eeb e e eean e 993
41.5. Database Access from PL/TCLc...iiiiiiiiiiie ettt e e e e 994
41.6. Trigger Procedures in PL/TCLcoiiiiiiiiiii et e e et e et e et e e e eaaas 996
41.7. Event Trigger Procedures in PL/TClccouniiiniiiiiiicie ettt et e e 997
41.8. Modules and the unknown Commandceeeiurieiiriiiiieeiiie et e e e e e eeian e 998
41.9. Tcl ProCeAUIE INAIIES ..c.uniiiiiiiiiieeeii ettt ettt e et e et e e et e e et s e et e eeaa e eeeaaeeeeaans 998
PL/Perl - Perl Procedural LanQUageccuuevuueiiueiiineiieeieeiieeeieeteeteesiesanessneesnaesnnessnessneesnneees 999
42.1. PL/Per]l Functions and ATGUMENTEScouiiiiiiiiiiiiieie e e et et e e et e et e e e e aaneeannees 999
42.2. Data Values In PL/PETLcoouiiiiiiiiiie ettt e et e e e e e e 1002
42.3. BUilt-In FUNCEIONS ..iiiiiiiiiiieiii ettt e e et e e et s e eae e e easeeebeees 1002
42.4. Global Values i PL/PETLoiiiiiiiiiiiiii ettt et e et e et e e e e eeen 1006
42.5. Trusted and Untrusted PL/PeTLccoouiiiiiiiiii ettt 1007
N ST o IV == ol B s o T o =3 = 1008
42.7. PL/Per] EVENt TTIGQETS ..uuiiuiiiiiiieiiie et et et e et e e te et e et e ete et e st e st e atnaanneeenassneesnaasennes 1010
42.8. PL/Per]l Under the HOOQcoiiuiiiiieie ettt e e e e eeaas 1010
PL/Python - Python Procedural LanguUagecc.eeuueiiiieiieiiieeiie e eeieetee v e e eeaeeanee s asnnnas 1012
43.1. Python 2 vs. PYLRON 3 ...t e et et e e e e e e aans 1012
43.2. PL/PYthon FUNCLIONS ...civniiiiieie et e e e et e e e e e et e e ae e et e et e et e eanneeenaeen 1013
43.3. DAtA VAIUES ..oiieiiiiie ettt et et e et e et e ea e eanas 1014
TG T Y ¥= Y oo o J B - - NN 1018
43.5. ANonymous Code BIOCKSc.iiiiiiiiiiiiie ettt e et e e e e e e a e e e eas 1018
ZZSCTUOTINI B o To {0 =) ol 2k V1 o Vo w0) 1< PP PRRPN 1019
43.7. DAtADASE ACCESS ..uuiiiuniiiiieeiie ettt ettt ettt et e e et e et e et e et e et e ta e ta e eaaaaes 1019
43.8. EXplicit SUDLTAnSACLIONS ...ccvuiiiiiiiiei e e e e e e et e e e e e e et e eaanas 1022
43.9. UtIlity FUNCEIONS ..ovuiiiiiiiiii et e e e e e et e et e et e st e st e eaaeereneeenaeen 1024
43.10. Environment Variablesc.viiiiiiiiiiiii e 1024
Server Programming INTETTacCeccuuiiiiiiiiii e 1026
44.1. Interface FUNCEIONS ...cuuuiiiiiiiiiii ettt e e e e et e et e e et e eaaa e eeeans 1026
44.2. Interface SUPPOTt FUNCLIONS ...cceuiiiiiii e e e e e e 1058

PostgreSQL 9.5.25 Documentation

AV G TLY (=Y 0 aTo) VAN =N a o Yo o) 00 1<) o | AP 1066
44 4. Visibility of Data Changescc.ciiiiiiiiiiiiiii e e e e e e e et e e ae e e e et e aaaeeeas 1075
O T b ¢V 1]) (YN 1075
45. Background WOTKET PIOCESSESc.uiiiuiiiiiiiiiiiiieiee et et e e e e et e eteeaaeean e et e sanesnasanasraneees 1079
2 L GT o Yo s o= B D 1= ToTo o b hia Lo S 1082
46.1. Logical Decoding EXamPIEScccuiiiuiiiiiiiiiieiiee et et e e e et e e e e et e e ae e e e saaeaanas 1082
46.2. Logical Decoding CONCEPES ...uuiiuiiiiiiiiieii e et e et e et e e te e s e st e et e e e e aeneeann e 1084
46.3. Streaming Replication Protocol Interfacec.cooeviiiiiiiiiiiiie e, 1085
46.4. Logical Decoding SQL INterfacecccueiiuiiiiiiiiiiii e e e s 1085
46.5. System Catalogs Related to Logical Decodingccoeevueiiiiiiiiiiiieiiie e, 1085
46.6. Logical Decoding Output PIUGINSccoiiuiiiiiiiii et e e 1085
46.7. Logical Decoding OutpuUt WIILETSccuuiiiiiii e e e e 1088
46.8. Synchronous Replication Support for Logical Decodingccceeveiiviiiiieiieiinnennnnnnn. 1088
47. Replication Progress TTaCKITIQciuueiieiiieiiie et e e e ee e et e e ete et e st e et e et ernasenesaneeanesennns 1089
VI, RETETEIICE ..ouniiiiiiiii ettt et e et e et e e tb e e et s e e et s e et s e ata e e eaaeeeaaneeananaes 1090
| ST) I O} a0} 00 T< 1 s Lo - JUTPRN 1091
PN 20)24 OO OPPPOPPRUPPRN 1092
ALTER AGGREGATE ..ottt ettt e et e et e e et e e et s e et s e etteeaanneeaennaees 1093
ALTER COLLATION ...ttt ettt ettt e e et e et e ettt e e et e e et s e et s e et s e et eeteaeeaaaseeataeeasaeeennaes 1095
ALTER CONVERSION ...ttt ettt ettt et e e te et e et e e e et s e et s e et e e et eeann s eeanaseennans 1096
ALTER DATABASE .ottt ettt e et e et e e et s e et s e et e e eea s e et e eebaneeesaeaanaaes 1097
ALTER DEFAULT PRIVILEGES ...ttt ettt e e et e e et e e et s e et e eenae s 1099
ALTER DOMALIN ..ttt ettt et ettt e et e e et e e eta e e eta e e etaa e e et s eatan s eataneeasneessasaeesanaaes 1102
ALTER EVENT TRIGGERoutiitiiiiitii ettt ettt ettt e et e et e et e e et s e et e eenaeas 1105
ALTER EXTENSTION .ouiiiiiiiiiiieiii ettt et e et e e e tie e et e ettt e e et e e et s e et s ettaeeeaa e eeennseatanseesanns 1106
ALTER FOREIGN DATA WRAPPER ...ttt ettt e e e et e e e e eaans 1109
ALTER FOREIGN TABLE ..ottt ettt e e e e et e et e e et e e e e s e et s eetaeeebaeeeanaaas 1111
ALTER FUNCTION ...ttt ettt et et e et e et e e et s e et s e eta e e teaa e e aaa s eetan s eataneeesaneaesnneeenns 1116
ALTER GROUP ..ttt ettt et e e et s e et s e et e e eaa e e et e e et e eebaeaananas 1119
ALTER INDEX L.ttt ettt et ettt e et e e et s e et s e et e e et e e eaa e e et s e et s easaeaanneeenns 1120
ALTER LANGUAGE ...ttt ettt ettt e e et s e et e e e tte s e et e eaaaneeeannaes 1122
ALTER LARGE OBJECT ...ttt ettt et e et e e et s e et e e et e e aaa s e et eeetanseataneeenanns 1123
ALTER MATERIALIZED VIEW ...ttt et ettt et e e et s e et s e et s e et e e et e eanan e 1124
ALTER OPERATOR ..ottt ettt et ettt e et e et e et e et s e ett s e eat e eeenneeenanaaes 1126
ALTER OPERATOR CLASS oottt ettt ettt e e et e e et s e e e s e et e e et e eana s 1127
ALTER OPERATOR FAMILY ...iitiiiiiiiitiiie ettt ettt e et e e ts e e ties e et s e eai s e et s e et s eetaneeesanns 1128
ALTER POLICY ettt ittt et et et et e e et e e e et e e et s e et s e et s e aann s eeaneeesaeeesanaaes 1132
ALTER ROLE oottt ettt e et e et e et e e et e e et e e et s e eta s eetnaeeannneeeens 1133
ALTER RULE ...ttt et e ettt e et e e et e e et e e et e eaba e eea e e eann s eatnnseaennes 1137
ALTER SCHEMA L.ttt et ettt e e et e e et e e et e e et s e et e eeba e eaaaseesanseennnns 1138
ALTER SEQUENRCE ..ottt ettt ettt ettt e et e et e e et s e e th s e e et s e eaaa s e eaan s eeannseataneeasanns 1139
ALTER SERVER ...ttt ettt ettt e et e et e e et e e et s e eaaa s e eta s eetneesenneeeens 1142
ALTER SYSTEM .ottt ettt et e et et e et e ettt e e et s e et s e et e e taaeeaenaeesaeeasanaeees 1143
ALTER TABLE .ottt ettt e et e e et e e et e e e et s e et s e etb e e aan s eeaaeeeaaeeananaees 1144
ALTER TABLESPACE ...ttt ettt et e e e et e et e e et e e et s e et s eeban e eebaeaananas 1155
ALTER TEXT SEARCH CONFIGURATIONcoutiiiiiiiiiiiiiieeeiie et eetiee et e eeeie e e eaneeaiaeees 1156
ALTER TEXT SEARCH DICTIONARY ...ttt ettt e et e e et e e et s e eeie e e eaaeeaanaees 1158
ALTER TEXT SEARCH PARSER ..ottt ettt e e et s e et e e et e e et e eane s 1160
ALTER TEXT SEARCH TEMPLATEoouiiiiiiiiiie ettt ettt e e e e et e e e e e et e eeaae s 1161
ALTER TRIGGER ...ttt et et e et e et e e et s e et s e et e e et e eana s eeaaaseeanans 1162
ALTER T Y PE L.ttt ettt ettt et e ettt e ettt e e taa s e et e e et e eabaeeasaseeetasaeesanaaes 1163
ALTER USER ..ottt ettt ettt ettt e e et e et e e et e e et s e aea s e et e eata e eataeeenneeeannaes 1166
ALTER USER MAPPING ..ottt ettt e e et e e tie e e tae e et e e et s e et s eeaaeaaenneaeens 1167
ALTER VIEW Lottt ettt et ettt ettt e e et s e et s e et e e et e e eaaa s eeaa s eetanseasnneaanneeenns 1168
ANALYZE oottt e et et et et e et e et e et e et etbeaeaaa s 1170
57 X 5\ O UPSTPPPI 1172
CHECKPOINT ..ottt et ettt e e et e e et s e et s eeta s eata e eaaaeettaeeasaneeasaeeannsaeennaes 1174
(0 10 1 PP PRTPPPRT PP 1175

xi

PostgreSQL 9.5.25 Documentation

CLUSTER ..ottt ettt et e et e et e et et e et e s e ean e eena e eeaneennannen 1176
COMMENT ..ttt ettt et e et e et e et et en e e e e s eenna e eenneenanenes 1178
COMMIT ..ttt et ettt e et e et e e et e e ea et eaa e eena e eanaeeanaenens 1182
COMMIT PREPARED ..ottt et ettt et e e e e e e e 1183
(010~ PP UPPTRPPPIN 1184
CREATE AGGREGATE ...ttt ettt et e et e et e ren e e ren e eeana e 1193
CREATE CAST .ottt ettt e et e e e e et e e e e et e een e rena e eennaees 1199
CREATE COLLATION ...ttt ittt ettt e et e e ettt e et e e et e e e eaa e eena e eena e eenaeeeanaees 1203
CREATE CONVERSION ...ttt ettt ettt e e e et e e e e e e e een e eena s 1205
CREATE DATABASE ..ottt ettt ettt e et et e et e e e e e e e eenaes 1207
CREATE DOMALIN ...ttt ettt e et et e et e e e e e e ran e e eaa e eeaa e eenaeeenaees 1210
CREATE EVENT TRIGGER ...ttt ettt ettt e e e 1213
CREATE EXTENSION ..ottt ettt et e et e e e e e et e ren e eena e 1215
CREATE FOREIGN DATA WRAPPER ...ttt ettt 1217
CREATE FOREIGN TABLEoiiiiiiiiiiie ettt et ettt et e e et et e e e e e eenaeeeee 1219
CREATE FUNCTION ..ottt ettt ettt et e et e et e e et e e et e e een e e ranaeeeanneennanees 1222
CREATE GROURP ...ttt ettt ettt e e et e e eae e e ean e eeaaes 1229
CREATE INDEX ...ttt ettt ettt et e et e e et s e eea e e tan e eraneennaeeees 1230
CREATE LANGUAGE ...ttt e e e e e 1236
CREATE MATERIALIZED VIEW ..ottt ettt e e e e 1239
CREATE OPERATOR ...ttt ettt et e e s e e s e e e e e ran e eeens 1241
CREATE OPERATOR CLASS ettt ettt ettt e et e e e e e e e e 1244
CREATE OPERATOR FAMILY ..ottt ettt et et e e e e e e 1247
CREATE POLICY .ottt ettt ettt ettt e et e et e e e e et e e eaa e e eaeeeeaa e eenns 1248
CREATE ROLE ...ttt ettt e et e et e e e e e e e ren e eeana e 1253
CREATE RULE ...ttt et et ettt e et e et e e e e e e e e ran e eranaees 1257
CREATE SCHEMA ..ttt ettt et e et et e e e et e e e e enneeeanaeeeens 1260
CREATE SEQUENRCEE ...ttt ettt e e e e e et e e e e e e e ran e eeaneees 1262
CREATE SERVER ...ttt ettt e e e et et e e ran e eeana e 1265
CREATE TABLE .ottt ettt et et e et e e e e e eaa e ennae e e enaeee 1267
CREATE TABLE AS ittt et ettt e e et e et e e e et en e eana s 1280
CREATE TABLESPACE ...ttt ettt et s e et et e e e e ena e eenaes 1283
CREATE TEXT SEARCH CONFIGURATIONitiiiiiiiiiiiiiiieii ettt 1285
CREATE TEXT SEARCH DICTIONARYcouiiiiiiiiiiii ettt ee e 1286
CREATE TEXT SEARCH PARSER ..ottt 1288
CREATE TEXT SEARCH TEMPLATEcooiiiiiiiiii ettt 1290
CREATE TRANSFORM ...ttt ettt ettt et e e et e et e e e e eenaees 1291
CREATE TRIGGER ... ittt et ettt e et e et e et e e et e e eneeeena s 1293
CREATE TYPE .ottt ettt ettt e e e e e e e e e e e e s eena e eenaees 1298
CREATE USER ...ttt ettt e et e et et e et e e e e eeaa e eenaeeeeneeeens 1306
CREATE USER MAPPING ..ottt ettt et e e e ette e een e een e eena e 1307
CREATE VIEW ittt ettt ettt et et e e et e e et s e e aa e e tan e eranneennneeees 1308
DEALLOGCATE ...ttt ettt ettt e et et e e et e et e et e e e eennaeeeanaenens 1312
DECLARE ...t ettt et e e e ettt e et e e e e e eeaans 1313
DELETE ..ottt ettt ettt e e e e et e et e et e et e e e e e e e e r e ena e e eaa e 1316
DISCARD .ttt ettt et e et ettt et et et e et ea e ra e eeaas 1319
DO ettt ettt e e et e et e e e rens 1320
DROP AGGREGATE ...ttt ettt ettt e ettt e e e e e e eeaa e eenaees 1321
DROP CAST .ottt ettt et ettt e et e et e et e e e e e een e e ran e e raneeenaeees 1323
DROP COLLATTON ...eiiiitiiiet ittt et ettt e et e et e et e et e e een e e rana e renaeeenneees 1324
DROP CONVERSION ...ttt ettt e et e et e e et e e eea e ran e eeana e 1325
DROP DATABASE ...ttt ettt ettt e e s e e e e ea e eaaees 1326
DROP DOMALIN ..ottt ettt et e et e et e et e een e et e s eean e eenaeeeenaeennnnnes 1327
DROP EVENT TRIGGERciiiiiiiiiiiiii ettt et e e e e e ea 1328
DROP EXTENSION ...ttt et ettt e ettt e e e e eaa s e et e eena e e taaeeranneenaneens 1329
DROP FOREIGN DATA WRAPPER ...ttt et et 1330
DROP FOREIGN TABLE ...ttt ettt et e e e e e e ee e eens 1331
DROP FUNCTION ..ottt et ettt e et e et e et e et e e ea e eena e eenaeeenannes 1332

xii

PostgreSQL 9.5.25 Documentation

DROP GROUP ...ttt ettt et e e e e et e et e et e e en s e eena e eenens 1333
DROP INDEX ...ttt ettt ettt ettt e et e et e et e e tr e ean e taaa e rana e eenaneennaeeeees 1334
DROP LANGUAGE ...ttt ettt et e e et e et e e e e e e e ena e eenaees 1335
DROP MATERIALIZED VIEW ..ottt et ettt e e e e e ee e 1336
DROP OPERATOR ...ttt ettt ettt e e et e et e et e e eaeeeena e eenas 1337
DROP OPERATOR CLASS ...ttt ettt et et e e et e e e e e e ean e eeaees 1338
DROP OPERATOR FAMILY ..ottt et ettt et e e e e e e e e eenaeeees 1339
DROP OWNED ...ttt ettt et e e ettt e et e et e e e e e e e ren e renaees 1340
DROP POLICY ..ttt ettt ettt et et e et e et et e et en s e e e s eeaa e eeaneeeaaeenaneennans 1341
DROP ROLE ...ttt ettt ettt e et e et e et e e et e e eaa e e raa e e ran e ennaeees 1342
DROP RULE ...ttt et ettt et ettt et e e e et e e et e e eaa s e eaaeeraaeennaneees 1343
DROP SCHEMA .ttt ettt e et e e e et e e e e e e ean e e raneeenens 1344
DROP SEQUENGCE ...ttt et ettt et e et et e e e ren e e ean e eenaeeeees 1345
DROP SERVER ...ttt ettt ettt s e et e e e e e e raa e e ran e eeaaeennaneees 1346
DRODP TABLE ...ttt ettt et e et ettt e et et e e et et a et et e ena e 1347
DROP TABLESPACE ...ttt ettt ettt e e et e et e e e e ean e enn e eanees 1348
DROP TEXT SEARCH CONFIGURATION ...ttt ettt 1349
DROP TEXT SEARCH DICTIONARY ..ottt ettt et e et e e e e 1350
DROP TEXT SEARCH PARSER ...ttt ettt 1351
DROP TEXT SEARCH TEMPLATE ...ttt ettt en e eenees 1352
DROP TRANSFORM ...ttt ettt e et e et et e eea e e e e eenaes 1353
DROP TRIGGER ..ottt ettt ettt s e et e e et e e ee e e ran e eeana e 1354
DROP TYPE ..ottt et e et ettt ten e et s e e e e e et e e ena e eena s 1355
DROP USER ...ttt ettt et e et e ettt et e ten e et e s e e e e e e e raa e eeans 1356
DROP USER MAPPINGooutiiiiiiiiiieiie ettt ettt ettt e e et e et e et e e e e ennaeeees 1357
DROP VIEW L.ttt ettt et et e et e et e et et e e ran e e ean e eenneeeees 1358
BN D ettt et ettt ettt e e e e e et e eaaees 1359
EXECUTE ...ttt ettt et e et e et e et e et e et e e ean s eeaae e eeaneeernnnnan 1360
EXPLAIN L.ttt ettt et e e e s e et e e et e et e e e taa e e tan e e tn e enna e e an e eena e 1361
FETCH .ottt ettt ettt e et e et e s e et e e eaa e e ran e e eaneennaeees 1366
GRAIN T e et ettt ettt e et e et e e et e et e e taa e e tan e e et e een e en e eena s 1370
IMPORT FOREIGN SCHEMA ...ttt et e e e et e e e ean e 1377
NS 2 2 PR P PP PPPT 1379
| S 0 A PP PPPRRTRTRN 1385
LIOAD ettt et et ettt et eta e e e e en e eens 1386
LOCK ettt ettt ettt ettt et et et et a et e e ra e e een 1387
IMOVE et ettt ettt e e e et e et et et et ettt en e een e 1389
INOTTEY ettt ettt et e e et e et e et e e e taa e e taa e e et e eena e eanaeranaeennanes 1391
PREPARE ...ttt et ettt ettt et et et et e e e e e e e e e anans 1393
PREPARE TRANSACTION ..ottt ettt e e e et e e e e e e e e e eenn e 1395
REASSIGN OWINEDiiiiiiii ettt ettt e e e e et e et e e eeeeeeaa e eenas 1397
REFRESH MATERIALIZED VIEW ..ottt e e e eene e 1398
REINDEX ..ottt ettt ettt et e ettt eae e et en e et e s eeaa e eeaa e e raneeranneennanees 1400
RELEASE SAVEPOINT ..ottt ettt ettt e e et e e e e e een e e ran e eeanes 1402
RE S BT ittt ettt e e e e et e et et e e e et et e e e ran e eanas 1403
REVOKE ..ottt ettt ettt e e s et e e ea e e e e e et e e e e e e ean e eraneeenans 1404
ROLLBACK ...ttt ettt et ettt et e et e et e et e eena e eana s e eane e enneeeraneenens 1408
ROLLBACK PREPARED ...ttt ettt et e e e e e e e e re e een e 1409
ROLLBACK TO SAVEPOINT ...ttt ettt et et e e e e e e e eenas 1410
SAVEPOINT ..ottt et et e et e et e et e et e et e ran e e ean s eeane s eenaeeeenaees 1412
SECURITY LABEL ..ottt ettt et ettt et e et e e e e e e nn e e rana e eeanaes 1414
SELECT .ttt et ettt ettt et ettt ettt e e e ea e nnaees 1416
SELECT INTIO .ottt ettt e e e e et e et e e e e e eaa e e et e eeaaeeenanen 1434
1S o PP P OPPR PPN 1436
SET CONSTRAINTS ..ottt ettt et e et e e et ettt e e e e e e e enneeennaenens 1439
SET ROLE ...ttt ettt ettt e e e e et e et e et et e e e e e ean e ennans 1440
SET SESSION AUTHORIZATION ...ttt ettt e e e e e 1442
SET TRANSACTTION ...ttt ettt ettt et e et e et e e enae e e enaeeenas 1444

xiii

PostgreSQL 9.5.25 Documentation

] = (O 1O OPPRRSTRTRRt 1447
START TRANSACTION ...ttt ettt ettt e et e e et e e et e e et e e et e e etaa e eanseaauaseannnaeens 1449
TRUNGCATE .ottt ettt ettt e et e e et s e et e e e tu s e etu e e et e e et e etta e etsaeeannserannsaesnnaaes 1450
UNLISTEN ettt ettt et e et e et e et b e e et et aaa e e et s eetaa s eatanseasnnaeaansaeenaseensanaees 1452
L0124 B AN TSP OPPTUPPRN 1453
VACTUUDM ittt ettt e et e e et e e et e e et e e eta e e et s eaba e eetanseasaaeanaeennanaaes 1457
VALUES .ottt ettt ettt ettt ettt e e et e e et e e tb e e et e et e et e et e et e e aaa e aaans 1459
I1. PostgreSQL Client APPIICAtIONS ...uuiiiiiiiiiii e e e e e e et e e e et e et e e e e sanasannas 1461
Lod LI ES] 1] oo | o T PPN 1462
T3 4 == 1 =T | o TP 1465
(oa <Y< 1 = = o Lo 1468
CTEALEUSEYT ..eeuniiiiii ittt ettt et ettt et e et e et et e et e ean e eaueeeba et etaneauaeesnsetnsaanseenaetanranaenneenes 1470
6 By} 076 1 o J 1474
(6 By} o] £= 2 o [P 1476
6 By} 010 F=1=Y 1478
704 o Yo E P PP PRRN 1480
PG DASEDACKUD ettt e e et e e 1482
9701 0 1=1 s Vol o U 1488
oTo Je10) 1V o SO O PPPRPPPPIN 1498
o Yo Je L0 Na'] o J OO PPPPRRPPRRRPN 1501
o Yo Je LbNa] o T 1 | KRRt 1511
1910 B E] A= T- Vo | PO TOPPRPPPPRRPRt 1516
DG TECEIVEXIOQ .uutiiiiiiiiee ettt ettt ettt et e et e et e e e et s e etb e e etaa e e eaan s eataa s eatanseaanneeeenneaesanaaes 1518
o Yo B A=Toa T4 o Te 1 [o}- 1 U OIS 1521
DU TESTOTE ..ottt ettt ettt et et e et et e et e et e e tn e eaaetaasean s eaueeanaeetnsetnseanneenneeenns 1524
1910 1 N 1531
130010 125 (6 | o PSPPI 1561
VACUUINAD ..ottt et e e et e et e et s e et s e et e e eaa e e et e ean e 1564
ITI. PostgreSQL Server APPLCAtIONSiiiiiiiiiieie et e et e e e e e et e e e e e eaenas 1568
1811 e | o TP PPPRRPRt 1569
PG ATCRIVECLEATITD ...eiiiniiiiieiie ettt e e et e et e et e e et s e et s eetaseaaaneeeens 1573
PG CONETOLAAETA ..ueiiiieiiieeii ettt ettt et e e et e e et s e et e e et e e et e eenseeebaseeesaneeens 1575
o1 2 1 RO PP PRSPPIt 1576
910 B LR 1=] w4 Lo T OO PPPRPPPPIN 1581
910 B A=) o Lo OO PSR PPPR PP 1583
PG EESE FSYTIC ettt ettt e e et e et et b e et e eea e eaa s 1586
o Jo ST A 0011 o o S PP UP TP PPRUPRURt 1587
o Yo JRVY o Yo 1 o= Vo [T OO OTPRROPPRRRE 1590
foTo Jb:4 oo (o Li N 1} o O PTPPRRPPRRPPPPRPN: 1597
[0 1 T PR 1599
TS m a0 b) =) PN 1605
VIL INEETTIALS oeenieiiii ittt et et e et e et e e et e e et s e et e e eta e e et s e et s aetanseaannaeesanaansnnaes 1606
48. Overview of PostgreSQL INternalscccouiiiiiiiiiiii e e e e e e e e e aeeaanas 1607
T I N o Lo N o B oY = T 1Y oy 1607
48.2. How Connections are Establishedcccooiiiiiiiiiiiiiiiii e, 1607
TG T N o TR =) =T =) Al] = Vo [RN 1608
48.4. The PostgreSQL RuUle SYSLEIM ...ccuuiiiiiiiiiiiie e e e e e e e eaaas 1609
48.5. Planner/OPtimiZeTiiun i e e e et e e e et e e e et e et e e e e e aaaaas 1609
A8.6. EXCCULOT .ottt ettt ettt et et e e et e et et et e e e eaeeaa e 1610
S T A1 =y B O -1 [Yo £ TSN 1612
9.1, OVETVIEW ..ttt ettt ettt ettt et e et e et s eta e et e taa e eeuetueeataeetasetnsatnnaasneeaneanseenanenanns 1612
2R I o To - Yo [o | g =To - U = PP 1613
e TG T o To - 1 1 (RPN 1615
e I o To -V 1 o] o J PN 1617
7L IR T o 1o =11 ¢ o] e o 1618
7 ST o To - LA A e = PPN 1619
e A o To - LS A I 11 = PP 1619
7 IR T o To - LU [A oV o I PR 1622

Xiv

PostgreSQL 9.5.25 Documentation

ARSI I o To - U o o T 111 11 1= G TP 1623
Z e I O TR o o [o> Y= S PN 1623
7 I I I o o T o = (== S PPN 1624
Z/Re I 7 o o T o o] B - 1 o] o PP 1628
7L T G TR o o R o o] 1= A - U | SRR 1628
7 I I S o o R o o] V4 =T =] o] o PRSPPI 1631
e I S T o o o - A= | o - =Y TP 1631
ZZ8e I G T o Yo e | o N o] =TT =1 A S T Lo TR 1633
2280 I A o o o =Y = 10 | I - U PR 1633
78S I It S T o o [0 [=Y o 1= o Lo SO PT 1634
ZZRe I e IR o Yo e [=E Yot I o A o] o PPN 1635
Z e I O IR o o T =Y 2 10 1 4 PN 1636
Z e I I o o J AV =T o | O O G o [= PPN 1636
e I o o T =3 A A=1 4 F-7 o PRPPP 1637
2280 I T o To I oY g = TN [Yo F= A= W =V o o 1= SRR 1638
e I o o Lo I e Y= T e L =T =T V4] PPN 1638
Z e A T o o T e Y= T e T A=Y o] B = TR 1639
2 e I T o o T 4 Ve [PRSPPI 1639
2R A A o o TR T 01 1=] g I A= PP 1641
2RSS T o o T -V q (o [0 - Vo =TT 1642
ZZRe IR e IR o Lo [-V o [T o] o] I =Y o3 AR 1643
49.30. pg_| argeobj €Ct _IMBL AU0AL @ .ivuiiuiiiiiiieiieei ettt e e et e ee et et e e e et et e e aaaanns 1643
Z e T I o o T g - Y0121 o - (o < TP 1644
Z/8e T 1 o o [o o o3 B- T3 PPN 1644
ZZ8e TG 16 T o o [o] o 1=1 o= 1 Ao] SR PP 1645
Z RS IR 7 S o o T o] o) 1= U 1 N 1 APPSR 1646
2R T 1o T o o T o] I =T 1 1] = L A = PRSP 1646
2R TG T o o [o o] I N o) VPP 1647
Z RS TG 3 o o [o] e [PN 1647
Z e G T S T o o [-2 [o [PPN 1651
49.39. Pg_repliCati ON_OF i Qi N it e e te e et e ee et et e e e e eaneeneeneennaaneens 1652
7 I O IO o o T =LY G T = T PPN 1652
e I I o o =Y =Yod - | o 1= PP 1653
ZARe I3 o o TR =] o o [=T o I=1 o To IO PP 1653
280 I3 T o o TR~ o o (==Y o g I o] A o o OO PPN 1654
49.44. PY_SNSECI ADEI .eeeiiii et e et e e e e 1655
e I S T o o =Y = LS] A N PP 1655
2R I T o o T A=Y o I =T o = U] = PRSPPI 1657
Z/Re I oy A o o T A =V 1= o] 4 PSPPI 1657
7S I S T o o [A g o o = S PPN 1658
ZZRe I T o Yo [=T X 0] 1) A o PP 1659
Z/Re oY IR o Lo T AT e] o} o T 11 1 o PPN 1660
7S IR I o o R =T« | o2 S PPN 1660
e Y o o T T o T- L= =] PP 1661
ZRe IR Ye T o Lo T T A =1 01] - L = TR 1661
e IR T o o [B8 Y/ o 1 PPN 1662
ZIRe Yo T o o IRV =T ol 402 o] o L o o [P UPPRP 1668
49.56. SYSTEIN VIBWS .iiiiiiiiiiiii ittt ettt et et e et et et e et et e et e et et s en et ranaaneaaaenns 1668
49.57. pg_avai | abl @_eXt ENST ONS ..ottt et et e e aaaas 1669
49.58. pg_avai |l abl e_eXt NST ON_VEI ST ONS ..ouiiuiiiiiiiiiiiieie et ee e et e aeee et een e e eanes 1669
7 oY e IR o o [o U1 =Y o] PPN 1670
Z e YO o Lo T A =TT = O A 1 o = PPN 1671
Z e N I o o [o o 11 « PPN 1671
2 Y o o TR 4T [=S PPN 1672
7 76 T o o T I o Tod <= T PSPPI 1672
e 7 S o o T 1 £ L ARV =N PP 1675
e Yo T o o T o o] BN T o 1 == PP 1675
49.66. PO_Prepar €0d_St Al EIMBNE S .ottt et e et et e e et e e e et e e et e aaaas 1676

XV

PostgreSQL 9.5.25 Documentation

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

49.67. PO_PrEPAN €U _XACT S 1uiiuiiiiiiiiiiietie et e ettt ettt et e tte et et stnetaastasanertastsanseresraransenersarenns 1677
49.68. pg_replicati ON_Ori gi N_St At US ciuiiiiiiiiiiiiiiiie et ee et e e e eeeae et e e e eaeeaeanaaanas 1677
49.69. PO_repliCati ON_SI Ot S ittt et e e e e e et e e e e e aans 1678
2 A O I o o [o] = 1= S PPN 1679
e T O o o [V1 = T S PPN 1680
e I o o T =Y = Yol B L o 1= B PP 1680
e TG TR o o T =T =Y O A T ¢ o = PP 1681
Z e R S o o T~ o = o [0 11 PP 1683
e R T o o [- L A= TP PPN 1683
e R T o o [- o] I =TSP 1686
49.77. PO_ti MBZONE_AbDI @VS .iiniiiiiiiiiiii et ettt et et et e e et e e e e e e eaaanaes 1686
49.78. PO_L i MBZONE_NAITES .uiuniiiiniiuiiieetetetteetetneeteetestnrtnettastnsaneteaststnessastasenseserrasansenersaranns 1687
e A TR o o [U -1 =T PN 1687
49.80. PO _USEI _IMBPPI NOS ttuttniiuetuetntinetteetetnetueetaetnetnettstnstntuastnstnetuesssenstnersessnseesrarsnssssrnses 1687
e I 3 I o o [V I = 1.~ S PPN 1688
Frontend/Backend ProtoCOLcouuiiiiiiiiiiiiiiie ettt et e e e e 1689
50,1, OVEIVIEW .euiiiiiiiiiii ettt et et ettt et et e et e et et e eaa e et e ean e tbe e et s eanetnaannaennaeaneenns 1689
50.2. MESSAGE FLOW ..iiiiiiiiiiiiiie ettt et e et e et e e te et e st e et e e s esenastnaeanaeaneeaenaaannns 1690
50.3. Streaming Replication ProtoColccoouiiiiiiiiiiiiii e 1700
50.4. MeSSAGE DAta TYDES cuiuniiiiiiiiiii ettt et e e e eans 1705
50.5. MeSSAGE FOTINALS ..ovuiiiiiiiiiii et et e e e e e e et e e e eeaa e e e e eaaaanens 1706
50.6. Error and Notice Message Fieldscocuiiiiiiiiiiiiiiiiii et ea e 1719
50.7. Summary of Changes since ProtoCol 2.0cccouiiiiiiiiiiiiiii e 1720
PostgreSQL Coding CONVENTIONSccuuiiiiiiiiiiiieie e e e et et et e e e e e e e ae e e e et e saaeeraeees 1722
oY IR I) 0 = 1 1 2 o PP 1722
51.2. Reporting Errors Within the Server ... 1722
51.3. Error Message Style GUIAEccouiiiiiiiiiii et e e et e e e e e e a e eens 1725
Native Language SUDPOTT ...ttt e et e et eee et et e e e et eaneaneeneennaaneeneenns 1729
52.1. FOr the TTanSIatoroviiiiiiiiiei ettt et e et e et e e e e e e et e eeaaees 1729
52.2. FOT the PrOgramIMeTciiuiiiiiiiiieii e et e et e e e e et e e te e st e st e st eensannesanaernaasnnns 1731
Writing A Procedural Language Handlerccoouiiiiiiiiiiiii e 1734
Writing A Foreign Data@ WA DT ..ouu ittt et et et e et e e s e e ea e e e e aanas 1737
54.1. Foreign Data Wrapper FUNCEIONSciuiiiiiiiiiii et e e e e 1737
54.2. Foreign Data Wrapper Callback ROULINESceivniiiiiiiiiiiii e 1737
54.3. Foreign Data Wrapper Helper FUNCLIONSc.covviiiiiiiiiiieeceee e 1745
54.4. Foreign Data Wrapper Query Planningccc.coevveiiiiiiiiii e ee e e 1746
54.5. Row Locking in Foreign Data WIapPeTsSc.eiiuiiiiiiiiieiieeiieeeiee et ea e e e e e aens 1747
Writing A Table Sampling Methodc.iiiiiii e 1749
55.1. Sampling Method Support FUNCLIONSccovniiiniiiiiiee e 1749
Writing A Custom Scan ProVIAETciouiiiiiiiiiiiiieeiie et e e e e et e et e eae e e eeaaeas 1752
56.1. Creating Custom Scan Pathsc.coiiiiiiiiii e e 1752
56.2. Creating Custom ScCan PIANScccoiiiiiiiiiiiiieeie e e e e e e e e e ae e e e eanns 1753
56.3. Executing CUSEOI SCAIS ...ivuiiiiiiiiiiiiiie ettt et ettt et e ee et et e e e eaeaneaneaanannns 1754
GenetiC QUETY OPTIIMIZET ..ivuiiniiiiiiiiiiie et e et e e et e e e et et e e e et aanetneenaaaneeneeneaeneens 1756
57.1. Query Handling as a Complex Optimization Problemc.ccccoeviiiiiiiiiiiiiiiiiieeieeeens 1756
WAV ©1=) o T=1 nTolPAN Lo £} o o 1 00 - TSR 1756
57.3. Genetic Query Optimization (GEQO) in PostgreSQLcccoeiiiiiiiiiiiiiiiceeeeeee e, 1757
57.4. FUIther REAMING ..ccvuiiiiiiiiii et e et e e et e et e e e e et e et e aaeeaenesenaannnns 1758
Index Access Method Interface Definitionccoviiiiiiiiiiiiiiiiiii e 1759
58.1. Catalog Entries for INAEXEScciuuiiiiiiiiiiiii e e e e et e e e e e e aens 1759
58.2. Index Access Method FUNCLIONSoiiiiiiiiiiiiiiii e 1760
TS TG T B a Lo 1) i Tot=1 a1 12 o RPN 1763
58.4. Index Locking ConsSiderationsccecueiieiiiiiiiieiiie e et e e e et e e e e e e e eaeeannas 1764
58.5. Index Uniqueness CRECKSccuiiiiiiiiiiieie e e et et e e e et e e ae e e e eaneeaeeesaneeens 1765
58.6. Index Cost Estimation FUNCTIONSoiiiuiiiiiiiiiiiiiiii e e 1767
GIST INAEXES ..eeiiieiiie ettt ettt e e e et e et e e et e e e et e e et s e et s eatan s eataeeaaneeanaseeenans 1769
Fo1e TR IO 4 L 4 o To L T o1 o) o AP PT TP 1769
59.2. BUilt-in OpPerator CLASSESuciiuiiiiniiiieieeii et e e e et et eeteete e s e et e et e eaeeeaeesaneernaesnneenns 1769

XVi

PostgreSQL 9.5.25 Documentation

o1 G TR 05 1Y o 531 031) RN 1769
59.4. IMPLEMENtAtION L..iieiiiiii e e e et e et e et e et e e e et e et e e e et araaaaeaan 1777
o1 T 5= 1101 o] (=T S 1778
0. SP-GIST INAEXES .evuueiiiiiiiiee ettt ettt ettt e et e et e ettt e e et s e et s e et e ettuneeesanaetsanaeetneetsaeaeennaes 1779
B0.1. INETOAUCTION .eviiiiiiiieiii ettt et e e et s e et e e et e et e e e et e e et s entaeeenanns 1779
60.2. BUilt-in OPerator CLASSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e et et e et e et e eaeaeaeesanasrnaesnneenns 1779

LS O JC TR 5 Y o 53 31) RN 1779
60.4. IMPLEMENtAtION ...cveniiiiiie et e e et e et e et e e e et e et e e e et araaaaaaan 1785

S 0T 5= 1001 o] (=T S 1786
1. GIN IIAEKES ..eevuuniiiintiiii ettt ettt ettt e et e e et e e et e e et s e et e e et e ethaeetta s eetanseetnnseatnnseasnnsennnnes 1787
0 IO 4 L 4 o To L o1 o) o A PO 1787
61.2. BUilt-in OpPerator CLlAaSSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e e te e s e et e et e eaeeeaeesanaernaesnneenns 1787

O NG TR 5 Y o 153 31) RPN 1788
I 00} 0] Lo a =Y a1 =) o TS 1790
61.5. GIN TipS @nd TTICKS ..ccuuiiiuiiiiiiiiieiiie e e et e e e et e et et e et e e e e eaeeesaneeaneeanaeenns 1791
61.6. LIMITATIONS .oeuniiniiiiiei ettt et et et e et e et e e e e ea e een e ean e e eenas 1792

N I 5 <= 1111 o] (=T S 1792
B2, BRIN INAEXES ..uieiiniiiieiiiie ittt ettt e et e e et e et e ettt e e et s e et s eeta e eatanseeaaneeaanneeesnnaenes 1793
2/ IO 4 L o Lo L T o1 1 o) o A OO PO 1793
62.2. BUilt-in OPerator CLASSES ...c.uciiuiiiiiiiiiieeie e e et et et e et e e te e e e et e et e eaeeeaenesanaernaesnnesens 1793
LSV T 05 1Y o 531 31 5 RN 1794
63. Database PhySiCal StOTAQEccuuiiiuiiiiiiii ettt et e e et e et e et e et e st e st e eaneernnaees 1798
63.1. Database File LayOulcccuiiiiiiiiiiiiie e e et e e et e et e e e e et e et e e e e aena s 1798
83,2, TOA ST .ottt ettt et ettt e et e et e et e et et et eaa e et e et eaaanas 1800
03.3. FIEE SPACE MAPD tiuiiniiiiiiiiiiiie ettt e et e ettt e e e e et et e et et et e et e e aans 1802
3.4, VISIDILEY MAD .iiiuiiiiiiiiii et ettt et e e et s e et e e et e ettt e e et e e et e eataeees 1803
63.5. The Initialization FOTKc..iiiiiiiii ettt e e e e e e eee 1803
63.6. Database Page LayOulcc.ciiiiiiiiiiii et e e e et e e e e aaa s 1803
64. BKI Backend INTETTACEcouuiiiiiiiiiiiieiie ettt e e et e e et e et e eeaees 1806
64.1. BKI File FOTMAL ..ceuuiiiiiiii ettt ettt e et e et e e e e s e eaa s e et e eeaanes 1806
64.2. BKI COMINANAS .uuiiiiniiiiieeiiie et eei et e et e e et e e et e e et e e ata s e et s eataeeeataneeesaeeenaeeasanaees 1806
64.3. Structure of the Bootstrap BKI Filecccouiiiiiiiiiiii e 1807
L <= 1011 0] (= S 1807
65. How the Planner Uses StatiStiCSoviiiuiiiiiiiiiiiiiiii et 1809
65.1. Row Estimation EXampPlesc.oiiuiiiiiiiiiiiiiecie et e e e e e et e e e e e e e e eaaaas 1809
65.2. Planner Statistics and SECUTILYccivuiiiiiiiiiii e 1813

AV 0 N o) 1= oL b (=Y SN 1815
A. POSEGTeSQL ETTOT COAES ...uuiiniiiiiiiiiieeeie et et e et e et e et eete et e st e st e st eanneaenesanasaneenneenns 1816
B. Date/Time SUPPOTTE «.ouniiiiii et et e e e e et e et et e e e et et e tae e aaneaneeneannaeneens 1824
B.1. Date/Time Input INterpretationooiiiiiiiiii i e e e 1824
B.2. Handling of Invalid or Ambiguous Timestampscccceueiiiiiiiiiiiiieiiieci e 1825
B.3. Date/Time KEY WOTAScouiiiiiiiiiiieiiie ettt e et e e e et e e ae et e et e et e et eanneeanasanaaannesennns 1825
B.4. Date/Time Configuration FilesSccccoiiiiiiiiiiiie e e e e e e 1826
B.5. POSIX Time Zone SPecCifiCationscc.oeiiiiiiiiiiiiiiie e e e e e 1828
B.6. HiStOTY Of UTIES coiuniiiiiiiii it e e e et e et e e e et e et e et e aaneaaneesnnaes 1829
(OO) I =) A 0] oo £ 1832
D. SQOL CONLOTINATICE .euiniinininintiei ettt ettt ettt e ea ettt eneastetaensastetnensastesseneneseteensnsnnnns 1854
D.1. SUPPOTLEA FEATUTES ...ceuiiiiiiiiii et e et e e e et e et et e et e et e e e e st e et e sanaasnnaeen 1855
D.2. Unsupported FEAtUTEScc.uiiiniiiiiiiiieiii ettt e e e e et e e te e e e et e et e e e e aeeeenesanneeas 1869

E. ReELEASE INOTES ..ottt et et e et e e et e e et e e et e e et e e et e e et e eetaeeenanns 1882
E.L. RelEASE 9.5.25 oottt ettt e e e ettt et e et e e aaans 1882
E.2. REIEASE 9.5.24 oottt e e e et et ettt e it e e e 1885
E.3. RelEASE 9.5.23 ittt ettt e e et et et e et e et e et e eaaans 1888
B4, RelEASE 9.5.22 oottt ettt e e e et ettt e it e et e e aaans 1890
E.D. RelIEASE 9.5.21 oottt ettt e e et et et e e et e et e et e e aaans 1892
E.6. REIEASE 9.5.20 oeutiiiiiiiiiie ittt ettt e e e ettt e et e et e et e eaaans 1894
E.7. REIEASE 9.5.19 ittt ettt e e et e et e et et et e e e e et e eaaans 1898
E.8. REIEASE 9.5.18 .ottt ettt e e e e et et e et e e et e e e 1900

xvii

PostgreSQL 9.5.25 Documentation

| TR A= =Y FT SIS TN Tt PR 1901
E.10. REIEASE 9.5.16 .eruiiiiiiiiiii ettt e e e et e et e et e e e e et e et e e aa e et e st eanaeaneannasrnaannnns 1904
E. 11, REIEASE 9.5, 10 Lottt e e e e et e et e e et e et e et e e aa e eaneeanaaanaeaneannaarnaannnns 1907
E.12. REIEASE 9.5, 14 ..o e e e et et e et e e e e et e et e et e et e ea e et eanearaaraaannns 1910
E. 13, REIEASE 9.5, 13 Lo e et e e et e e e e et e et e et e rt e et et e a e e araaanaas 1913
E.14. RelEASE 9.5, 12 .ottt e e e et e et e e e e et e et e e ra e et e et et eaaearaarnaaannns 1916
| T R =Y (oY= T I TR o T I PN 1917
E.16. REIEASE 9.5.10 .iiniiiiiiiiiiiii ettt e e et et e et e e e e et e et e et e aan e st eaneanesnnaernaannnns 1920
E. L7, REIEASE 9.0, oottt et e e et e et e et e et e et e e et et et et araaaaas 1922
E.L18. REIEASE 9.5.8 ottt e et e et e et e et e et e et e et e et ea et et e aaanaas 1923
E. 1O, REIEASE 9.0, 7 oottt e et e et e et e et e et e et e et e et e e e e et at et et aaaaaaaas 1928
E.20. REIEASE 9.5.0 .uuiiiniiiiiiiiiiiie ettt e e e et e et e et e et e et e et e et e et e et e ea et et e e aaraaaaaas 1932
E.21. REIEASE 9.0.5 oottt et e et e et e et e e e et e et ea e et et et et araaaaaas 1936
E.22. REIEASE 9.5.4 oottt et e e e et e et e et e et e et e et e e et e et et et et araaaaaas 1939
E. 23, REIEASE 9.0.3 oottt e et et et e et e et e et e et e et et et et et et araaaanas 1943
E.24. REIEASE 9.0, 2 oottt et et e et e et e e e e e et et et et et et et araaaaas 1945
| T R =Y (=T T I TR o T PR 1947
E.26. REIEASE 0.5 ittt ittt e et et e et e et e e e e et e et e et et et et et aaaaaaans 1949
| o o 0) ol A=Y =Y T S 1961
F. Additional Supplied MOAUIESc.uoiiuniiiiiiiei et et e e e e et e e e e eae et e e e eanaananas 1962
| U= Yo a0 o Y- o] N 1963
F2. QUL LAY ..ttt e e e e e 1964
F.3. QULO @XPLAIN ..iiiiiiii ettt et e e e e e eaa e 1964
| o w4 <YYo 1 o RO 1966
| T o w4 <YYo)] PPN 1966
| ST o 1 o =TSN 1967
| 03 1 ()« AP TNN 1968
| TR o 11 o Y 1970
FLO. dBUNK oot ettt et e e e et e et e aaa e aeas 1973
| TR e T v o PO PPPRTPPRRRPNt 2000
| ¢ o1 7 o R U PUPRRRE 2000
| Y o o = o Lo = Y 2001
|G T 1 LC T (o 1 PP PPPRR PP 2003
| 7 O i 74741 o 0 0 =1] LIS 2005
| S T 1 1]) ol = YN 2007
| TR a1 < T £ PSPPI 2013
| 11 < 1 = TP 2014
| T 1 o E PO OP RO SRUPPRN 2016
| S TR (o T TSRO PPRRRPPNt 2020
L O | Y - RPN 2021
| S I o T T £=3 1 0 5 01T o A PPN 2027
| R o - FT A 10 oo Lol o T=T o | S 2030
F.23. PG DUFETCACRE ..coeeniiii ettt e e e 2030
| SN2 o To (0] 0y 74 0] ¥ o TN 2032
| BRI oo i i 4 Yo o T Lol =) - | o SO PPN 2041
F.26. DO PIEWATTIL ..iiiiiiiiiiieie ettt ettt et et e et e et e et e et et e et e et seanseanneenaeeeneenneenes 2042
| o To 1 011 [ol : <= 2043
F.28. pg stat StateIMentscoouiiiiiii ettt ettt e ea e ees 2044
| R o To £ = 1 o) [T N 2048
| DRG0 o o f 1 4 1 4 RO TP TP UPT PR 2051
F.31. POSEGTES AW ettt ettt e e et e et e e et s e ee e e ea e eaa e 2054
|2 3 <Y o PPN 2058
|6 T =11 o To 1o | RN 2061
|G) o ¥ PP PPN 2068
| T 1 o T 2070
|G S < 1) 1Y i ' Lo 2072
| G 3 o3 1 N USRI 2080
| NG T o T TS Wl o (= Tod oY I o o AP PPPRRN 2081

xviii

PostgreSQL 9.5.25 Documentation

F.39. £SCATCRZ ..oeiiiiiii ettt ettt e e e e e e e e 2081
F.l40. TSN SYSTEINL TOWS ..eeuiiiiiiiiiiii ettt et et et et e et et e et e et etueeaaeeeneeaneaneeanasetaeeenneenneens 2083
F41. tSI SYSTEIN TIIME .ceuniiiiiiieiii ettt ettt e et et et e et e e e e et e et e eeaeeenneens 2083
FlA2. UNACCENL «.oeeiiiie ettt et e et et e e e et e et s et e eb e eaa e eaneeneeenaseenneens 2083
G T U U o R0 T7-] o T 2085
FlAA. XINN2 Lot ettt ettt et e e e et e e e e et e et e et e aaa s 2087

G. Additional SUPPlied PIrOGTamS ... ccuuiiiiiiieiieeiie et etee et et e e e et e et e et e st e etaeeaeeennaeanaeanaeanaesnnnns 2091
L I O 1Y o L AN o o] Tok= Y) =S 2091
(CTVRITC) 1£2) AN o 01§ (o= 1 1 o) o PPN 2097

| R 5 =Y = | o 4 0 =T SNt 2101
H.1. CLENt INTEITACES .oevuiiiiiiieiie ettt e et e et e e et e e eb e e et e eenaees 2101
H.2. Administration TOOLScoiiuuiiiiiiiiiir ettt e e e et e e et e e eaaeeeaans 2101
H.3. Procedural LanQUagESceeuueeiuiiieeieeteeiieeiertnesteaestestestneesnnesenassneernaesenessneesnessnnesnns 2101
H.Z. EXTEIISIONS ..euniiiiiiiiiiiiieiiee ettt et et et e et et e et e et e e e et e et eetnseannetaaeeanseanneaneaaranennnes 2102

I. The Source Code ReEPOSILOTY ..ccuuiiiiiiiiiiiiieiiie ittt e et e e et e et e et e et e e e esn e st esanaeanasnnnes 2103
[.1. Getting The SOUTICE VIA Git ..ccuuiiiniiiiiiiieiiie e e et e e e e e e et e e aaeaens 2103

N B e o1 bhaaTc) a1 =1 1) s PSPPI 2104
S B 1o Yol = To Yo) - S 2104
IO Ko 1o] B = PRt 2104
J.3. Building The Documentationcccoiiiiiiiiiiiiice e e e e e e e e e eaa e 2108
J.4. Documentation AULhOTINGcivvniiiiiii e e e e e e e e e e ees 2110
T 5 2 (ST 0 o 2111

| Vo o0 1} 2 1 4 TP 2114
|50 0) E 0T 1= o 07/ PN 2119
300 L= O PP 2121

Xix

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

e PartIis an informal introduction for new users.

e Part Il documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

e Part III describes the installation and administration of the server. Everyone who runs a
PostgreSQL server, be it for private use or for others, should read this part.

e Part IV describes the programming interfaces for PostgreSQL client programs.

e Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

e Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

e Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

¢ complex queries

» foreign keys

* triggers

¢ updatable views

e transactional integrity

¢ multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

* data types

» functions

e operators

* aggregate functions

* index methods

e procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

XX

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

2.1. The Berkeley POSTGRES Project

2

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Information
Technologies (later merged into Informix, which is now owned by IBM) picked up the code and
commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia 2000
scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

¢ The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

* The instance-level rule system was removed. Rules were still available as rewrite rules.

* A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

xXxXi

http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. ..) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki contains the project's FAQ (Frequently Asked Questions) list, TODO list, and
detailed information about many more topics.

Web Site

The PostgreSQL web site carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read the
mailing lists and answer questions. If you learn something which is not in the documentation, write
it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

xxii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more
important things on the agenda. If you need help immediately, consider obtaining a commercial support
contract.

o

1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

e A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

* A program produces the wrong output for any given input.
* A program refuses to accept valid input (as defined in the documentation).

e A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

* PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has
a fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

* The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables. We do
not have the time to reverse-engineer your database schema, and if we are supposed to make up
our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/ . psql r ¢ start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed

xxiii

Preface

to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error
message, show it, even if you do not understand it. If the program terminates with an operating
system error, say which. If nothing at all happens, say so. Even if the result of your test case is a
program crash or otherwise obvious it might not happen on our platform. The easiest thing is to
copy the output from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \ set VERBCSI TY ver bose beforehand. If you are extracting the message from the
server log, set the run-time parameter log error verbosity to ver bose so that all details are
logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server's log output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think

it looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information. If
you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the command SELECT versi on(); to find out the version of
the server you are connected to. Most executable programs also support a - - ver si on option; at
least post gres --version and psql --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.5.25 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support

for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not

XXiv

Preface

5

assume everyone knows what exactly “Debian” contains or that everyone runs on x86 64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have
time to find and share your work-around. Also, once again, do not waste your time guessing why the bug
exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL’, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don't say “the server crashed” when you mean a
single backend process went down, nor vice versa. Also, client programs such as the interactive frontend
“psql” are completely separate from the backend. Please try to be specific about whether the problem
is on the client or server side.

3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsql - bugs@i st s. post gresql . or g>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site. Entering a bug
report this way causes it to be mailed to the <pgsql - bugs @i st s. post gr esql . or g> mailing list.

If your bug report has security implications and you'd prefer that it not become immediately
visible in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql -sql @i sts. post gresql . or g>
or <pgsql - general @i sts. postgresql.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers' mailing list
<pgsql - hackers@i st s. post gresql . or g>. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql - docs@i sts. post gresql . or g>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql - hackers@i st s. post gresqgl . org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXV

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://lists.postgresql.org/

Part |. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction
to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

* A server process, which manages the database files, accepts connections to the database from
client applications, and performs database actions on behalf of the clients. The database server
program is called post gres.

¢ The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, a web server that accesses the database to display web pages, or a specialized
database maintenance tool. Some client applications are supplied with the PostgreSQL distribution;
most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original post gres process. Thus, the master server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Getting Started

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next section.

To create a new database, in this example named nydb, you use the following command:
$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: comrand not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such
file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tnp/.s.PGSQ.5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually post gr es) to create
the first user account. It could also be that you were assigned a PostgreSQL user name that is different
from your operating system user name; in that case you need to use the - U switch or set the PGUSER

environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

creat edb: database creation failed: ERROR permnission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as.

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

! Asan explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a database, you can choose
what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a PostgreSQL user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database nydb, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the PostgreSQL interactive terminal program, called psql, which allows you to
interactively enter, edit, and execute SQL commands.

« Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

¢ Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part IV.

You probably want to start up psgl to try the examples in this tutorial. It can be activated for the nydb
database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using cr eat edb.

In psql , you will be greeted with the following message:

psqgl (9.5.25)
Type "hel p* for help.

mydb=>
The last line could also be:
nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls. For
the purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
cr eat edb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql . Try out these commands:

nydb=> SELECT version();
version

Post greSQ. 9.5.25 on i586-pc-1inux-gnu, conpiled by GCC 2.96, 32-bit
(1 row

nmydb=> SELECT current _date;
dat e

2002- 08- 31
(1 row

nydb=> SELECT 2 + 2;

Getting Started

(1 row

The psql program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \ h

To get out of psql , type:
nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \ ? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including melt93 and date97. You should be aware that some PostgreSQL language
features are extensions to the standard.

In the examples that follow, we assume that you have created a database named nmydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory src/
tutorial/. (Binary distributions of PostgreSQL might not provide those files.) To use those files, first
change to that directory and run make:

$ cd .../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

$ psql -s nydb

nydb=> \i basi cs. sql

The \i command reads in commands from the specified file. psql 's - s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basi cs. sql .

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:
CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)
You can enter this into psql with the line breaks. psqgl will recognize that the command is not terminated
until the semicolon.

The SQL Language

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“- - ”) introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
i nt is the normal integer type. real is a type for storing single precision floating-point numbers. dat e
should be self-explanatory. (Yes, the column of type dat e is also named dat e. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, snallint, real, double precision, char(N),
varchar (N), date,tine, ti nestanp, andi nterval, as well as other types of general utility and a rich set
of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
The poi nt type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:
| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25, '1994-11-27');

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The dat e type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.
The poi nt type requires a coordinate pair as input, as shown here:

I NSERT INTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Franci sco', 43, 57, 0.0, '1994-11-29');

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

I NSERT | NTO weat her (date, city, tenp_hi, tenp_|lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used COPY to load large amounts of data from flat-text files. This is usually faster
because the COPY command is optimized for this application while allowing less flexibility than | NSERT.
An example would be:

COPY weat her FROM '/ hone/ user/ weat her.txt';

The SQL Language

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the COPY
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weat her, type:

SELECT * FROM weat her;

Here * is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, tenp_lo, temp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (tenmp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;
This should give:

city | tenmp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco’ AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | date
--------------- T LT I T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

You can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29

! While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

The SQL Language

San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once,
or access the same table in such a way that multiple rows of the table are being processed at the same
time. A query that accesses multiple rows of the same or different tables at one time is called a join query.
As an example, say you wish to list all the weather records together with the location of the associated
city. To do that, we need to compare the ci ty column of each row of the weat her table with the nanme
column of all rows in the ci ti es table, and select the pairs of rows where these values match.

Note

This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | dat e | nane | location
--------------- T S e T e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Observe two things about the result set:

* There is no result row for the city of Hayward. This is because there is no matching entry in the
citi es table for Hayward, so the join ignores the unmatched rows in the weat her table. We will see
shortly how this can be fixed.

e There are two columns containing the city name. This is correct because the lists of columns from
the weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

2 In some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT causes the rows to be ordered.

The SQL Language

SELECT city, tenmp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weat her.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her INNER JO N cities ON (weather.city = cities. nanme);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weat her table and for each row to find the matching ci ti es row(s). If no matching row is
found we want some “empty values” to be substituted for the ci ti es table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city = cities. nane);

city | temp_lo | tenp_hi | prcp | dat e | nane | location
--------------- e T e T I e
Haywar d | 37 | 54 | | 1994-11-29 | |
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
thetenp_| o and tenp_hi columns of each weat her row to thetenp_| o and t enp_hi columns of all other
weat her rows. We can do this with the following query:

SELECT WL.city, W..tenp_lo AS low, WL.tenp_hi AS high,
W2.city, W2.tenp_lo AS low, W2.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE WL.tenp o < W2.tenp_l o
AND WL. tenp_hi > W2. tenp_hi;

San Francisco | 43 | 57 | San Francisco | 46 | 50

10

The SQL Language

Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as WL and W2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weat her w, cities ¢
WHERE w.city = c. naneg;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum avg (average), nax (maximum) and ni n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(tenp_l o) FROM weat her;

max
46
(1 row)
If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weat her WHERE tenp_|l o = max(tenp_l 0); VRONG

but this will not work since the aggregate nax cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
VWHERE tenp_l o = (SELECT nax(tenp_|l o) FROM weat her);

San Franci sco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(tenp_| o)
FROM weat her
GROUP BY city;

city | max
_______________ [I,
Haywar d | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG:

SELECT city, max(tenp_| o)
FROM weat her
GROUP BY city

11

The SQL Language

HAVI NG max(tenp_l o) < 40;

which gives us the same results for only the cities that have all t enp_| o values below 40. Finally, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_| o)
FROM weat her
VWHERE city LIKE 'S®% E
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
The fundamental difference between WHERE and HAVI NG is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weat her
SET tenp_hi = temp_hi - 2, tenp_lo =temp_lo - 2
WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her ;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T I O
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = ' Hayward';
All weather records belonging to Hayward are removed.
SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e

12

The SQL Language

San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)
One should be wary of statements of the form
DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management and
prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced. sq|l
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VI EW nmyvi ew AS
SELECT city, tenp_lo, tenmp_hi, prcp, date, l|ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weat her table that do not have a matching entry in the citi es
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the ci t i es table to check if a matching record exists,
and then inserting or rejecting the new weat her records. This approach has a number of problems and
is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (

city varchar (80) references cities(city),
temp_lo int,

t enp_hi int,

prcp real,

dat e dat e

)

Now try inserting an invalid record:

14

Advanced Features

| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint
"weat her city fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use
of foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00
WHERE nane = (SELECT branch_nane FROM accounts WHERE nane
UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nane = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00
WHERE nane = (SELECT branch_nane FROM accounts WHERE nane = ' Bob');

"Alice');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEG N
and COW T commands. So our banking transaction would actually look like:

BEG N;
UPDATE accounts SET bal ance = bal ance - 100. 00

15

Advanced Features

VWHERE nane = 'Alice';
-- etc etc
COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COW T, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEG Ncommand, then each individual statement has an implicit BEG Nand (if successful) COM T
wrapped around it. A group of statements surrounded by BEG N and COW T is sometimes called a
transaction block.

Note

Some client libraries issue BEG N and COMW T commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use
of savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing
the rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back to
it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:

BEG N;

UPDATE accounts SET bal ance
VWHERE nane = 'Alice';

SAVEPO NT my_savepoi nt ;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = '\Vally';

COW T;

bal ance - 100. 00

bal ance + 100. 00

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TOis the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

16

Advanced Features

But unlike regular aggregate functions, use of a window function does not cause rows to become grouped
into a single output row — the rows retain their separate identities. Behind the scenes, the window
function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane) FROM enpsal ary;

depnane | enpno | salary | avg
----------- TR
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depnane value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTI TI ON BY list within OVER specifies dividing the rows into groups, or partitions, that
share the same values of the PARTI TI ON BY expression(s). For each row, the window function is computed
across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- Tl Sy .
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank within the current row's partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. r ank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

17

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NGclauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways by means of different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTI TI ON BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on the
rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the
frame consists of all rows from the start of the partition up through the current row, plus any following
rows that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. ! Here is an example using sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ I,
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e mm -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVI NG and WHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after regular aggregate

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

18

Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM
(SELECT depnane, enpno, salary, enroll _date,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC, enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example:

SELECT sun(sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table ci ti es and a table capi t al s. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.
A better solution is this:

CREATE TABLE cities (
narre text,

19

Advanced Features

popul ati on real,
el evation int -- (in ft)

)

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERI TS (cities);

In this case, a row of capi t al s inherits all columns (nane, popul ati on, and el evati on) from its parent,
ci ti es. The type of the column nane is t ext, a native PostgreSQL type for variable length character
strings. The capi tal s table has an additional column, st at e, which shows its state abbreviation. In
PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM citi es
VWHERE el evati on > 500;

which returns:

nanme | elevation
___________ i,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Here the ONLY before ci ti es indicates that the query should be run over only the ci ti es table, and not
tables below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

20

https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a complete
description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
| NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in src/
i ncl ude/ pg_config_manual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

22

SQL Syntax

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.:
UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "sel ect” could be used to refer to a column or table named “select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "ny_t abl e" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&'f oo". (Note that this creates
an ambiguity with the operator & Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "dat a" could be written as

u&" d\ 0061t \ +000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\ 0441\ 043B\ 043E\ 043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:

U&" d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, f 00, and " f 00" are considered the same by PostgreSQL, but " Foo"
and " FOO' are different from these three and each other. (The folding of unquoted names to lower case
in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be folded
to upper case. Thus, f oo should be equivalent to " FOO' not " f 00" according to the standard. If you want
to write portable applications you are advised to always quote a particular name or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

23

SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
"This is a string' . To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., ' Di anne' ' s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:
SELECT ' f o0’
"bar';
is equivalent to:
SELECT ' f oobar";
but:
SELECT ' f o0 " bar'’
is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)
4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E f oo’ . (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\t tab

\o,\00,\000(0=0-7) octal byte value

\xh,\xhh(h=0-9,A-F) hexadecimal byte value

\uxxxx, | UXxxxxxxx (x =0-9, A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \ ' , in addition
to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ uO0O7F) can be specified. Both the 4-
digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 8-digit form technically makes this
unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first combined
into a single code point that is then encoded in UTF-8.)

24

SQL Syntax

Caution

If the configuration parameter standard conforming strings is of f, then PostgreSQL recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape string warning and backslash quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U& f oo' . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string ' dat a' could be written as

u&' d\ 0061t \ +000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&' \ 0441\ 043B\ 043E\ 043D

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into a single code
point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard conforming strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security issues.
If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another way,
called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar
sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of

25

SQL Syntax

characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne's horse” using
dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\vi\]$99%);
END;
$f uncti on$

Here, the sequence q[\t\r\ n\v\\] g represents a dollar-quoted literal string [\t\r\ n\v\\], which
will be recognized when the function body is executed by PostgreSQL. But since the sequence does not
match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so $t ag$Stri ng cont ent $t ag$ is correct, but
$TAGSSt ri ng cont ent $t ag$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written as
four backslashes, which would be reduced to two backslashes in parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B 1001' . The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X 1FF' . This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:
digits
digits.[digits][e[+-]digits]

[digits].digits[e[+-]digits]
digitse[+-]digits

where di gi t s is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.

26

SQL Syntax

There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

3.5

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type i nt eger if its value fits in type i nt eger (32 bits); otherwise it is presumed to be type bi gi nt if
its value fits in type bi gi nt (64 bits); otherwise it is taken to be type nuneri c. Constants that contain
decimal points and/or exponents are always initially presumed to be type nuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type real (fl oat4)
by writing:

REAL '1.23" -- string style

1.23:: REAL -- PostgreSQ (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

"string' ::type

CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called t ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to

the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typenane ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'

syntax can only be used to specify the type of a simple literal constant. Another restriction on the t ype

"string' syntax is that it does not work for array types; use : : or CAST() to specify the type of an array
constant.

The CAST() syntax conforms to SQL. The t ype 'string' syntaxis a generalization of the standard: SQL
specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax with : :
is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAVMEDATALEN-1 (63 by default) characters from the following list:
+-*¥/<>=~1@#% "~ &| " ?

27

SQL Syntax

There are a few restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

¢ A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#% "~ &|?

For example, @ is an allowed operator name, but *- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@ you cannot write X* @/; you must write X* @ to ensure that PostgreSQL reads it as two operator
names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

* Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

* Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of a list.

¢ The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

e The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

¢ The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

e The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

where the comment begins with / * and extends to the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

28

SQL Syntax

4.1.6. Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[1] left array element selection
+ - right unary plus, unary minus
A left exponentiation
* | % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN I NLI KE | LI KE SI M LAR range containment, set
membership, string matching
<>z=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE, IS FALSE, I'S NULL, I S
DI STI NCT FROM etc
NOT right logical negation
AND left logical conjunction
oR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.
When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_cat al og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher priority; and

29

SQL Syntax

NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator precedence warning turned on to see if
any warnings are logged.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in | NSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:
* A constant or literal value

* A column reference

* A positional parameter reference, in the body of a function definition or prepared statement
* A subscripted expression

e A field selection expression

* An operator invocation

* A function call

* An aggregate expression

* A window function call

* A type cast

¢ A collation expression

* A scalar subquery

* An array constructor

* A row constructor

* Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the | S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.
4.2.1. Column References

A column can be referenced in the form:
correl ation. col umnane
correl ati onis the name of a table (possibly qualified with a schema name), or an alias for a table defined

by means of a FROMclause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

30

SQL Syntax

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

$nunber

For example, consider the definition of a function, dept, as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE nane = $1 $$
LANGUACGE SQ.;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expressi on[subscri pt]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[| ower _subscri pt: upper_subscri pt]

(Here, the brackets [] are meant to appear literally.) Each subscri pt is itself an expression, which will
be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um[4]

nyt abl e. two_d_col uim[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dname
In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

nyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(composi tecol). sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol is a column name not a table name, or
that nyt abl e is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:

(conpositecol).*

31

SQL Syntax

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)
expr essi on oper at or (unary postfix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR(schenm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:
sqrt(2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (t abl e) and t abl e. col are interchangeable. This behavior is not SQL-standard but
is provided in PostgreSQL because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_nane (expression [, ...] [order_by clause]) [FILTER

(WHERE filter_clause)]

aggregate_nane (ALL expression [, ...] [order_by clause]) [FILTER

(WHERE filter_clause)]

aggregat e_nane (DI STINCT expression [, ...] [order_by clause]) [FILTER

(WHERE filter_clause)]

aggregate nane (*) [FILTER (WHERE filter_clause)]

aggregate nane ([expression [, ...]]) WTH N GROUP (order_by clause) [FILTER
(WHERE filter_clause)]

where aggr egat e_nane is a previously defined aggregate (possibly qualified with a schema name) and
expr essi on is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order by cl ause and filter_cl ause are described below.

32

SQL Syntax

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since ALL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count (*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of input
rows in which f 1 is non-null, since count ignores nulls; and count (di stinct f1) yields the number of
distinct non-null values of f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, m n produces the same result no matter what order it receives the inputs
in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional or der _by_cl ause can
be used to specify the desired ordering. The or der _by_cl ause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROMt abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT is specified in addition to an order_by_ cl ause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when
ordering the input rows for a “normal” aggregate for which ordering is optional. There is a subclass of
aggregate functions called ordered-set aggregates for which an or der _by_cl ause is required, usually
because the aggregate's computation is only sensible in terms of a specific ordering of its input
rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the order _by_cl ause is written inside WTHI N GROUP (...), as shown in the
final syntax alternative above. The expressions in the or der _by_cl ause are evaluated once per input
row just like normal aggregate arguments, sorted as per the order _by_cl ause's requirements, and
fed to the aggregate function as input arguments. (This is unlike the case for a non-W THI N GROUP
order _by_cl ause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding W THI N GROUP, if any, are called direct arguments to distinguish them from
the aggregated arguments listed in the or der _by_cl ause. Unlike normal aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for
things like percentile fractions, which only make sense as a single value per aggregation calculation. The

33

SQL Syntax

direct argument list can be empty; in this case, write just () not (*). (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of the i ncone column from table househol ds. Here,
0. 5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
TOWS.

If FI LTER is specified, then only the input rows for which the filter_cl ause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the
aggregate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and fil ter_cl ause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVI NG clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
OVER w ndow_nhane
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]

OVER (wi ndow _definition)
function_name (*) [FILTER (WHERE filter_clause)] OVER wi ndow_nane
function_name (*) [FILTER (WHERE filter_clause)] OVER (w ndow definition)

where wi ndow_defi ni ti on has the syntax

[existing_w ndow nane]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]

[. ...11

34

SQL Syntax

[frane_cl ause]
and the optional f r ane_cl ause can be one of

{ RANGE | RON5 } franme_start
{ RANGE | ROA5 } BETWEEN franme_start AND frane_end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDI NG
val ue PRECEDI NG
CURRENT ROW

val ue FOLLOW NG
UNBOUNDED FOLLOW NG

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_nane is a reference to a named window specification defined in the query's W NDOW clause.
Alternatively, a full wi ndow_def i ni ti on can be given within parentheses, using the same syntax as for
defining a named window in the W NDOWclause; see the SELECT reference page for details. It's worth
pointing out that OVER wnane is not exactly equivalent to OVER (wnane) ; the latter implies copying and
modifying the window definition, and will be rejected if the referenced window specification includes
a frame clause.

The PARTI TI ON BY option groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI TI ON BY, all rows produced by the query are treated as a single partition. The ORDER BY option
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The franme_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROA5 mode; in either case, it runs from the f rane_st art to the
frame_end. If f rane_end is omitted, it defaults to CURRENT ROW

Aframe_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the partition,
and similarly a f ranme_end of UNBOUNDED FOLLOW NG means that the frame ends with the last row of the
partition.

In RANGE mode, a frane_st art of CURRENT RONmeans the frame starts with the current row's first peer
row (a row that ORDER BY considers equivalent to the current row), while a f r ame_end of CURRENT ROW
means the frame ends with the last equivalent ORDER BY peer. In ROA5 mode, CURRENT ROWsimply means
the current row.

The val ue PRECEDI NGand val ue FOLLON NGcases are currently only allowed in ROAS mode. They indicate
that the frame starts or ends the specified number of rows before or after the current row. val ue must
be an integer expression not containing any variables, aggregate functions, or window functions. The
value must not be null or negative; but it can be zero, which just selects the current row.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, all rows of the partition
are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOW NG, frane_end cannot be UNBOUNDED
PRECEDI NG, and the frane_end choice cannot appear earlier in the above list than the frane_start
choice — for example RANGE BETWEEN CURRENT ROW AND val ue PRECEDI NGis not allowed.

If FI LTER is specified, then only the input rows for which the filter_cl ause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FI LTER clause.

35

SQL Syntax

The built-in window functions are described in Table 9.54. Other window functions can be added by the
user. Also, any built-in or user-defined normal aggregate function can be used as a window function.
Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count (*) OVER (PARTI TION BY x ORDER BY y). The asterisk (*) is customarily not used for
non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DI STI NCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typenane (expression)

However, this only works for types whose names are also valid as function names. For example, doubl e
preci si on cannot be used this way, but the equivalent f| oat 8 can. Also, the names i nterval, tine,
and t i mest anp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be
avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE coll ation

36

SQL Syntax

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, ¢ FROMthl WHERE ... ORDER BY a COLLATE "C';
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROMtbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM t bl WHERE a COLLATE "C' > 'foo';
But this is an error:
SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type bool ean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state = states. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNI ON or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1, 2,22.7]::integer[];
array

37

SQL Syntax

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array

{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3,4}}
(1 row
Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROM arr
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}
(1 row

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
array

{{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row

38

SQL Syntax

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT RON1,2.5,'this is a test');
The key word ROWis optional when there is more than one expression in the list.
A row constructor can include the syntax r owal ue. *, which will be expanded to a list of the elements

of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns f 1 and f 2, these are the same:

SELECT ROW(t.*, 42) FROMt:
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWt.*, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . *, for instance RONt, 42).

By default, the value created by a ROWexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);
CREATE FUNCTI ON getfl(nytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQ;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowtype AS (fl1 int, f2 text, f3 nuneric);
CREATE FUNCTI ON getf1(nyrowt ype) RETURNS int AS 'SELECT $1.f1' LANGUACE SQ.;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(ROWN1,2.5,'this is a test')::nmytable);
getfl

39

SQL Syntax

(1 row

SELECT getf1(CAST(ROWN11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with I S NULL or | S NOT NULL, for example:

SELECT RON(1,2.5,"'this is a test') = RON1, 3, 'not the same');

SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();
then sonef unc() would (probably) not be called at all. The same would be the case if one wrote:
SELECT sonefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NCT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 35.6, functions
and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in the table has x > 0 so that the ELSE arm would never be entered
at run time.

40

SQL Syntax

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NG clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN nmi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

The mi n() and avg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of m n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase bool ean DEFAULT fal se)
RETURNS t ext

AS

$$

SELECT CASE
WHEN $3 THEN UPPER(S$1 || ' ' || $2)
ELSE LOAER($L || ' ' || $2)
END;

$$

LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is one
optional parameter upper case which defaults to f al se. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the upper case parameter. The remaining details of
this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

41

SQL Syntax

SELECT concat _| ower _or_upper('Hello', "Wrld', true);
concat _| ower _or _upper

HELLO WORLD
(1 row

All arguments are specified in order. The result is upper case since upper case is specified as true.
Another example is:

SELECT concat _| ower _or_upper(' Hello', '"Wrld);
concat _| ower _or _upper

hell o world
(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat | ower _or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o world

(1 row)
Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or _upper(a => 'Hello', b => "Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat | ower _or_upper(a => '"Hello', uppercase => true, b => "Wrld);
concat _| ower _or _upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase := true, b :="Wrld);
concat _| ower _or _upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', '"Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

42

SQL Syntax

In the above query, the arguments a and b are specified positionally, while upper case is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

43

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are i nt eger for whole numbers,
nuneri ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, ti ne for time-of-day
values, and ti nest anp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col umm i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named fi rst_col um
and has a data type of t ext; the second column has the name second_col utm and the type i nt eger.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric

)

(The nuneri ¢ type can store fractional components, as would be typical of monetary amounts.)

44

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for

the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a tinestanp column to have a default
of CURRENT_TI MESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product no i nteger DEFAULT nextval (' products_product _no_seq'),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (

45

Data Definition

product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that
would violate a constraint, an error is raised. This applies even if the value came from the default value
definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted price > 0),
CHECK (price > discounted price)

46

Data Definition

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could
also be written as:

CREATE TABLE products (

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted _price numeric,

CHECK (di scounted _price > 0),

CHECK (price > discounted price)
)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted _price numeric,
CHECK (di scounted _price > 0 AND price > discounted price)

)

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted_price > 0),
CONSTRAI NT val i d_di scount CHECK (price > discounted_price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints to express cross-row and
cross-table restrictions.

47

Data Definition

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/reload problem because pg dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:
CREATE TABLE products (

)

product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col um_nanme IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way:.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

)

product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (

)

product_no integer NULL,
nane text NULL,
price nuneric NULL

and then insert the NOT key word where desired.

48

Data Definition

Tip

In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product _no integer UN QUE
name text,
price nuneric

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product _no)

)

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
)

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAI NT rust_be_different UN QUE,
name text,
price nunmeric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful
when developing applications that are intended to be portable.

5.3.4. Primary Keys

49

Data Definition

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL
name text,
price nuneric

);

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

);
Primary keys can span more than one column; the syntax is similar to unique constraints:
CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nuneric

)

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer

)

50

Data Definition

Now it is impossible to create orders with non-NULL product _no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
guantity integer
);
because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a i nteger PRI MARY KEY,
b integer,
c integer,
FOREI GN KEY (b, c¢) REFERENCES other _table (cl, c2)
)
Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product _no i nteger PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order_id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order_itens (
product _no i nteger REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRI MARY KEY (product_no, order_id)

);

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

* Disallow deleting a referenced product

51

Data Definition

¢ Delete the orders as well
* Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of a
referenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTI ONallows the check to be deferred until later in the transaction,
whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same. In this case, CASCADE means that the updated values of
the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too.
Because this is not always needed, and there are many choices available on how to index, declaration of
a foreign key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

52

Data Definition

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAI NT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

oi d
The object identifier (object ID) of a row. This column is only present if the table was created using

W TH O DS, or if the default with oids configuration variable was set at the time. This column is of
type oi d (same name as the column); see Section 8.18 for more information about the type.

t abl eoi d

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it's difficult to tell which individual
table a row came from. The t abl eoi d can be joined against the oi d column of pg_cl ass to obtain
the table name.

Xm n

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmn
The command identifier (starting at zero) within the inserting transaction.

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cnax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the cti d can be used
to locate the row version very quickly, a row's cti d will change if it is updated or moved by VACUUM
FULL. Therefore cti d is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are

53

Data Definition

unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

¢ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 232 (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

¢ OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and
row OID if you need a database-wide identifier.

e Of course, the tables in question must be created W TH O DS. As of PostgreSQL 8.1, W THOUT O DS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 pillion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

¢ Add columns

¢ Remove columns

¢ Add constraints

¢ Remove constraints

* Change default values

¢ Change column data types
¢ Rename columns

¢ Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column
To add a column, use a command like:
ALTER TABLE products ADD COLUWN descri ption text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUWN description text CHECK (description <> "'"');

54

Data Definition

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Tip
Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you

intend to fill the column with mostly nondefault values, it's best to add the column with no default,
insert the correct values using UPDATE, and then add any desired default as described below.

5.5.2. Removing a Column
To remove a column, use a command like:
ALTER TABLE products DROP COLUWN descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by
adding CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');
ALTER TABLE products ADD CONSTRAI NT sonme_nane UNI QUE (product no);
ALTER TABLE products ADD FOREI GN KEY (product group_id) REFERENCES product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \ d t abl enanme can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUWN product _no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

55

Data Definition

5.5.5. Changing a Column's Default Value
To set a new default for a column, use a command like:
ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.

5.5.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUWN price TYPE nuneric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product nunber;

5.5.8. Renaming a Table
To rename a table:
ALTER TABLE products RENAME TO itens;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRI GGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGCE. The privileges applicable to a particular object vary
depending on the object's type (table, function, etc). For complete information on the different types
of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections and
chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g., ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing user, and account s
is an existing table, the privilege to update the table can be granted with:

56

Data Definition

GRANT UPDATE ON accounts TO j oe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLI C can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLI C;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptions to this rule are | eakpr oof functions, which
are guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the
row-security check.) Rows for which the expression does not return t r ue will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

57

Data Definition

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using OR, so that a row is accessible
if any policy allows it. This is similar to the rule that a given role has the privileges of all roles that they
are a member of.

As a simple example, here is how to create a policy on the account relation to allow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmnager text, conpany text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE PCLI CY account _managers ON accounts TO nmanagers
USI NG (manager = current_user);

The policy above implicitly provides a WTH CHECK clause identical to its USI NG clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via | NSERT or UPDATE).

If no role is specified, or the special user name PUBLI Cis used, then the policy applies to all users on the
system. To allow all users to access only their own row in a user s table, a simple policy can be used:

CREATE POLI CY user _policy ON users
USI NG (user_nanme = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the user s table, but only modify their own:

CREATE PCOLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PQOLI CY user _nmod_policy ON users
USI NG (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,

ui d int PRI MARY KEY,

gid int NOT NULL,

real _nane text NOT NULL,
honme_phone t ext,

extra_info t ext,

honme _dir text NOT NULL,

shel | text NOT NULL

58

Data Definition

)

CREATE ROLE adnin; -- Adm nistrator
CREATE ROLE bob; -- Normal user
CREATE RCLE alice; -- Nornml user

-- Popul ate the table
| NSERT | NTO passwd VALUES
("admn', ' xxx',0,0," Admn',"'111-222-3333" ,null,"/root','/bin/dash');
| NSERT | NTO passwd VALUES
("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh");
| NSERT | NTO passwd VALUES
("alice',"xxx",2,1," Alice',"'098-765-4321" ,null,'/honme/alice','/bin/zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK (true);
-- Nornmal users can view all rows
CREATE POLI CY al | _vi ew ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"/bin/tcsh")

);

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, honme_phone, extra_info, honme_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admn can view all rows and fields
post gres=> set role adm n;

SET

post gres=> tabl e passwd;

user_nane | pwhash | uid | gid | real _nanme | honme_phone | extra_info | hone_dir |

shel |

----------- T S e T T T
o,

adm n | xxx | 0 | 0| Admn | 111-222-3333 | | /root

| /bin/dash

bob | xxx | 1] 1| Bob | 123-456-7890 | | /home/bob

| /bin/zsh

alice | xxx | 2 | 1| Alice | 098-765-4321 | | /hone/alice
| /bin/zsh

59

Data Definition

(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for relation passwd

post gres=> sel ect user_nane, real _nane, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir | shel |
----------- T T g
adm n Admi n 111- 222- 3333 | | /root | /bin/dash
| /hone/ bob | /bin/zsh
|

| |
bob | Bob | 123- 456- 7890 |
| |

alice Alice 098- 765- 4321 | /hone/alice | /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe';

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane = 'admn';
UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents updating other rows
post gr es=> update passwd set pwhash = 'abc’;

UPDATE 1

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through such
referential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row security configuration parameter to of f . This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work this way. If it is necessary to consult other rows or other tables to make a
policy decision, that can be accomplished using sub-SELECTs, or functions that contain SELECTS, in the
policy expressions. Be aware however that such accesses can create race conditions that could allow
information leakage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups

CREATE TABLE groups (group_id int PRI MARY KEY,
group_nane text NOT NULL);

I NSERT | NTO groups VALUES

(1, "low),
(2, ' mediunm),
(5, 'high'):

60

Data Definition

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
("very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT
USI NG (group_id <= (SELECT group_id FROM users WHERE user _nanme = current_user));
CREATE POLI CY fp_u ON information FOR UPDATE
USI NG (group_id <= (SELECT group_id FROM users WHERE user _nanme = current_user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishes to change the “slightly secret” information, but decides that mal | ory
should not be trusted with the new content of that row, so she does:

BEG N,

UPDATE users SET group_id =
UPDATE i nformation SET info
COW T;

1 WHERE user_nane = 'nallory';
= '"secret frommallory' WHERE group_id = 2;

That looks safe; there is no window wherein nal | ory should be able to see the “secret from mallory”
string. However, there is a race condition here. If nal | ory is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMM TTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks waiting for
al i ce's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from user s, because that sub-SELECT
did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mal | ory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy

61

Data Definition

could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the
referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an exclusive lock on the
referenced table when updating it, so that no concurrent transactions could be examining old row values.
Or one could just wait for all concurrent transactions to end after committing an update of the referenced
table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe in two databases
in the same cluster; but the system can be configured to allow j oe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schenal and nyschema can contain
tables named nyt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects
in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:
* To allow many users to use one database without interfering with each other.
* To organize database objects into logical groups to make them more manageable.

* Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema. tabl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

dat abase. schenn. t abl e

62

Data Definition

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE nyschema. nytabl e (

)

To drop a schema if it's empty (all objects in it have been dropped), use:
DROP SCHEMA nyschens;

To drop a schema including all contained objects, use:

DROP SCHENMA nyschenma CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to sear ch_pat h effectively trusts all users having
CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create objects
in a schema of your search path can take control and execute arbitrary SQL functions as though you
executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

63

Data Definition

To show the current search path, use the following command:
SHOW sear ch_pat h;
In the default setup this returns:

search_pat h

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE nyt abl e;

Also, since nyschenm is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schemma. oper at or)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USACE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USACE privileges on
the schema publ i c. This allows all users that are able to connect to a given database to create objects
in its publ i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C,

64

Data Definition

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to publ i ¢ and user-created schemas, each database contains a pg_cat al og schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_cat al og is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a
secure schema usage pattern, users wishing to securely query that database would take protective action
at the beginning of each session. Specifically, they would begin each session by setting sear ch_pat h to
the empty string or otherwise removing non-superuser-writable schemas from sear ch_pat h. There are
a few usage patterns easily supported by the default configuration:

* Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA publ i ¢ FROM PUBLI C, and create a schema for each user with the same name as that user.
Recall that the default search path starts with $user, which resolves to the user name. Therefore,
if each user has a separate schema, they access their own schemas by default. After adopting this
pattern in a database where untrusted users had already logged in, consider auditing the public
schema for objects named like objects in schema pg_cat al og. This pattern is a secure schema
usage pattern unless an untrusted user is the database owner or holds the CREATEROLE privilege, in
which case no secure schema usage pattern exists.

* Remove the public schema from the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the ability to create
objects in the public schema, but only qualified names will choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If
you create functions or extensions in the public schema, use the first pattern instead. Otherwise,
like the first pattern, this is secure unless an untrusted user is the database owner or holds the
CREATERQOLE privilege.

¢ Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or a few mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to allow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search path,
as they choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name

65

Data Definition

than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user _nane. t abl e_nane. This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a publ i c schema in the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
it inherits from ci ti es:

CREATE TABLE cities (

nane t ext,
popul ati on fl oat,
el evation i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

In this case, the capi t al s table inherits all the columns of its parent table, ci ti es. State capitals also
have an extra column, st at e, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | elevation
___________ o,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

name | elevation

66

Data Definition

Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci ti es, and not any tables below
ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evation > 500;
Writing * is not necessary, since this behavior is the default (unless you have changed the setting of the

sql inheritance configuration option). However writing * might be useful to emphasize that additional
tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns:

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_cl ass you can see the actual table names:

SELECT p.relnane, c.nanme, c.elevation
FROM cities ¢, pg_class p
WHERE c. el evati on > 500 AND c.tabl eoid = p.oid;

which returns:

rel name | name | elevation
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use the r egcl ass pseudo-type, which will print the table OID
symbolically:

SELECT c. tabl eoi d: :regcl ass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (nanme, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
| NSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 38). However that does not help for the above case because the ci ti es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

67

Data Definition

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-
null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the | NHERI T variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO | NHERI T variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LI KE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to LI KE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capital s table as
well, when they are accessed through citi es. This preserves the appearance that the data is (also)
in the parent table. But the capi t al s table could not be updated directly without an additional grant.
Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables are
always checked, whether they are processed directly or recursively via those commands performed on
the parent table.

In a similar way, the parent table's row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table's policies, if any, are applied only when it is the
table explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typically default to including child tables
and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REI NDEX, VACUUM typically only work on individual, physical tables and do not support recursing

68

Data Definition

over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

e If we declared ci ti es.nane to be UNI QUE or a PRI MARY KEY, this would not stop the capital s
table from having rows with names duplicating rows in ci ti es. And those duplicate rows would
by default show up in queries from ci ti es. In fact, by default capi t al s would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capi t al s, but this would not prevent duplication compared to ci ti es.

* Similarly, if we were to specify that ci t i es.nanme REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

* Specifying that another table's column REFERENCES ci ti es(name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care
is needed in deciding whether inheritance is useful for your application.

5.10. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be
improved by taking advantage of sequential scan of that partition instead of using an index and
random access reads scattered across the whole table.

* Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE NO | NHERI T and DROP TABLE are both far faster
than a bulk operation. These commands also entirely avoid the VACUUMoverhead caused by a bulk
DELETE.

¢ Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.9) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

69

Data Definition

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.10.2. Implementing Partitioning
To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables
(or, possibly, foreign tables).

3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghanshire', 'Warw ckshire'))
CHECK (outletID >= 100 AND outletlD < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outlet! D BETWEEN 100 AND 200)
CHECK (outlet! D BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might want.
(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint exclusion configuration parameter is not disabled in post gresql . conf. If
it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want
a table like:

CREATE TABLE neasurement (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni tsal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data.

In this situation we can use partitioning to help us meet all of our different requirements for the
measurements table. Following the steps outlined above, partitioning can be set up as follows:

70

Data Definition

1. The master table is the neasur ement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measur enent _y2006n02 () INHERI TS (neasurenent);
CREATE TABLE measur enent _y2006n03 () INHERI TS (neasurenent);

CREATE TABLE measur enent _y2007nill () INHERI TS (neasurenent);
CREATE TABLE measur enent _y2007nil2 () INHERI TS (neasurenent);
CREATE TABLE measur enent _y2008n01 () INHERI TS (neasurenent);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the neasur enent table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month's data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE neasurenent _y2006n0D2 (

CHECK (| ogdate >= DATE ' 2006-02-01" AND | ogdate
) INHERI TS (neasurenent);
CREATE TABLE neasur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006-03-01' AND | ogdate
) INHERI TS (neasurenent);

N

DATE ' 2006- 03-01")

N

DATE ' 2006- 04- 01")

CREATE TABLE neasurenent _y2007nill (

CHECK (| ogdate >= DATE '2007-11-01'" AND | ogdate
) INHERI TS (neasurenent);
CREATE TABLE neasurenent _y2007nl2 (

CHECK (| ogdate >= DATE '2007-12-01' AND | ogdate
) INHERI TS (neasurenent);
CREATE TABLE neasurenent _y2008nD1 (

CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate
) INHERI TS (neasurenent);

4. We probably need indexes on the key columns too:

CREATE | NDEX measur enent _y2006n02_| ogdat e
CREATE | NDEX measur enent _y2006n03_| ogdat e

N

DATE ' 2007-12-01")

N

DATE ' 2008-01-01")

N

DATE ' 2008-02-01")

nmeasur enent _y2006n02 (| ogdat e);
nmeasur enent _y2006n03 (| ogdat e);

CREATE | NDEX measur enent _y2007nill_| ogdat e
CREATE | NDEX measur enent _y2007nil2_| ogdat e
CREATE | NDEX measur enent _y2008n01_| ogdat e

nmeasur enent _y2007ml1l (| ogdate);
nmeasur enent _y2007ml2 (| ogdate);
nmeasur enent _y2008n01 (| ogdate);

222 292

We choose not to add further indexes at this time.

5. We want our application to be able to say | NSERT | NTO neasurenent ... and have the data be
redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTI ON neasurenent _insert_trigger()

RETURNS TRI GGER AS $$

BEG N
| NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUACGE pl pgsql ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GGER i nsert_mneasurenment _tri gger
BEFORE | NSERT ON neasur enment

71

Data Definition

FOR EACH ROW EXECUTE PROCEDURE neasurenent insert_trigger();

We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasurenment _insert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEW I ogdate >= DATE ' 2006- 02-01' AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
I NSERT | NTO neasur enent _y2006n02 VALUES (NEW *);
ELSIF (NEW I ogdate >= DATE ' 2006- 03-01'" AND
NEW | ogdat e < DATE ' 2006- 04-01') THEN
I NSERT | NTO neasur enent _y2006n03 VALUES (NEW *);

ELSIF (NEW I ogdate >= DATE ' 2008-01-01" AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
I NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);
ELSE
RAI SE EXCEPTI ON ' Date out of range. Fix the measurenent_insert_trigger()
function!';
END | F;
RETURN NULL,;
END;
$$
LANGUACGE pl pgsql ;

The trigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger's tests in the same order as in other parts
of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allows this otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE neasurenent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record.

72

Data Definition

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE neasur enment _y2006nD2 NO | NHERI T nmeasur enent ;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using COPY, pg dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasur enent _y2008n02 (
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE '2008-03-01')
) INHERI TS (rneasurenent);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior
to it appearing in the partitioned table:

CREATE TABLE neasur enment _y2008n0D2
(LI KE nmeasurenment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasurenent _y2008nD2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01'" AND | ogdate < DATE ' 2008-03-01");
\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'
-- possibly sonme other data preparation work
ALTER TABLE neasurenment _y2008nD2 | NHERI T measur enent ;

10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constrai nt_excl usion = on;
SELECT count (*) FROM neasurenent WHERE | ogdat e >= DATE ' 2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the neasur ement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and
try to prove that the partition need not be scanned because it could not contain any rows meeting the
query's WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAI N command to show the difference between a plan with constrai nt _excl usi on
on and a plan with it off. A typical unoptimized plan for this type of table setup is:

SET constraint_exclusion = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE ' 2008-01-01';

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 wi dt h=0)
-> Append (cost=0.00..151.88 rows=2715 wi dt h=0)
-> Seq Scan on neasurenent (cost=0.00..30.38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2006n0D2 neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2006n03 neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent_y2007nl2 nmeasurenment (cost=0.00..30.38 rows=543
wi dt h=0)

73

Data Definition

Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008n0D1 neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constrai nt_exclusion = on;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE ' 2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 wi dt h=0)
-> Append (cost=0.00..60.75 rows=1086 wi dt h=0)
-> Seq Scan on neasurenent (cost=0.00..30.38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008n01 neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn't necessary to define indexes on the key columns. Whether an index needs to be created
for a given partition depends on whether you expect that queries that scan the partition will generally
scan a large part of the partition or just a small part. An index will be helpful in the latter case but not
the former.

The default (and recommended) setting of constraint exclusion is actually neither on nor of f, but an
intermediate setting called parti ti on, which causes the technique to be applied only to queries that are
likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.10.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE neasurenent insert_y2006nD2 AS
ON I NSERT TO measur enment WHERE

(logdate >= DATE '2006-02-01'" AND | ogdate < DATE ' 2006-03-01"')
DO | NSTEAD

| NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008nD1 AS
ON I NSERT TO measur enment WHERE

(logdate >= DATE '2008-01-01'" AND | ogdate < DATE '2008-02-01"')
DO | NSTEAD

| NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however,
the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNI ON ALL view, instead of table inheritance. For example,

74

Data Definition

CREATE VI EW nmeasur enent AS

SELECT * FROM neasur enment _y2006nmD2

UNI ON ALL SELECT * FROM neasur enment _y2006nm03

UNI ON ALL SELECT * FROM measurenment _y2007nml1
UNI ON ALL SELECT * FROM measur enment _y2007ml2
UNI ON ALL SELECT * FROM neasur enent _y2008n01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.10.6. Caveats

The following caveats apply to partitioned tables:

There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than
to write each by hand.

The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts to
do that will fail because of the CHECK constraints. If you need to handle such cases, you can put
suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

If you are using manual VACUUMor ANALYZE commands, don't forget that you need to run them on
each partition individually. A command like:

ANALYZE neasur enent ;
will only process the master table.

| NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON CONFLI CT
action is only taken in case of unique violations on the specified target relation, not its child
relations.

The following caveats apply to constraint exclusion:

Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TI MESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don't need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators.

All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don't try to use
many thousands of partitions.

5.11. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contri b modules; see

75

Data Definition

Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 54.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

* Views

¢ Functions and operators

¢ Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HI NT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn't remove the orders table, it only
removes the foreign key constraint. (If you want to check what DROP ... CASCADE will do, run DROP
without CASCADE and read the DETAI L output.)

All DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRI CT instead of CASCADE to get
the default behavior, which is to prevent the dropping of objects that other objects depend on.

76

Data Definition

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRI CT or CASCADE varies across systems.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-
visible properties, such as its argument and result types, but not dependencies that could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM (' red', 'orange', 'vyellow,
‘green', 'blue', 'purple');

CREATE TABLE my_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or _note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQL;

(See Section 35.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function depends on the r ai nbow type: dropping the type would force dropping the
function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _note to depend on the ny_col ors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

77

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

);
An example command to insert a row would be:
I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.
If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

| NSERT | NTO products (product_no, name) VALUES (1, ' Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:
I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese', DEFAULT);

| NSERT | NTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, nane, price FROM new products
WHERE r el ease_date = 'today';

78

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as

flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:
UPDATE nytable SET a =5, b =3, ¢ =1 WERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

79

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:
DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports this. Use
of RETURNI NG avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG *, which selects all columns of the target table in
order.

In an | NSERT, the data available to RETURNI NGis the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a seri al column to provide unique identifiers,
RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, lastname text, id serial prinmary key);

| NSERT | NTO users (firstnane, |astname) VALUES ('Joe', 'Cool') RETURNI NG i d;
The RETURNI NG clause is also very useful with | NSERT ... SELECT.

In an UPDATE, the data available to RETURNI NG is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG name, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM products
WHERE obsol etion_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 36) on the target table, the data available to RETURNI NG is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNI NG.

80

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH with_queries] SELECT select_|ist FROMtabl e_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM t abl el;

Assuming that there is a table called t abl e1, this command would retrieve all rows and all user-defined
columns from t abl el. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if t abl el has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROMt abl el is a simple kind of table expression: it reads just one table. In general, table expressions can
be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVI NGclauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The FROMClause

The the section called “FROM Clause” derives a table from one or more other tables given in a comma-
separated table reference list.

FROM t abl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JA Nconstruct, or complex combinations of these. If more than one table reference is listed in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).

81

Queries

The result of the FROMlist is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word ONLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly specify
that descendant tables are included. Writing * is not necessary since that behavior is the default (unless
you have changed the setting of the sql inheritance configuration option). However writing * might be
useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join_type T2 [join_condition]
Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control the join order. In the absence of parentheses,
JA N clauses nest left-to-right.
Join Types
Cross join

T1 CRCSS JON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CRCSS JA N T2 is equivalent to FROM T1 I NNER JO N T2 ON TRUE (see below). It is also
equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because JO N
binds more tightly than comma. For example FROM T1 CROSS JON T2 INNER JON T3 ON
condi tion is not the same as FROM T1, T2 INNER JON T3 ON condition because the
condi ti on can reference T1 in the first case but not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 ON bool ean_expressi on
T1 { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2 USING (join colum list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JON T2

The words | NNER and QUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT, and FULL
imply an outer join.

The join condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

82

Queries

LEFT QUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USI NG clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USI NG (a, b) produces the join condition ON Tl.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JO N USI NGsuppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JO N ON produces all columns
from T1 followed by all columns from T2, JO N USI NG produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from T1, followed by
any remaining columns from T2.

Finally, NATURAL is a shorthand form of USI NG it forms a USI NG list consisting of all column names
that appear in both input tables. As with USI NG, these columns appear only once in the output table.
If there are no common column names, NATURAL JO N behaves like JON ... ON TRUE, producing
a cross-product join.

Note

USI NG is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t 1:

num | nane

83

Queries

5| zzz
then we get the following results for the various joins:

=> SELECT * FROMt1l CROSS JO N t2;
num | nane | num| val ue

WWWNNNREP PR

~ 0 00T TCUT9 9O
<
<
<

(9 rows

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

----- s
1] a | 1] Xxxx
3] ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1l INNER JO N t2 USING (nun;
num | nane | val ue

_____ e
1] a | xxx
3] ¢ | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL |INNER JO N t2;
num | nane | val ue

_____ e
1] a | xxx
3] ¢ | yyy

(2 rows)

=> SELECT * FROMt1l LEFT JON1t2 ONt1l.num= t2. num
num | nane | num| val ue

yyy

=> SELECT * FROM t1 LEFT JON t2 USI NG (num;

=> SELECT * FROMt1l RIGHT JON1t2 ONt1l.num= t2. num
num | nane | num| val ue

84

Queries

31 ¢ | 31 yyy
| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 5| zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JON1t2 ONtl.num= t2.num AND t2.value = ' xxx';
num| nanme | num| val ue

1| a
2] b
3| c
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1 LEFT JON1t2 ONtl.num= t2.num WHERE t 2. val ue = ' xxx';
num | nane | num| val ue

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters
a lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write
FROM t abl e_reference AS alias
or

FROM t abl e_reference alias

The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:
SELECT * FROM sone_very long_table name s JON another _fairly long_nane a ON s.id =

a. num
The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:
SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

85

Queries

SELECT * FROM peopl e AS nother JO N people AS child ON nother.id = child. nother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result of
the join:

SELECT * FROM ny_table AS a CROSS JON nmy_table AS b ...

SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]1])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JO N clause, the alias hides the original name(s) within the
JA N. For example:

SELECT a.* FROM ny_table AS a JON your _table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JON your _table AS b ON...) ASc

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_nane. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROMclause of
a query. Columns returned by table functions can be included in SELECT, JO N, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROAB FROMsyntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(colum_alias [, ... 1)]]
ROAS FROM function_call [, ...]) [WTH ORDI NALITY] [[AS] table_alias [(columm_alias

[, - DI

If the WTH ORDI NALI TY clause is specified, an additional column of type bi gi nt will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.) By default, the ordinal
column is called or di nal i ty, but a different column name can be assigned to it using an AS clause.

86

Queries

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALITY] [[AS] table_ alias [(columm_alias
[, ... DII

Ifnotabl e_ali as is specified, the function name is used as the table name; in the case of a RO FROM)
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTI ON getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid I'N (
SELECT f oosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

))
CREATE VI EW vw_get foo AS SELECT * FROM getfoo(1l);
SELECT * FROM vw_get f 00;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
recor d with no OUT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (columm_definition [, ...])
ROAMS FROM ... function_call AS (colum_definition [, I, .. 1)

When not using the ROMS FROM) syntax, the col utm_defi ni ti on list replaces the column alias list
that could otherwise be attached to the FROM item; the names in the column definitions serve as
column aliases. When using the ROAS FROM) syntax, a col urm_def i ni ti on list can be attached to each
member function separately; or if there is only one member function and no W TH ORDI NALI TY clause, a
col um_defi ni ti on list can be written in place of a column alias list following ROAS FROM) .

Consider this example:

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM pg proc')
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return r ecord
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

87

Queries

This example uses ROA5S FROM

SELECT *
FROM ROA5 FROM
(
json_to_recordset('[{"a":40,"b":"fo0"},{"a":"100","b":"bar"}]")
AS (a | NTEGER, b TEXT),
generate_series(1, 3)
) ASx (p, q, s)
ORDER BY p;

40 | foo | 1
100 | bar | 2
| | 3

It joins two functions into a single FROM target. j son_to_recordset () is instructed to return two
columns, the first i nt eger and the second t ext . The result of gener ate_seri es() is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROMcan be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FROMitems. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROMitems in any case.

A LATERAL item can appear at top level in the FROMIist, or within a JO N tree. In the latter case it can
also refer to any items that are on the left-hand side of a JO N that it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROMitem providing the cross-referenced column(s), or set of rows of multiple FROMitems providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that verti ces(pol ygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl.poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CRCSS JO N LATERAL vertices(p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

88

Queries

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JO Nto a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get _product _nanes()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m nane
FROM nanufacturers m LEFT JO N LATERAL get product _nanes(mid) pnanme ON true
WHERE pnane | S NULL;

7.2.2. The VHERE Clause

The syntax of the the section called “WHERE Clause” is
WHERE sear ch_condition

where sear ch_condi ti on is any value expression (see Section 4.2) that returns a value of type bool ean.

After the processing of the FROMclause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROMclause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the JO N clause.
For example, these table expressions are equivalent:

FROMa, b WHERE a.id = b.id AND b.val > 5

and:

FROMa INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JON b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FROMclause. The ON or USI NG
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE cl1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl1 IN (SELECT cl1 FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROMt2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

f dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt is referenced in

89

Queries

the subqueries. Qualifying c1 asf dt. c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st

FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_reference [, grouping_columm_reference]...

The the section called “GROUP BY Clause” is used to group together those rows in a table that have the
same values in all the columns listed. The order in which the columns are listed does not matter. The
effect is to combine each set of rows having common values into one group row that represents all rows
in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM test1;

x|y
[
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a

b

c

(3 rows)

In the second query, we could not have written SELECT * FROM test 1 GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROMtest1l GROUP BY x;
X | sum

a | 4
b | 5
c | 2
(3 rows)

Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DI STI NCT clause (see Section 7.3.3).

90

Queries

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.nanme, (sun{s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns product _i d, p. nane, and p. pri ce must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s. uni t s does not have to be in
the GROUP BY list since it is only used in an aggregate expression (sun{. . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product _i d is the primary key, then it would be enough to
group by product _i d in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ... HAVI NG bool ean_expressi on

Expressions in the HAVI NG clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROMtest1l GROUP BY x HAVI NG sun({y) > 3;
X | sum

a | 4
b | 5
(2 rows)

=> SELECT x, sun(y) FROMtest1l GROUP BY x HAVING x < 'c';
X | sum

a | 4
b | 5
(2 rows)

Again, a more realistic example:

SELECT product _id, p.name, (sun{s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JO N sales s USI NG (product _id)
WHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVI NG clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVI NG). The same
is true if it contains a HAVI NG clause, even without any aggregate function calls or GROUP BY clause.

91

Queries

7.2.4. GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROMand WHERE clauses is grouped separately by each specified
grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then the
results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ .
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun(sales) FROMitens_sold GROUP BY GROUPI NG SETS ((brand),
(size), ());

brand | size | sum

_______ e
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping sets in which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.53.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
'('él, e2),
(el),

()
)

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, c)

is equivalent to

92

Queries

GROUPI NG SETS (
(a b, c),
(a b),
(a, c),
(a)
(b, ¢),
(b)
(c)
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPI NG SETS (
(a, b, c, d),
(a b
(c, d
(

~— N —

)

and
ROLLUP (a, (b, c), d)
is equivalent to

GROUPI NG SETS (
(a b, c, d)
(a b, c),

(a)

()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, ¢, e),
(a, d), (a, e)

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the GROUP
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use RON a, b).

93

Queries

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NG filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions are
the group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in a
single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTI TI ON BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering
of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
table is finally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVI NG clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbl1.*, tbl2.a FROM ...

See Section 8.16.5 for more about the t abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

94

Queries

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM . ..
but this does:
SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word is written directly after SELECT to specify this:
SELECT DI STI NCT sel ect _|i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DI STI NCT ON (expression [, expression ...]) select_list

Here expr essi on is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT ON processing
occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries
The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

gueryl UNI ON [ALL] query2
qgueryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and quer y2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNI ON query2 UNI ON query3

which is executed as:

95

Queries

(queryl UNI ON query?2) UNI ON query3

UNI ON effectively appends the result of query2 to the result of queryl (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DI STI NCT, unless UNI ON ALL is used.

| NTERSECT returns all rows that are both in the result of queryl and in the result of quer y2. Duplicate
rows are eliminated unless | NTERSECT ALL is used.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expr essi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:
SELECT a, b FROMtablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. !

The NULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FI RST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort _expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum c¢ FROMtabl el ORDER BY sum + c; -- wong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column's name.

! Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

96

Queries

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LI M T and OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:
SELECT sel ect _|i st

FROM t abl e_expr essi on

[ORDER BY ...]
[LIMT { nunmber | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIM T ALL is the same as omitting the LI M T clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, and LI M T NULL is the same as omitting the LI M T clause. If both OFFSET and LIM T
appear, then OFFSET rows are skipped before starting to count the LI M T rows that are returned.

When using LI M T, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LI M T and OFFSET. Thus,
using different LI M T/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must
have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNI ON (see Section 10.5).

As an example:
VALUES (1, 'one'), (2, 'two'), (3, "three');
will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col uim1, col umz2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently, so
it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"tw'), (3, 'three')) ASt (numletter);

97

Queries

num| letter

1]

2] two

3| three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:
SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNI ON, or attach a
sort _specification (ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W TH Queries (Common Table Expressions)

W TH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT, | NSERT,
UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that can also be a
SELECT, | NSERT, UPDATE, or DELETE.

7.8.1. SELECT in WTH

The basic value of SELECT in W THis to break down complicated queries into simpler parts. An example is:

W TH regi onal _sal es AS (
SELECT regi on, SUM anount) AS total sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sal es)/10 FROM regi onal _sal es)
)
SELECT regi on,
product,
SUM quantity) AS product _units,
SUM anmount) AS product _sal es
FROM or ders
VWHERE region I N (SELECT regi on FROM t op_r egi ons)
GROUP BY regi on, product;

which displays per-product sales totals in only the top sales regions. The W THclause defines two auxiliary
statements named r egi onal _sal es and t op_r egi ons, where the output of r egi onal _sal es is used in
t op_regi ons and the output of t op_r egi ons is used in the primary SELECT query. This example could
have been written without W TH, but we'd have needed two levels of nested sub-SELECTSs. It's a bit easier
to follow this way.

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSI VE, a W TH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

W TH RECURSI VE t (n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

98

Queries

SELECT sunm{n) FROMt;

The general form of a recursive W TH query is always a non-recursive term, then UNI ON (or UNI ON ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. Solong as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and rows that
duplicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSI VE is the terminology chosen
by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
VWHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead of
UNI ON ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just
one or a few fields to see if the same point has been reached before. The standard method for handling
such situations is to compute an array of the already-visited values. For example, consider the following
query that searches a table gr aph using a | i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link

99

Queries

SELECT * FROM sear ch_graph;

This query will loop if the | i nk relationships contain cycles. Because we require a “depth” output, just
changing UNI ON ALL to UNI ON would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
pat h and cycl e to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[g. i d],
fal se
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields f 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[RONg.f1, g.f2)],
fal se
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || RONg.f1, g.f2),
RONg.f1l, g.f2) = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Tip
Omit the RON) syntax in the common case where only one field needs to be checked to recognize a
cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order. You

can display the results in depth-first search order by making the outer query ORDER BY a “path”
column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LI M T in the
parent query. For example, this query would loop forever without the LI M T:

W TH RECURSI VE t (n) AS (
SELECT 1
UNI ON ALL

100

Queries

SELECT n+1 FROM t

)
SELECT n FROMt LIMT 100;

This works because PostgreSQL's implementation evaluates only as many rows of a W TH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the W TH query's output anyway.

A useful property of W TH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling W TH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a W TH query to avoid redundant
work. Another possible application is to prevent unwanted multiple evaluations of functions with side-
effects. However, the other side of this coin is that the optimizer is less able to push restrictions from
the parent query down into a W TH query than an ordinary subquery. The W TH query will generally be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

The examples above only show W TH being used with SELECT, but it can be attached in the same way to
| NSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in W TH

You can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. This allows you to perform
several different operations in the same query. An example is:

W TH noved_rows AS (
DELETE FROM products
VWHERE
"date" >= '2010-10-01" AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_| og
SELECT * FROM noved_r ows;

This query effectively moves rows from products to products_| og. The DELETE in W TH deletes the
specified rows from pr oduct s, returning their contents by means of its RETURNI NG clause; and then the
primary query reads that output and inserts it into pr oduct s_I og.

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-SELECT
within the | NSERT. This is necessary because data-modifying statements are only allowed in W THclauses
that are attached to the top-level statement. However, normal W TH visibility rules apply, so it is possible
to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNI NG clause, not the target table of the data-modifying
statement, that forms the temporary table that can be referred to by the rest of the query. If a data-
modifying statement in W TH lacks a RETURNI NG clause, then it forms no temporary table and cannot be
referred to in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-
useful example is:

WTH t AS (

DELETE FROM f oo
)
DELETE FROM bar ;

This example would remove all rows from tables f oo and bar . The number of affected rows reported to
the client would only include rows removed from bar .

101

Queries

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part I N (SELECT part FROM i ncl uded_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in W TH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “see” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNI NG data is the only
way to communicate changes between different W TH sub-statements and the main query. An example
of this is that in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also
applies to deleting a row that was already updated in the same statement: only the update is performed.
Therefore you should generally avoid trying to modify a single row twice in a single statement. In
particular avoid writing W TH sub-statements that could affect the same rows changed by the main
statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in W THmust not have a conditional
rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

102

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description

bi gi nt int8 signed eight-byte integer

bi gseri al serial 8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

bool ean bool logical Boolean (true/false)

box rectangular box on a plane

byt ea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n)] varchar [(n)] variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

doubl e precision float8 double precision floating-point
number (8 bytes)

i net IPv4 or IPv6 host address

i nt eger int,int4 signed four-byte integer

interval [fields] [(p)] time span

j son textual JSON data

j sonb binary JSON data, decomposed

l'ine infinite line on a plane

| seg line segment on a plane

macaddr MAC (Media Access Control)
address

noney currency amount

nunmeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

pat h geometric path on a plane

pg_I sn PostgreSQL Log Sequence
Number

poi nt geometric point on a plane

pol ygon closed geometric path on a plane

real float4 single precision floating-point
number (4 bytes)

smal | i nt int2 signed two-byte integer

103

Data Types

Name Aliases Description

smal | seri al serial 2 autoincrementing two-byte
integer

seri al serial 4 autoincrementing four-byte
integer

t ext variable-length character string

time [(p) 1] [without tine time of day (no time zone)

zone |

time [(p)] with tine zone |tinetz time of day, including time zone

timestanp [(p)] [without date and time (no time zone)

tinme zone]

timestanp [(p)] with tinmeftinestanptz date and time, including time

zone zone

tsquery text search query

t svect or text search document

t xi d_snapshot user-level transaction ID
snapshot

uui d universally unique identifier

xm XML data

char, character

time zone), xn .

Compatibility

The following types (or spellings thereof) are specified by SQL: bi gi nt, bi t, bit varyi ng, bool ean,
varyi ng, character, varchar, date, doubl e precision, integer, interval,
nureri c, deci mal , real, smal lint, ti me (with or without time zone), ti nest anp (with or without

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy

when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size Description Range

snal | i nt 2 bytes small-range integer -32768 to +32767

i nteger 4 bytes typical choice for integer|-2147483648 to
+2147483647

bi gi nt 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807

deci nal variable user-specified precision,|lup to 131072 digits

exact before the decimal point;

up to 16383 digits after
the decimal point

104

Data Types

8

Name Storage Size Description Range
nuneric variable user-specified precision,|up to 131072 digits
exact before the decimal point;
up to 16383 digits after
the decimal point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
doubl e precision 8 bytes variable-precision, 15 decimal digits
inexact precision
smal | seri al 2 bytes small autoincrementing|1 to 32767
integer
seri al 4 bytes autoincrementing 1to 2147483647
integer
bi gseri al 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

1.1. Integer Types

The types smal |l i nt, i nteger, and bi gi nt store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type i nt eger is the common choice, as it offers the best balance between range, storage size, and
performance. The smal | i nt type is generally only used if disk space is at a premium. The bi gi nt type
is designed to be used when the range of the i nt eger type is insufficient.

SQL only specifies the integer types i nteger (or int), smallint, and bi gi nt. The type names i nt 2,
i nt4, and i nt 8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type nuneri ¢ can store numbers with a very large number of digits. It is especially recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
numer i ¢ values yield exact results where possible, e.g., addition, subtraction, multiplication. However,
calculations on nuner i ¢ values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: the precision of a nuneri c is the total count of significant digits in the
whole number, that is, the number of digits to both sides of the decimal point. The scale of a nuneri c
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a nuner i ¢ column can be configured. To declare
a column of type nurneri c use the syntax:

NUMERI C(pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERI C(pr eci si on)

selects a scale of 0. Specifying:

NUMERI C

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values

105

Data Types

8

to any particular scale, whereas nuneri ¢ columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a
bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000; NUVERI C
without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the nuneri c type is
more akin to var char (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nuneri c type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = 'NaN . On input, the
string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including NaN). In order to allow nuneri c values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

The types deci mal and nuneri ¢ are equivalent. Both types are part of the SQL standard.

1.3. Floating-Point Types

The data types real and doubl e preci si on are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic
(single and double precision, respectively), to the extent that the underlying processor, operating system,
and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the nuneri c type
instead.

» If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

¢ Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least
6 decimal digits. The doubl e preci si on type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

106

Data Types

Note

The extra float digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of 0, the output is the
same on every platform supported by PostgreSQL. Increasing it will produce output that more
accurately represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
-Infinity
NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”,
respectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will
probably not work as expected.) When writing these values as constants in an SQL command, you must
put quotes around them, for example UPDATE tabl e SET x = 'Infinity'.On input, these strings are
recognized in a case-insensitive manner.

Note

IEEE754 specifies that NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations fl oat and fl oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float(1l) to float(24) as selecting the real type, while float(25) to float(53) select double
preci si on. Values of p outside the allowed range draw an error. f| oat with no precision specified is
taken to mean doubl e preci si on.

Note

The assumption that real and doubl e preci si on have exactly 24 and 53 bits in the mantissa
respectively is correct for IEEE-standard floating point implementations. On non-IEEE platforms
it might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types snal |l serial, serial and bigserial are not true types, but merely a notational
convenience for creating unique identifier columns (similar to the AUTO | NCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col name SERI AL

)

is equivalent to specifying:

CREATE SEQUENCE t abl enane_col nane_seq;
CREATE TABLE t abl enane (
col nanme i nteger NOT NULL DEFAULT nextval ('tabl enanme_col nanme_seq')
)
ALTER SEQUENCE t abl enanme_col nanme_seq OANED BY t abl enane. col nane;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent duplicate

107

Data Types

values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Because snal | serial, serial and bi gseri al are implemented using sequences, there may be
"holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See next val () in Section 9.16 for details.

To insert the next value of the sequence into the seri al column, specify that the seri al column should
be assigned its default value. This can be done either by excluding the column from the list of columns
in the | NSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial 4 are equivalent: both create i nt eger columns. The type names
bi gseri al and seri al 8 work the same way, except that they create a bi gi nt column. bi gseri al should
be used if you anticipate the use of more than 23! identifiers over the lifetime of the table. The type
names snal | seri al and seri al 2 also work the same way, except that they create a smal | i nt column.

The sequence created for aseri al column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The noney type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and floating-
point literals, as well as typical currency formatting, such as ' $1, 000. 00' . Output is generally in the
latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load noney data into a database
that has a different setting of | c_nonet ary. To avoid problems, before restoring a dump into a new
database make sure | ¢c_nonet ary has the same or equivalent value as in the database that was dumped.

Values of the nuneri c, i nt, and bi gi nt data types can be cast to noney. Conversion from the r eal and
doubl e preci si on data types can be done by casting to nuneri c first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A noney value can be cast to nuneri ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric:: fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the noney value to nuneri ¢ before
dividing and back to noney afterwards. (The latter is preferable to avoid risking precision loss.) When a
noney value is divided by another noney value, the result is doubl e preci si on (i.e., a pure number, not
money); the currency units cancel each other out in the division.

108

Data Types

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit
character(n), char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character(n), where n is a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type char act er will be space-padded; values of type char act er varyi ng will simply store the
shorter string.

If one explicitly casts a value to charact er varyi ng(n) or character(n), then an over-length value will
be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar(n) and char(n) are aliases for character varying(n) and character(n),
respectively. char act er without length specifier is equivalent to char act er (1) . If charact er varyi ngis
used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL extension.

In addition, PostgreSQL provides the t ext type, which stores strings of any length. Although the type
t ext is not in the SQL standard, several other SQL database management systems have it as well.

Values of type char act er are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregarded
when comparing two values of type character. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C' < E a
\'n':: CHAR(2) returns true, even though Clocale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a char act er value to one of the other string types. Note
that trailing spaces are semantically significant in char act er varyi ng and t ext values, and when using
pattern matching, that is LI KE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character
set, which is selected when the database is created. Regardless of the specific character set, the
character with code zero (sometimes called NUL) cannot be stored. For more information refer to
Section 22.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of char act er . Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use t ext
or character varyi ng without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage space

when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While char act er (n) has performance advantages in some other

109

Data Types

database systems, there is no such advantage in PostgreSQL; in fact char act er (n) is usually the
slowest of the three because of its additional storage costs and slower sorting. In most situations
text or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions.
Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char_length

______ e e e e e e e am -

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES (' ok');

| NSERT | NTO test2 VALUES (' good "),

I NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT INTO test2 VALUES ('too long' ::varchar(5)); -- explicit truncation
SELECT b, char_Iength(b) FROMtest2;

b | char_length
_______ e e e e e e e am -
ok | 2
good | 5
too | | 5

The char _I engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type exists
only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
is therefore adjustable for special uses); the default maximum length might change in a future release.
The type "char" (note the quotes) is different from char (1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types
The byt ea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
byt ea 1 or 4 bytes plus the actual binary|variable-length binary string
string

110

Data Types

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and
also disallow any other octet values and sequences of octet values that are invalid according to the
database's selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings
are appropriate for storing text.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT. The input
format is different from byt ea, but the provided functions and operators are mostly the same.

8.4.1. byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \ x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:
SELECT '\ xDEADBEEF' ;

8.4.2. byt ea Escape Format

The “escape” format is the traditional PostgreSQL format for the byt ea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practice it is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8.7. byt ea Literal Escaped Octets

Decimal Octet|Description Escaped Input|Example Hex
Value Representation Representation
0 zero octet "\ 000 SELECT \ x00
"\ 000" : : byt ea;
39 single quote Ut oor '\ 047! SELECT \ x27
"' byt ea;
92 backslash "\\'" or'\134 SELECT "\ |\ x5¢c
\'::bytea;
0 to 31 and 127 to|“non-printable” "\ xxx' (octal value) | SELECT \ x01
255 octets "\ 001" :: bytea;

111

Data Types

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the byt ea input function sees is just
one single quote, which it treats as a plain data character. However, the byt ea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea_out put = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc kIl m *\ 251T
The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet|Description Escaped Output Example Output Result
Value Representation
92 backslash \\ SELECT \\
"\ 134':: byt ea;
0 to 31 and 127 to|“non-printable” \ xxx (octal value) |[SELECT \ 001
255 octets "\ 001" :: bytea;
32 to 126 “printable” octets |client character set|SELECT ~
representation "\176' : : byt ea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
tinmestanp [(|8 bytes both date and|4713 BC 294276 AD 1 microsecond /
p)] [without time (no time 14 digits
time zone | zone)
tinmestanp [(|8 bytes both date and|4713 BC 294276 AD 1 microsecond /
p) 1] with tine time, with time 14 digits
zone zone
date 4 bytes date (no time of|4713 BC 5874897 AD 1 day

day)

112

Data Types

Name Storage Size |Description Low Value High Value Resolution
time [(p) 1|8 bytes time of day (no|00:00:00 24:00:00 1 microsecond /
[without tine date) 14 digits
zone |
time [(p) 1|12 bytes times of day|00:00:004+1559 |[24:00:00-1559 |1 microsecond /
with tinme zone only, with time 14 digits

zone
i nterval [|16 bytes time interval -178000000 178000000 1 microsecond /
fields 1 [(years years 14 digits
p) |

Note

The SQL standard requires that writing just ti nest anp be equivalent to ti nestanp without
ti me zone, and PostgreSQL honors that behavior. t i mest anpt z is accepted as an abbreviation for
timestanp with time zone; this is a PostgreSQL extension.

time, ti mestanp, and i nterval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6 for the ti nest anp and i nt erval types.

Note

When ti mest anp values are stored as eight-byte integers (currently the default), microsecond
precision is available over the full range of values. When t i nest anp values are stored as double
precision floating-point numbers instead (a deprecated compile-time option), the effective limit of
precision might be less than 6. ti nest anp values are stored as seconds before or after midnight
2000-01-01. When t i nest anp values are implemented using floating-point numbers, microsecond
precision is achieved for dates within a few years of 2000-01-01, but the precision degrades for
dates further away. Note that using floating-point datetimes allows a larger range of ti nest anp
values to be represented than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether ti me and i nt er val values are stored as
floating-point numbers or eight-byte integers. In the floating-point case, large i nt er val values
degrade in precision as the size of the interval increases.

For the ti me types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The i nterval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

113

Data Types

Note that if both f i el ds and p are specified, the fi el ds must include SECOND, since the precision applies
only to the seconds.

The typetime with tinme zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, ti ne, ti mestanp wi t hout
time zone, and tinestanp with tine zone should provide a complete range of date/time functionality
required by any application.

The types absti ne and r el ti me are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation,
or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified forti ne, ti nest anp, and i nt er val types. The allowed values are mentioned
above. If no precision is specified in a constant specification, it defaults to the precision of the literal
value.

8.5.1.1. Dates
Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguous in any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMWY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January