Cppcheck manual
Version 2.5

Cppcheck team



Introduction

Cppcheck is an analysis tool for C/C++ code. It provides unique code analysis
to detect bugs and focuses on detecting undefined behaviour and dangerous
coding constructs. The goal is to detect only real errors in the code, and generate
as few false positives (wrongly reported warnings) as possible. Cppcheck is
designed to analyze your C/C++ code even if it has non-standard syntax, as is
common in for example embedded projects.

Supported code and platforms:

¢ Cppcheck checks non-standard code that contains various compiler exten-
sions, inline assembly code, etc.

o Cppcheck should be compilable by any compiler that supports C++11 or
later.

o Cppcheck is cross platform and is used in various posix/windows/etc
environments.

The checks in Cppcheck are not perfect. There are bugs that should be found,
that Cppcheck fails to detect.

About static analysis

The kinds of bugs that you can find with static analysis are:

e Undefined behavior
o Using dangerous code patterns
o Coding style

There are many bugs that you can not find with static analysis. Static analysis
tools do not have human knowledge about what your program is intended to
do. If the output from your program is valid but unexpected then in most cases
this is not detected by static analysis tools. For instance, if your small program
writes “Helo” on the screen instead of “Hello” it is unlikely that any tool will
complain about that.

Static analysis should be used as a complement in your quality assurance. It
does not replace any of;



Careful design
Testing

Dynamic analysis
Fuzzing



Getting started

GUI

It is not required but creating a new project file is a good first step. There are a
few options you can tweak to get good results.

In the project settings dialog, the first option you see is “Import project”. It is
recommended that you use this feature if you can. Cppcheck can import:

 Visual studio solution / project
o Compile database, which can be generated from CMake/qbs/etc build files
« Borland C++ Builder 6

When you have filled out the project settings and clicked on OK, the Cppcheck
analysis will start.

Command line

First test

Here is some simple code:

int main()

{
char a[10];
al[10] = 0;
return O;

}

If you save that into filel.c and execute:
cppcheck filel.c
The output from Cppcheck will then be:

Checking filel.c...
[filel.c:4]: (error) Array 'a[10]' index 10 out of bounds



Checking all files in a folder

Normally a program has many source files. Cppcheck can check all source files
in a directory:

cppcheck path

If “path” is a folder, then Cppcheck will recursively check all source files in this
folder:

Checking path/filel.cpp...
1/2 files checked 50% done
Checking path/file2.cpp...
2/2 files checked 100% done

Check files manually or use project file

With Cppcheck you can check files manually by specifying files/paths to check
and settings. Or you can use a build environment, such as CMake or Visual
Studio.

We don’t know which approach (project file or manual configuration) will give
you the best results. It is recommended that you try both. It is possible that
you will get different results so that to find the largest amount of bugs you need
to use both approaches. Later chapters will describe this in more detail.

Check files matching a given file filter

With --file-filter=<str> you can set a file filter and only those files matching
the filter will be checked.

For example: if you want to check only those files and folders starting from a
subfolder src/ that start with “test” you have to type:

cppcheck src/ --file-filter=src/testx*

Cppcheck first collects all files in src/ and will apply the filter after that. So the
filter must start with the given start folder.

Excluding a file or folder from checking

To exclude a file or folder, there are two options. The first option is to only
provide the paths and files you want to check:

cppcheck src/a src/b
All files under src/a and src/b are then checked.

The second option is to use -i, which specifies the files/paths to ignore. With
this command no files in src/c are checked:

cppcheck -isrc/c src



This option is only valid when supplying an input directory. To ignore multiple
directories supply the -i flag for each directory individually. The following
command ignores both the src¢/b and src/c directories:

cppcheck -isrc/b -isrc/c

Clang parser (experimental)

By default Cppcheck uses an internal C/C++ parser. However there is an
experimental option to use the Clang parser instead.

Install clang. Then use Cppcheck option --clang.

Technically, Cppcheck will execute clang with its —ast-dump option. The Clang
output is then imported and converted into the normal Cppcheck format. And
then normal Cppcheck analysis is performed on that.

You can also pass a custom Clang executable to the option by using for example
--clang=clang-10. You can also pass it with a path. On Windows it will
append the .exe extension unless you use a path.

Severities

The possible severities for messages are:
error

when code is executed there is either undefined behavior or other error, such as
a memory leak or resource leak

warning
when code is executed there might be undefined behavior
style

stylistic issues, such as unused functions, redundant code, constness, operator
precedence, possible mistakes.

performance

run time performance suggestions based on common knowledge, though it is
not certain any measurable speed difference will be achieved by fixing these
messages.

portability

portability warnings. Implementation defined behavior. 64-bit portability. Some
undefined behavior that probably works “as you want”, etc.

information



configuration problems, which does not relate to the syntactical correctness, but
the used Cppcheck configuration could be improved.

Possible speedup analysis of template code

Cppcheck instantiates the templates in your code.

If your templates are recursive this can lead to slow analysis that uses a lot of
memory. Cppcheck will write information messages when there are potential
problems.

Example code:

template <int i>

void a()
{
a<i+1>Q);
}
void foo()
{
a<0>Q);
}

Cppcheck output:

test.cpp:4:5: information: TemplateSimplifier: max template recursion (100) reached for tem
a<i+1>Q);

As you can see Cppcheck has instantiated a<i+1> until a<101> was reached and
then it bails out.

To limit template recursion you can:

o add template specialisation
o configure Cppcheck, which can be done in the GUI project file dialog

Example code with template specialisation:

template <int i>

void a()
{
a<i+1>();
}
void foo()
{
a<0>();
}



#ifdef __cppcheck__
template<> void a<3>() {}
#endif

You can pass -D__cppcheck__ when checking this code.



Cppcheck build folder

Using a Cppcheck build folder is not mandatory but it is recommended.
Cppcheck save analyzer information in that folder.
The advantages are;

o It speeds up the analysis as it makes incremental analysis possible. Only
changed files are analyzed when you recheck.
e Whole program analysis also when multiple threads are used.

On the command line you configure that through --cppcheck-build-dir=path.
Example:

mkdir b
cppcheck --cppcheck-build-dir=b src # <- All files are analyzed
cppcheck --cppcheck-build-dir=b src # <- Faster! Results of unchanged files are reused

In the GUI it is configured in the project settings.



Importing a project

You can import some project files and build configurations into Cppcheck.

Cppcheck GUI project

You can import and use Cppcheck GUI project files in the command line tool:
cppcheck --project=foobar.cppcheck

The Cppcheck GUI has a few options that are not available in the command line
directly. To use these options you can import a GUI project file. The command
line tool usage is kept intentionally simple and the options are therefore limited.

To ignore certain folders in the project you can use —i. This will skip the analysis
of source files in the foo folder.

cppcheck --project=foobar.cppcheck -ifoo

CMake

Generate a compile database:
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=0N .

The file compile_commands. json is created in the current folder. Now run
Cppcheck like this:

cppcheck --project=compile_commands. json

To ignore certain folders you can use -i. This will skip analysis of source files in
the foo folder.

cppcheck --project=compile_commands.json -ifoo



Visual Studio

You can run Cppcheck on individual project files (*.vexproj) or on a whole
solution (*.sln)

Running Cppcheck on an entire Visual Studio solution:
cppcheck --project=foobar.sln

Running Cppcheck on a Visual Studio project:
cppcheck --project=foobar.vcxproj

Both options will analyze all available configurations in the project(s). Limiting
on a single configuration:

cppcheck --project=foobar.sln "--project-configuration=Release|Win32"

In the Cppcheck GUI you have the option to only analyze a single debug con-
figuration. If you want to use this option on the command line, then create a
Cppcheck GUI project with this activated and then import the GUI project file
on the command line.

To ignore certain folders in the project you can use —i. This will skip analysis of
source files in the foo folder.

cppcheck --project=foobar.vcxproj -ifoo

C++ Builder 6

Running Cppcheck on a C++ Builder 6 project:
cppcheck --project=foobar.bpr

To ignore certain folders in the project you can use —i. This will skip analysis of
source files in the foo folder.

cppcheck --project=foobar.bpr -ifoo

Other

If you can generate a compile database, then it is possible to import that in
Cppcheck.

In Linux you can use for instance the bear (build ear) utility to generate a
compile database from arbitrary build tools:

bear make

10



Preprocessor Settings

If you use —-project then Cppcheck will automatically use the preprocessor
settings in the imported project file and likely you don’t have to configure
anything extra.

If you don’t use —-project then a bit of manual preprocessor configuration
might be required. However Cppcheck has automatic configuration of defines.

Automatic configuration of preprocessor defines

Cppcheck automatically test different combinations of preprocessor defines to
achieve as high coverage in the analysis as possible.

Here is a file that has 3 bugs (when x,y,z are assigned).

#ifdef A
x=100/0;
#ifdef B

y=100/0;
#endif

#else
z=100/0;

#endif

#ifndef C
#error C must be defined
#endif

The flag -D tells Cppcheck that a name is defined. There will be no Cppcheck
analysis without this define. The flag -U tells Cppcheck that a name is not
defined. There will be no Cppcheck analysis with this define. The flag ——force
and --max-configs is used to control how many combinations are checked.
When -D is used, Cppcheck will only check 1 configuration unless these are used.

Example:

cppcheck test.c => test all configurations => all bugs are found

11



cppcheck -DA test.c => only test configuration "-DA" => No bug is found (#error)

cppcheck -DA -DC test.c => only test configuration "-DA -DC" => The first bug is found
cppcheck -UA test.c => The configuration "-DC" is tested => The last bug is found

cppcheck --force -DA test.c => All configurations with "-DA" are tested => The two first bu

Include paths

To add an include path, use -I, followed by the path.

Cppcheck’s preprocessor basically handles includes like any other preprocessor.
However, while other preprocessors stop working when they encounter a missing
header, Cppcheck will just print an information message and continues parsing
the code.

The purpose of this behaviour is that Cppcheck is meant to work without
necessarily seeing the entire code. Actually, it is recommended to not give all
include paths. While it is useful for Cppcheck to see the declaration of a class
when checking the implementation of its members, passing standard library
headers is discouraged, because the analysis will not wor fully and lead to a
longer checking time. For such cases, .cfg files are the preferred way to provide
information about the implementation of functions and types to Cppcheck, see
below for more information.

12



Platform

You should use a platform configuration that matches your target environment.

By default Cppcheck uses native platform configuration that works well if your
code is compiled and executed locally.

Cppcheck has builtin configurations for Unix and Windows targets. You can
easily use these with the —-platform command line flag.

You can also create your own custom platform configuration in a XML file. Here
is an example:

<?xml version="1"7>
<platform>
<char_bit>8</char_bit>
<default-sign>signed</default-sign>
<sizeof>
<short>2</short>
<int>4</int>
<long>4</long>
<long-long>8</long-long>
<float>4</float>
<double>8</double>
<long-double>12</long-double>
<pointer>4</pointer>
<size_t>4</size_t>
<wchar_t>2</wchar_t>
</sizeof>
</platform>

13



C/C++ Standard

Use --std on the command line to specify a C/C++ standard.

Cppcheck assumes that the code is compatible with the latest C/C++ standard,
but it is possible to override this.

The available options are:

e ¢89: C code is C89 compatible

e ¢99: C code is C99 compatible

e cl1: C code is C11 compatible (default)

e c++403: C++ code is C++03 compatible

e ct++11: C++ code is C++11 compatible

e ct++14: C++ code is C++14 compatible

e c++417: C++ code is C++17 compatible

e ¢++20: C++ code is C++420 compatible (default)

14



Cppcheck build dir

It’s a good idea to use a Cppcheck build dir. On the command line use
—--cppcheck-build-dir. In the GUI, the build dir is configured in the project
options.

Rechecking code will be much faster. Cppcheck does not analyse unchanged
code. The old warnings are loaded from the build dir and reported again.

Whole program analysis does not work when multiple threads are used; unless
you use a cppcheck build dir. For instance, the unusedFunction warnings require
whole program analysis.

15



Suppressions

If you want to filter out certain errors from being generated, then it is possible
to suppress these.

If you encounter a false positive, then please report it to the Cppcheck team so
that it can be fixed.

Plain text suppressions

The format for an error suppression is one of:

[error id]:[filename]: [line]
[error id]:[filename2]
[error id]

The error id is the id that you want to suppress. The easiest way to get it is
to use the —template=gcc command line flag. The id is shown in brackets.

The filename may include the wildcard characters * or ?, which matches any
sequence of characters or any single character respectively. It is recommended to
use “/” as path separator on all operating systems. The filename must match the
filename in the reported warning exactly. For instance, if the warning contains a
relative path, then the suppression must match that relative path.

Command line suppression

The --suppress= command line option is used to specify suppressions on the
command line. Example:

cppcheck --suppress=memleak:src/filel.cpp src/

Suppressions in a file

You can create a suppressions file for example as follows:

16



// suppress memleak and exceptNew errors in the file src/filel.cpp
memleak:src/filel.cpp
exceptNew:src/filel.cpp

uninitvar // suppress all uninitvar errors in all files

Note that you may add empty lines and comments in the suppressions file.
Comments must start with # or // and be at the start of the line, or after the
suppression line.

The usage of the suppressions file is as follows:

cppcheck --suppressions-list=suppressions.txt src/

XML suppressions

You can specify suppressions in a XML file, for example as follows:

<?xml version="1.0"7>
<suppressions>
<suppress>
<id>uninitvar</id>
<fileName>src/filel.c</fileName>
<lineNumber>10</lineNumber>
<symbolName>var</symbolName>
</suppress>
</suppressions>

The XML format is extensible and may be extended with further attributes in
the future.

The usage of the suppressions file is as follows:

cppcheck --suppress-xml=suppressions.xml src/

Inline suppressions

Suppressions can also be added directly in the code by adding comments that
contain special keywords. Note that adding comments sacrifices the readability
of the code somewhat.

This code will normally generate an error message:

void £() {
char arr([5];
arr[10] = 0;
}

The output is:

17



cppcheck test.c
[test.c:3]: (error) Array 'arr[5]' index 10 out of bounds

To activate inline suppressions:

cppcheck --inline-suppr test.c

Format

You can suppress a warning aaaa with:

// cppcheck-suppress aaaa

Suppressing multiple ids in one comment by using []:

// cppcheck-suppress [aaaa, bbbb]

Comment before code or on same line
The comment can be put before the code or at the same line as the code.
Before the code:

void £() {
char arr[5];

// cppcheck-suppress arrayIndexOutOfBounds
arr[10] = 0;
}

Or at the same line as the code:

void £() {
char arr[5];

arr[10] = 0; // cppcheck-suppress arrayIndexOutOfBounds
}

In this example there are 2 lines with code and 1 suppression comment. The
suppression comment only applies to 1 line: a = b + c;.

void £() {
a=>b+ c; // cppcheck-suppress abc
d=e + £f;

¥

As a special case for backwards compatibility, if you have a { on its own line and
a suppression comment after that, then that will suppress warnings for both the
current and next line. This example will suppress abc warnings both for { and
fora =b + c;:

18



void £(0)
{ // cppcheck-suppress abc
a=b+c;

}

Multiple suppressions

For a line of code there might be several warnings you want to suppress.
There are several options;

Using 2 suppression comments before code:

void £() {

char arr[5];

// cppcheck-suppress arrayIndexOutOfBounds
// cppcheck-suppress zerodiv
arr[10] = arr([10] / O;

X

Using 1 suppression comment before the code:
void £ {

char arr([5];

// cppcheck-suppress [arrayIndexOut0fBounds,zerodiv]
arr[10] = arr([10] / 0O;
}

Suppression comment on the same line as the code:

void £ {
char arr[5];

arr[10] = arr[10] / 0; // cppcheck-suppress[arrayIndexOutOfBounds,zerodiv]

Symbol name

You can specify that the inline suppression only applies to a specific symbol:
// cppcheck-suppress aaaa symbolName=arr

Or:

// cppcheck-suppress[aaaa symbolName=arr, bbbb]

Comment about suppression

You can write comments about a suppression as follows:

19



// cppcheck-suppress[warningid] some comment
// cppcheck-suppress warningid ; some comment
// cppcheck-suppress warningid // some comment

20



XML output

Cppcheck can generate output in XML format. Use —-xml to enable this format.
A sample command to check a file and output errors in the XML format:
cppcheck --xml filel.cpp

Here is a sample report:

<?7xml version="1.0" encoding="UTF-8"7>
<results version="2">
<cppcheck version="1.66"/>
<errors>
<error id="someError" severity="error" msg="short error text"
verbose="long error text" inconclusive="true" cwe="312">
<location fileO="file.c" file="file.h" line="1"/>
</error>
</errors>
</results>

The <error> element

Each error is reported in a <error> element. Attributes:
id

id of error, and which are valid symbolnames

severity

error/warning/style/performance /portability /information
msg

the error message in short format

verbose

the error message in long format

21



inconclusive
this attribute is only used when the error message is inconclusive
cwe

CWE ID for the problem; note that this attribute is only used when the CWE
ID for the message is known

The <location> element

All locations related to an error are listed with <location> elements. The
primary location is listed first.

Attributes:

file

filename, both relative and absolute paths are possible
fileO

name of the source file (optional)

line

line number

info

short information for each location (optional)

22



Reformatting the text
output

If you want to reformat the output so that it looks different, then you can use
templates.

Predefined output formats

To get Visual Studio compatible output you can use —template=vs:
cppcheck --template=vs samples/arrayIndexOutOfBounds/bad.c
This output will look like this:

Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOut0OfBounds/bad.c(6): error: Array 'a[2]' accessed at index 2, which is o

To get gce compatible output you can use —template=gcc:
cppcheck --template=gcc samples/arrayIndexOutOfBounds/bad.c
The output will look like this:

Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOut0fBounds/bad.c:6:6: warning: Array 'a[2]' accessed at index 2, which i:
al2] = 0;

User defined output format (single line)

You can write your own pattern. For instance, to get warning messages that are
formatted like traditional gcc, then the following format can be used:

cppcheck --template="{file}:{line}: {severity}: {messagel}" samples/arrayIndexOutOfBounds/bac
The output will then look like this:

23



Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOutOfBounds/bad.c:6: error: Array 'a[2]' accessed at index 2, which is ouf

A comma separated format:
cppcheck --template="{file},{line},{severity},{id},{message}" samples/arrayIndexOutOfBounds,
The output will look like this:

Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOutOfBounds/bad.c,6,error,arrayIndexOut0fBounds,Array 'a[2]' accessed at :

User defined output format (multi line)

Many warnings have multiple locations. Example code:

void f(int *p)

{
*p = 3; // line 3
}
int main()
{
int *p = 0; // line 8
f(p); // line 9
return O;
}

There is a possible null pointer dereference at line 3. Cppcheck can show how it
came to that conclusion by showing extra location information. You need to use
both —template and —template-location at the command line, for example:

cppcheck --template="{file}:{line}: {severity}: {message}\n{code}" --template-location="{fi:
The output from Cppcheck is:

Checking multiline.c ...
multiline.c:3: warning: Possible null pointer dereference: p
*p = 3;

multiline.c:8: note: Assignment 'p=0', assigned value is O
int *p = 0;

multiline.c:9: note: Calling function 'f', 1st argument 'p' value is O
f(p);

multiline.c:3: note: Null pointer dereference
*p = 3;

24



The first line in the warning is formatted by the —template format.

The other lines in the warning are formatted by the —template-location format.

Format specifiers for —template
The available specifiers for —~template are:
{file}

File name

{line}

Line number

{column}

Column number

{callstack}

Write all locations. Each location is written in [{file}:{line}] format and the
locations are separated by ->. For instance it might look like: [multiline.c:8] ->
[multiline.c:9] -> [multiline.c:3]

{inconclusive:text}

If warning is inconclusive, then the given text is written. The given text can be
any text that does not contain }. Example: {inconclusive:inconclusive,}

{severity}
error/warning/style/performance/portability /information
{message}

The warning message
fid}

Warning id

{code}

The real code

\t

Tab

\n

Newline

\r

Carriage return

25



Format specifiers for —template-location
The available specifiers for -~—template-location are:
{file}

File name

{line}

Line number

{column}

Column number

{info}

Information message about the current location
{code}

The real code

\t

Tab

\n

Newline

\r

Carriage return

26



Addons

Addons are scripts that analyse Cppcheck dump files to check compatibility with
secure coding standards and to locate issues.

Cppcheck is distributed with a few addons which are listed below.

Supported addons

cert.py
cert.py checks for compliance with the safe programming standard SEI CERT.

misra.py

misra.py is used to verify compliance with MISRA C 2012, a proprietary set of
guidelines to avoid questionable code, developed for embedded systems.

This standard is proprietary, and open source tools are not allowed to distribute
the Misra rule texts. Therefore Cppcheck is not allowed to write the rule texts
directly. Cppcheck is allowed to distribute the rules and display the id of each
violated rule (for example, [c2012-21.3]). The corresponding rule text can also be
written however you need to provide that. To get the rule texts, please buy the
PDF from MISRA (https://www.misra.org.uk). If you copy the rule texts from
“Appendix A - Summary of guidelines” in the PDF and write those in a text file,
then by using that text file Cppcheck can write the proper warning messages.
To see how the text file can be formatted, take a look at the files listed here:
https://github.com/danmar /cppcheck/blob/main/addons/test /misra/. You can
use the option --rule-texts to specify your rules text file.

The full list of supported rules is available on Cppcheck home page.

y2038.py

y2038.py checks Linux systems for year 2038 problem safety. This required
modified environment. See complete description here.

27


https://github.com/danmar/cppcheck/blob/main/addons/cert.py
http://www.cert.org/secure-coding/
https://github.com/danmar/cppcheck/blob/main/addons/misra.py
http://cppcheck.sourceforge.net/misra.php
https://github.com/danmar/cppcheck/blob/main/addons/y2038.py
https://en.wikipedia.org/wiki/Year_2038_problem
https://github.com/3adev/y2038
https://github.com/danmar/cppcheck/blob/main/addons/doc/y2038.txt

threadsafety.py

threadsafety.py analyses Cppcheck dump files to locate thread safety issues like
static local objects used by multiple threads.

Running Addons

Addons could be run through Cppcheck command line utility as follows:
cppcheck --addon=misra.py somefile.c

This will launch all Cppcheck checks and additionally calls specific checks
provided by selected addon.

Some addons need extra arguments. You can configure how you want to execute
an addon in a json file. For example put this in misra.json:

{
"script": "misra.py",
nargSn: [
"--rule-texts=misra.txt"
]
}

And then the configuration can be executed on the Cppcheck command line:
cppcheck --addon=misra.json somefile.c

By default Cppcheck would search addon at the standard path which was
specified during the installation process. You also can set this path directly, for
example:

cppcheck --addon=/opt/cppcheck/configurations/my_misra.json somefile.c

This allows you to create and manage multiple configuration files for different
projects.

28


https://github.com/danmar/cppcheck/blob/main/addons/threadsafety.py

Library configuration

When external libraries are used, such as WinAPI, POSIX, gtk, Qt, etc, Cppcheck
doesn’t know how the external functions behave. Cppcheck then fails to detect
various problems such as memory leaks, buffer overflows, possible null pointer
dereferences, etc. But this can be fixed with configuration files.

Cppcheck already contains configurations for several libraries. They can be
loaded as described below. Note that the configuration for the standard libraries
of C and C++, std.cfg, is always loaded by cppcheck. If you create or update a
configuration file for a popular library, we would appreciate if you upload it to
us.

Using your own custom .cfg file

You can create and use your own .cfg files for your projects. Use
--check-library and --enable=information to get hints about what
you should configure.

You can use the Library Editor in the Cppcheck GUI to edit configuration
files. It is available in the View menu.

The .cfg file format is documented in the Reference: Cppcheck .cfg format
(http://cppcheck.sf.net/reference-cfg-format.pdf) document.

29



HTML Report

You can convert the XML output from Cppcheck into a HTML report. You'll
need Python and the pygments module (http://pygments.org/) for this to work.
In the Cppcheck source tree there is a folder htmlreport that contains a script
that transforms a Cppcheck XML file into HTML output.

This command generates the help screen:
htmlreport/cppcheck-htmlreport -h
The output screen says:
Usage: cppcheck-htmlreport [options]
Options:
-h, --help show this help message and exit
--file=FILE The cppcheck xml output file to read defects from.
Default is reading from stdin.
--report-dir=REPORT_DIR
The directory where the html report content is written.

—--source-dir=SO0URCE_DIR
Base directory where source code files can be found.

Example usage:

./cppcheck gui/test.cpp —--xml 2> err.xml
htmlreport/cppcheck-htmlreport --file=err.xml --report-dir=testl --source-dir=.

30


http://pygments.org/)

Bug hunting

If you want to detect most bugs and can accept false alarms, then Cppcheck has
analysis for that.

This analysis is soundy; it should diagnose most bugs reported in CVEs and
from dynamic analysis.

You have to expect false alarms. However Cppcheck tries to limit false alarms.
The purpose of the data flow analysis is to limit false alarms.

Some possible use cases;

e you are writing new code and want to ensure it is safe.

e you are reviewing code and want to get hints about possible UB.
e you need extra help troubleshooting a weird bug.

o you want to check if a release candidate is safe.

The intention is that this will be used primarily in the GUI.

Activate this analysis

On the command line you can use --bug-hunting. In the GUI go to the project
dialog. In the Analysis tab there is a check box for Bug hunting.

Contracts

To handle false alarms and improve the analysis you are encouraged to use
contracts.

To provide contracts, you can either annotate your code or configure the contracts
in the GUL

There exists various annotations for C and C++ code. gcc has attributes, there
are SAL annotations, and then there are standard C++ annotations. It is our
goal to handle various types of annotations, if you can reuse those annotations
in Cppcheck analysis that will be an extra benefit.

31



Function contracts
Here is an example code:

int foo(int x)
{
return 100 / x;

3

The bug hunting analysis will warn about a division by zero. Right now, it
can’t be proven that x can’t be 0 here. A function contract can be used to tell
Cppcheck what input “foo(x)” expects.

Annotation
You can use “C++ function contracts” syntax both in C and C++.

For C++ code you can write:

int foo(int x)
[[expects: x > 0]]

{
return 100 / x; // No division by zero
}
void bar()
{
foo(-10); // Warning: Contract is violated!
}

For C code you can write (works in C++ too):

#ifdef __cppcheck__
#define Expects(EXPR) [[expects: EXPR]]
#else

#define Expects(EXPR)

#endif

int foo(int x)
Expects(x > 0)

{
return 100 / x;
}
void bar()
{
foo(-10); // Warning: Contract is violated!
}

32



Configuration in gui
You can configure contracts in the GUI.
Example code:

int foo(int x)

{
return 100 / x;

3

If you run bug hunting analysis on this code, then because Cppcheck can’t prove
that x can’t be 0, you will get a warning about division by zero.

Either:

o Right click on that warning and select “Edit contract..”.
o Open the “Functions” tab at the bottom and lookup the “foo(x)” function.
Then double click on that.

A dialog box is shown where you can configure the contract for function “foo(x)”.
A textbox allows you to edit the “Expects” expression.

Enter the expression “x > 0” in the dialog box and click OK.

Now if you run analysis the division by zero warning will be gone. As for
annotations, if the contract is violated somewhere then you will get a warning.

Variable contracts
Here is an example code:

int x;

int foo()
{

return 100 / x;
}

The bug hunting analysis will warn about a division by zero. It can’t be proven
that x can’t be 0.

A variable contract specify the allowed values for a variable. Cppcheck use
variable contracts both when a variable is read and written: - When a variable
is read, Cppcheck will assume that the contract is met. This means you can
avoid false positives for impossible variable values. - When a variable is written,
Cppcheck will ensure that its contract is not violated. If it can’t be determined
that the contract is met you will get a warning.

33



Annotation

You can use Cppcheck attributes __cppcheck_low__(value) and __cppcheck_high__(value)
to configure min and max values for variables and types.

Example code:
__cppcheck_low__(1) int x;
int foo()

{

return 100 / x; // No division by zero

}

Tip: You can create an integer type with a limited value range. For instance
here is an unsigned integer type that can only have the values 0-100:

typedef __cppcheck_high_ _(100) unsigned int percent_t;
percent_t x;
x = 110; // <- Cppcheck will warn about this assignment

GUI

To configure variable contracts in the GUI, open the “Variables” tab at the
bottom.

Lookup the variable you want to configure and double click on that.

A dialog box is shown for the variable, where you can configure the min and
max values.

Incomplete analysis

The data flow analysis can analyze simple functions completely but complex
functions are not analyzed completely (yet). The data flow analysis will be
continuously improved in the future but it will never be perfect.

It is likely that you will get false alarms caused by incomplete data flow analysis.
Unfortunately it is unlikely that such false alarms can be fixed by contracts.

34



	Introduction
	About static analysis

	Getting started
	GUI
	Command line
	First test
	Checking all files in a folder
	Check files manually or use project file
	Check files matching a given file filter
	Excluding a file or folder from checking
	Clang parser (experimental)

	Severities
	Possible speedup analysis of template code

	Cppcheck build folder
	Importing a project
	Cppcheck GUI project
	CMake
	Visual Studio
	C++ Builder 6
	Other

	Preprocessor Settings
	Automatic configuration of preprocessor defines
	Include paths

	Platform
	C/C++ Standard
	Cppcheck build dir
	Suppressions
	Plain text suppressions
	Command line suppression
	Suppressions in a file
	XML suppressions
	Inline suppressions
	Format
	Comment before code or on same line
	Multiple suppressions
	Symbol name
	Comment about suppression


	XML output
	The <error> element
	The <location> element

	Reformatting the text output
	Predefined output formats
	User defined output format (single line)
	User defined output format (multi line)
	Format specifiers for –template
	Format specifiers for –template-location


	Addons
	Supported addons
	cert.py
	misra.py
	y2038.py
	threadsafety.py

	Running Addons

	Library configuration
	Using your own custom .cfg file

	HTML Report
	Bug hunting
	Activate this analysis
	Contracts
	Function contracts
	Variable contracts

	Incomplete analysis


