Solidity Documentation
Release 0.7.5

Ethereum

Nov 06, 2020

Basics

1 Getting Started
2 Translations

3 Contents

3.1 Introduction to Smart Contracts
3.2 Installing the Solidity Compiler
3.3 Solidityby Example
3.4 Layoutof a Solidity Source File
3.5 StructureofaContract
3.6 Types e e e

3.7 Units and Globally Available Variables

3.8 Expressions and Control Structures
39 Contracts o .o u e e e e e e e
3.10 Imline Assembly
3.11 Cheatsheet
3.12 Layout of State Variables in Storage
3.13 LayoutinMemory
3.14 LayoutofCallData
3.15 Cleaning Up Variables
3.16 Source Mappingso
3.17 The Optimiser vttt
3.18 Contract Metadata,
3.19 Contract ABI Specification.
3.20 Solidity v0.5.0 Breaking Changes
3.21 Solidity v0.6.0 Breaking Changes
3.22 Solidity v0.7.0 Breaking Changes
3.23 NatSpec Format,
3.24 Security Considerations
325 RESOUICES . . v v v v v vt e e e e e e e e e e e e
326 Usingthecompiler
327 Yul ..o
328 StyleGuide L
3.29 Common Patterns
330 Listof KnownBugs
331 Contributing o e e e
3.32 Solidity Brand Guide 0.

.................. 140

Index 267

Solidity Documentation, Release 0.7.5

Solidity is an object-oriented, high-level language for implementing smart contracts. Smart contracts are programs
which govern the behaviour of accounts within the Ethereum state.

Solidity was influenced by C++, Python and JavaScript and is designed to target the Ethereum Virtual Machine (EVM).
Solidity is statically typed, supports inheritance, libraries and complex user-defined types among other features.

With Solidity you can create contracts for uses such as voting, crowdfunding, blind auctions, and multi-signature
wallets.

When deploying contracts, you should use the latest released version of Solidity. This is because breaking changes as
well as new features and bug fixes are introduced regularly. We currently use a 0.x version number to indicate this fast
pace of change.

Warning: Solidity recently released the 0.7.x version that introduced a lot of breaking changes. Make sure you
read the full list.

Ideas for improving Solidity or this documentation are always welcome, read our contributors guide for more details.

Basics 1

https://semver.org/#spec-item-4
https://semver.org/#spec-item-4

Solidity Documentation, Release 0.7.5

2 Basics

CHAPTER 1

Getting Started

1. Understand the Smart Contract Basics

If you are new to the concept of smart contracts we recommend you to get started by digging into the “Introduction to
Smart Contracts” section, which covers: * A simple example smart contract written in Solidity. * Blockchain Basics.
* The Ethereum Virtual Machine.

2. Get to Know Solidity

Once you are accustomed to the basics, we recommend you read the “Solidity by Example” and “Language Descrip-
tion” sections to understand the core concepts of the language.

3. Install the Solidity Compiler

There are various ways to install the Solidity compiler, simply choose your preferred option and follow the steps
outlined on the installation page.

Hint: You can try out code examples directly in your browser with the Remix IDE. Remix is a web browser based IDE
that allows you to write, deploy and administer Solidity smart contracts, without the need to install Solidity locally.

Warning: As humans write software, it can have bugs. You should follow established software development best-
practices when writing your smart contracts. This includes code review, testing, audits, and correctness proofs.
Smart contract users are sometimes more confident with code than their authors, and blockchains and smart con-
tracts have their own unique issues to watch out for, so before working on production code, make sure you read
the Security Considerations section.

4. Learn More

If you want to learn more about building decentralized applications on Ethereum, the Ethereum Developer Resources
can help you with further general documentation around Ethereum, and a wide selection of tutorials, tools and devel-
opment frameworks.

If you have any questions, you can try searching for answers or asking on the Ethereum StackExchange, or our Gitter
channel.

https://remix.ethereum.org
https://ethereum.org/en/developers/
https://ethereum.stackexchange.com/
https://gitter.im/ethereum/solidity/
https://gitter.im/ethereum/solidity/

Solidity Documentation, Release 0.7.5

4 Chapter 1. Getting Started

CHAPTER 2

Translations

Community volunteers help translate this documentation into several languages. They have varying degrees of com-
pleteness and up-to-dateness. The English version stands as a reference.

* French (in progress)
* Italian (in progress)
* Japanese

» Korean (in progress)

* Russian (rather outdated)

Simplified Chinese (in progress)
* Spanish
e Turkish (partial)

https://solidity-fr.readthedocs.io
https://github.com/damianoazzolini/solidity
https://solidity-jp.readthedocs.io
https://solidity-kr.readthedocs.io
https://github.com/ethereum/wiki/wiki/%5BRussian%5D-%D0%A0%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-%D0%BF%D0%BE-Solidity
https://learnblockchain.cn/docs/solidity/
https://solidity-es.readthedocs.io
https://github.com/denizozzgur/Solidity_TR/blob/master/README.md

Solidity Documentation, Release 0.7.5

6 Chapter 2. Translations

CHAPTER 3

Contents

Keyword Index, Search Page

3.1 Introduction to Smart Contracts

3.1.1 A Simple Smart Contract

Let us begin with a basic example that sets the value of a variable and exposes it for other contracts to access. It is fine
if you do not understand everything right now, we will go into more detail later.

Storage Example

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract SimpleStorage {
uint storedData;

function set (uint x) public {
storedData = x;

}

function get () public view returns (uint) ({
return storedData;

}

The first line tells you that the source code is licensed under the GPL version 3.0. Machine-readable license specifiers
are important in a setting where publishing the source code is the default.

The next line specifies that the source code is written for Solidity version 0.4.16, or a newer version of the language up
to, but not including version 0.8.0. This is to ensure that the contract is not compilable with a new (breaking) compiler

Solidity Documentation, Release 0.7.5

version, where it could behave differently. Pragmas are common instructions for compilers about how to treat the
source code (e.g. pragma once).

A contract in the sense of Solidity is a collection of code (its functions) and data (its state) that resides at a specific
address on the Ethereum blockchain. The line uint storedData; declares a state variable called storedData
of type uint (unsigned integer of 256 bits). You can think of it as a single slot in a database that you can query and
alter by calling functions of the code that manages the database. In this example, the contract defines the functions
set and get that can be used to modify or retrieve the value of the variable.

To access a state variable, you do not need the prefix this. asis common in other languages.

This contract does not do much yet apart from (due to the infrastructure built by Ethereum) allowing anyone to store
a single number that is accessible by anyone in the world without a (feasible) way to prevent you from publishing this
number. Anyone could call set again with a different value and overwrite your number, but the number is still stored
in the history of the blockchain. Later, you will see how you can impose access restrictions so that only you can alter
the number.

Warning: Be careful with using Unicode text, as similar looking (or even identical) characters can have different
code points and as such are encoded as a different byte array.

Note: All identifiers (contract names, function names and variable names) are restricted to the ASCII character set.
It is possible to store UTF-8 encoded data in string variables.

Subcurrency Example

The following contract implements the simplest form of a cryptocurrency. The contract allows only its creator to
create new coins (different issuance schemes are possible). Anyone can send coins to each other without a need for
registering with a username and password, all you need is an Ethereum keypair.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >0.5.99 <0.8.0;

contract Coin {
// The keyword "public" makes variables
// accessible from other contracts
address public minter;
mapping (address => uint) public balances;

// Events allow clients to react to specific
// contract changes you declare
event Sent (address from, address to, uint amount);

// Constructor code 1is only run when the contract
// 1s created
constructor () {

minter = msg.sender;

// Sends an amount of newly created coins to an address
// Can only be called by the contract creator
function mint (address receiver, uint amount) public {
require (msg.sender == minter);
require (amount < 1e60);

(continues on next page)

8 Chapter 3. Contents

https://en.wikipedia.org/wiki/Pragma_once

Solidity Documentation, Release 0.7.5

(continued from previous page)

balances[receiver] += amount;

// Sends an amount of existing coins
// from any caller to an address
function send(address receiver, uint amount) public {
require (amount <= balances[msg.sender], "Insufficient balance.");
balances[msg.sender] —= amount;
balances[receiver] += amount;
emit Sent (msg.sender, receiver, amount);

This contract introduces some new concepts, let us go through them one by one.

The line address public minter; declares a state variable of type address. The address type is a 160-bit
value that does not allow any arithmetic operations. It is suitable for storing addresses of contracts, or a hash of the
public half of a keypair belonging to external accounts.

The keyword public automatically generates a function that allows you to access the current value of the state
variable from outside of the contract. Without this keyword, other contracts have no way to access the variable. The
code of the function generated by the compiler is equivalent to the following (ignore external and view for now):

function minter () external view returns (address) { return minter; }

You could add a function like the above yourself, but you would have a function and state variable with the same name.
You do not need to do this, the compiler figures it out for you.

The next line, mapping (address => uint) public balances; also creates a public state variable, but
it is a more complex datatype. The mapping type maps addresses to unsigned integers.

Mappings can be seen as hash tables which are virtually initialised such that every possible key exists from the start
and is mapped to a value whose byte-representation is all zeros. However, it is neither possible to obtain a list of all
keys of a mapping, nor a list of all values. Record what you added to the mapping, or use it in a context where this is
not needed. Or even better, keep a list, or use a more suitable data type.

The getter function created by the public keyword is more complex in the case of a mapping. It looks like the
following:

function balances (address _account) external view returns (uint) {
return balances|[_account];

You can use this function to query the balance of a single account.

“«

The line event Sent (address from, address to, uint amount); declares an “event”, which is
emitted in the last line of the function send. Ethereum clients such as web applications can listen for these events
emitted on the blockchain without much cost. As soon as it is emitted, the listener receives the arguments from, to
and amount, which makes it possible to track transactions.

To listen for this event, you could use the following JavaScript code, which uses web3.js to create the Coin contract
object, and any user interface calls the automatically generated balances function from above:

Coin.Sent () .watch({}, '', function (error, result) {
if (l!error) {
console.log("Coin transfer: " + result.args.amount +
" coins were sent from " + result.args.from +
" to " + result.args.to + ".");

(continues on next page)

3.1. Introduction to Smart Contracts 9

https://en.wikipedia.org/wiki/Hash_table
https://github.com/ethereum/web3.js/

Solidity Documentation, Release 0.7.5

(continued from previous page)

console.log("Balances now:\n" +
"Sender: " + Coin.balances.call (result.args.from) +
"Receiver: " + Coin.balances.call (result.args.to));

})

The constructor is a special function that is executed during the creation of the contract and cannot be called afterwards.
In this case, it permanently stores the address of the person creating the contract. The msg variable (together with t x
and block) is a special global variable that contains properties which allow access to the blockchain. msg. sender
is always the address where the current (external) function call came from.

The functions that make up the contract, and that users and contracts can call are mint and send.

The mint function sends an amount of newly created coins to another address. The require function call defines
conditions that reverts all changes if not met. In this example, require (msg.sender == minter); ensures
that only the creator of the contract can callmint, and require (amount < 1e60); ensures a maximum amount
of tokens. This ensures that there are no overflow errors in the future.

The send function can be used by anyone (who already has some of these coins) to send coins to anyone else. If the
sender does not have enough coins to send, the require call fails and provides the sender with an appropriate error
message string.

Note: If you use this contract to send coins to an address, you will not see anything when you look at that address on a
blockchain explorer, because the record that you sent coins and the changed balances are only stored in the data storage
of this particular coin contract. By using events, you can create a “blockchain explorer” that tracks transactions and
balances of your new coin, but you have to inspect the coin contract address and not the addresses of the coin owners.

3.1.2 Blockchain Basics

Blockchains as a concept are not too hard to understand for programmers. The reason is that most of the complications
(mining, hashing, elliptic-curve cryptography, peer-to-peer networks, etc.) are just there to provide a certain set of
features and promises for the platform. Once you accept these features as given, you do not have to worry about the
underlying technology - or do you have to know how Amazon’s AWS works internally in order to use it?

Transactions

A blockchain is a globally shared, transactional database. This means that everyone can read entries in the database
just by participating in the network. If you want to change something in the database, you have to create a so-called
transaction which has to be accepted by all others. The word transaction implies that the change you want to make
(assume you want to change two values at the same time) is either not done at all or completely applied. Furthermore,
while your transaction is being applied to the database, no other transaction can alter it.

As an example, imagine a table that lists the balances of all accounts in an electronic currency. If a transfer from one
account to another is requested, the transactional nature of the database ensures that if the amount is subtracted from
one account, it is always added to the other account. If due to whatever reason, adding the amount to the target account
is not possible, the source account is also not modified.

Furthermore, a transaction is always cryptographically signed by the sender (creator). This makes it straightforward
to guard access to specific modifications of the database. In the example of the electronic currency, a simple check
ensures that only the person holding the keys to the account can transfer money from it.

10 Chapter 3. Contents

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Peer-to-peer

Solidity Documentation, Release 0.7.5

Blocks

One major obstacle to overcome is what (in Bitcoin terms) is called a “double-spend attack™: What happens if two
transactions exist in the network that both want to empty an account? Only one of the transactions can be valid,
typically the one that is accepted first. The problem is that “first” is not an objective term in a peer-to-peer network.

The abstract answer to this is that you do not have to care. A globally accepted order of the transactions will be
selected for you, solving the conflict. The transactions will be bundled into what is called a “block” and then they will
be executed and distributed among all participating nodes. If two transactions contradict each other, the one that ends
up being second will be rejected and not become part of the block.

These blocks form a linear sequence in time and that is where the word “blockchain” derives from. Blocks are added
to the chain in rather regular intervals - for Ethereum this is roughly every 17 seconds.

As part of the “order selection mechanism” (which is called “mining”) it may happen that blocks are reverted from
time to time, but only at the “tip” of the chain. The more blocks are added on top of a particular block, the less likely
this block will be reverted. So it might be that your transactions are reverted and even removed from the blockchain,
but the longer you wait, the less likely it will be.

Note: Transactions are not guaranteed to be included in the next block or any specific future block, since it is not up
to the submitter of a transaction, but up to the miners to determine in which block the transaction is included.

If you want to schedule future calls of your contract, you can use the alarm clock or a similar oracle service.

3.1.3 The Ethereum Virtual Machine

Overview

The Ethereum Virtual Machine or EVM is the runtime environment for smart contracts in Ethereum. It is not only
sandboxed but actually completely isolated, which means that code running inside the EVM has no access to network,
filesystem or other processes. Smart contracts even have limited access to other smart contracts.

Accounts

There are two kinds of accounts in Ethereum which share the same address space: External accounts that are con-
trolled by public-private key pairs (i.e. humans) and contract accounts which are controlled by the code stored
together with the account.

The address of an external account is determined from the public key while the address of a contract is determined at
the time the contract is created (it is derived from the creator address and the number of transactions sent from that
address, the so-called “nonce”).

Regardless of whether or not the account stores code, the two types are treated equally by the EVM.
Every account has a persistent key-value store mapping 256-bit words to 256-bit words called storage.

Furthermore, every account has a balance in Ether (in “Wei” to be exact, 1 etheris 10x%18 wei) which can be
modified by sending transactions that include Ether.

Transactions

A transaction is a message that is sent from one account to another account (which might be the same or empty, see
below). It can include binary data (which is called “payload”) and Ether.

3.1. Introduction to Smart Contracts 11

https://www.ethereum-alarm-clock.com/

Solidity Documentation, Release 0.7.5

If the target account contains code, that code is executed and the payload is provided as input data.

If the target account is not set (the transaction does not have a recipient or the recipient is set to nul1l), the transaction
creates a new contract. As already mentioned, the address of that contract is not the zero address but an address
derived from the sender and its number of transactions sent (the “nonce”). The payload of such a contract creation
transaction is taken to be EVM bytecode and executed. The output data of this execution is permanently stored as the
code of the contract. This means that in order to create a contract, you do not send the actual code of the contract, but
in fact code that returns that code when executed.

Note: While a contract is being created, its code is still empty. Because of that, you should not call back into the
contract under construction until its constructor has finished executing.

Gas

Upon creation, each transaction is charged with a certain amount of gas, whose purpose is to limit the amount of work
that is needed to execute the transaction and to pay for this execution at the same time. While the EVM executes the
transaction, the gas is gradually depleted according to specific rules.

The gas price is a value set by the creator of the transaction, who has to pay gas_price gas up front from the
sending account. If some gas is left after the execution, it is refunded to the creator in the same way.

If the gas is used up at any point (i.e. it would be negative), an out-of-gas exception is triggered, which reverts all
modifications made to the state in the current call frame.

Storage, Memory and the Stack

The Ethereum Virtual Machine has three areas where it can store data- storage, memory and the stack, which are
explained in the following paragraphs.

Each account has a data area called storage, which is persistent between function calls and transactions. Storage
is a key-value store that maps 256-bit words to 256-bit words. It is not possible to enumerate storage from within
a contract, it is comparatively costly to read, and even more to initialise and modify storage. Because of this cost,
you should minimize what you store in persistent storage to what the contract needs to run. Store data like derived
calculations, caching, and aggregates outside of the contract. A contract can neither read nor write to any storage apart
from its own.

The second data area is called memory, of which a contract obtains a freshly cleared instance for each message call.
Memory is linear and can be addressed at byte level, but reads are limited to a width of 256 bits, while writes can be
either 8 bits or 256 bits wide. Memory is expanded by a word (256-bit), when accessing (either reading or writing) a
previously untouched memory word (i.e. any offset within a word). At the time of expansion, the cost in gas must be
paid. Memory is more costly the larger it grows (it scales quadratically).

The EVM is not a register machine but a stack machine, so all computations are performed on a data area called the
stack. It has a maximum size of 1024 elements and contains words of 256 bits. Access to the stack is limited to the
top end in the following way: It is possible to copy one of the topmost 16 elements to the top of the stack or swap the
topmost element with one of the 16 elements below it. All other operations take the topmost two (or one, or more,
depending on the operation) elements from the stack and push the result onto the stack. Of course it is possible to
move stack elements to storage or memory in order to get deeper access to the stack, but it is not possible to just access
arbitrary elements deeper in the stack without first removing the top of the stack.

12 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Instruction Set

The instruction set of the EVM is kept minimal in order to avoid incorrect or inconsistent implementations which
could cause consensus problems. All instructions operate on the basic data type, 256-bit words or on slices of memory
(or other byte arrays). The usual arithmetic, bit, logical and comparison operations are present. Conditional and
unconditional jumps are possible. Furthermore, contracts can access relevant properties of the current block like its
number and timestamp.

For a complete list, please see the /ist of opcodes as part of the inline assembly documentation.

Message Calls

Contracts can call other contracts or send Ether to non-contract accounts by the means of message calls. Message calls
are similar to transactions, in that they have a source, a target, data payload, Ether, gas and return data. In fact, every
transaction consists of a top-level message call which in turn can create further message calls.

A contract can decide how much of its remaining gas should be sent with the inner message call and how much it
wants to retain. If an out-of-gas exception happens in the inner call (or any other exception), this will be signaled by
an error value put onto the stack. In this case, only the gas sent together with the call is used up. In Solidity, the calling
contract causes a manual exception by default in such situations, so that exceptions “bubble up” the call stack.

As already said, the called contract (which can be the same as the caller) will receive a freshly cleared instance of
memory and has access to the call payload - which will be provided in a separate area called the calldata. After it
has finished execution, it can return data which will be stored at a location in the caller’s memory preallocated by the
caller. All such calls are fully synchronous.

Calls are limited to a depth of 1024, which means that for more complex operations, loops should be preferred over
recursive calls. Furthermore, only 63/64th of the gas can be forwarded in a message call, which causes a depth limit
of a little less than 1000 in practice.

Delegatecall / Callcode and Libraries

There exists a special variant of a message call, named delegatecall which is identical to a message call apart from
the fact that the code at the target address is executed in the context of the calling contract and msg. sender and
msg.value do not change their values.

This means that a contract can dynamically load code from a different address at runtime. Storage, current address
and balance still refer to the calling contract, only the code is taken from the called address.

This makes it possible to implement the “library” feature in Solidity: Reusable library code that can be applied to a
contract’s storage, e.g. in order to implement a complex data structure.

Logs

It is possible to store data in a specially indexed data structure that maps all the way up to the block level. This feature
called logs is used by Solidity in order to implement events. Contracts cannot access log data after it has been created,
but they can be efficiently accessed from outside the blockchain. Since some part of the log data is stored in bloom
filters, it is possible to search for this data in an efficient and cryptographically secure way, so network peers that do
not download the whole blockchain (so-called “light clients”) can still find these logs.

Create

Contracts can even create other contracts using a special opcode (i.e. they do not simply call the zero address as a
transaction would). The only difference between these create calls and normal message calls is that the payload data

3.1. Introduction to Smart Contracts 13

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter

Solidity Documentation, Release 0.7.5

is executed and the result stored as code and the caller / creator receives the address of the new contract on the stack.

Deactivate and Self-destruct

The only way to remove code from the blockchain is when a contract at that address performs the selfdestruct
operation. The remaining Ether stored at that address is sent to a designated target and then the storage and code is
removed from the state. Removing the contract in theory sounds like a good idea, but it is potentially dangerous, as if
someone sends Ether to removed contracts, the Ether is forever lost.

Warning: Even if a contract is removed by selfdestruct, it is still part of the history of the blockchain and
probably retained by most Ethereum nodes. So using selfdestruct is not the same as deleting data from a
hard disk.

Note: Even if a contract’s code does not contain a call to selfdestruct, it can still perform that operation using
delegatecall orcallcode.

If you want to deactivate your contracts, you should instead disable them by changing some internal state which causes
all functions to revert. This makes it impossible to use the contract, as it returns Ether immediately.

3.2 Installing the Solidity Compiler

3.2.1 Versioning

Solidity versions follow semantic versioning and in addition to releases, nightly development builds are also made
available. The nightly builds are not guaranteed to be working and despite best efforts they might contain undocu-
mented and/or broken changes. We recommend using the latest release. Package installers below will use the latest
release.

3.2.2 Remix

We recommend Remix for small contracts and for quickly learning Solidity.

Access Remix online, you do not need to install anything. If you want to use it without connection to the Internet, go to
https://github.com/ethereum/remix-live/tree/gh-pages and download the . zip file as explained on that page. Remix
is also a convenient option for testing nightly builds without installing multiple Solidity versions.

Further options on this page detail installing commandline Solidity compiler software on your computer. Choose a
commandline compiler if you are working on a larger contract or if you require more compilation options.

3.2.3 npm / Node.js

Use npm for a convenient and portable way to install solcjs, a Solidity compiler. The solcjs program has fewer
features than the ways to access the compiler described further down this page. The Using the Commandline Compiler
documentation assumes you are using the full-featured compiler, solc. The usage of solcjs is documented inside
its own repository.

Note: The solc-js project is derived from the C++ solc by using Emscripten which means that both use the same
compiler source code. solc-js can be used in JavaScript projects directly (such as Remix). Please refer to the solc-js
repository for instructions.

14 Chapter 3. Contents

https://semver.org
https://remix.ethereum.org/
https://github.com/ethereum/remix-live/tree/gh-pages
https://github.com/ethereum/solc-js

Solidity Documentation, Release 0.7.5

npm install -g solc

Note: The commandline executable is named solcjs.

The commandline options of so1lcjs are not compatible with so1c and tools (such as get h) expecting the behaviour
of solc will not work with solcijs.

3.2.4 Docker

Docker images of Solidity builds are available using the solc image from the ethereum organisation. Use the
stable tag for the latest released version, and night 1y for potentially unstable changes in the develop branch.

The Docker image runs the compiler executable, so you can pass all compiler arguments to it. For example, the
command below pulls the stable version of the solc image (if you do not have it already), and runs it in a new
container, passing the ——he 1p argument.

’docker run ethereum/solc:stable --help

You can also specify release build versions in the tag, for example, for the 0.5.4 release.

’docker run ethereum/solc:0.5.4 —--help

To use the Docker image to compile Solidity files on the host machine mount a local folder for input and output, and
specify the contract to compile. For example.

docker run -v /local/path:/sources ethereum/solc:stable -o /sources/output --abi —--
—bin /sources/Contract.sol

You can also use the standard JSON interface (which is recommended when using the compiler with tooling). When
using this interface it is not necessary to mount any directories.

docker run ethereum/solc:stable --standard-json < input.json > output.json

3.2.5 Binary Packages

Binary packages of Solidity are available at solidity/releases.

We also have PPAs for Ubuntu, you can get the latest stable version using the following commands:

sudo add-apt-repository ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install solc

The nightly version can be installed using these commands:

sudo add-apt-repository ppa:ethereum/ethereum
sudo add-apt-repository ppa:ethereum/ethereum-dev
sudo apt-get update

sudo apt-get install solc

We are also releasing a snap package, which is installable in all the supported Linux distros. To install the latest stable
version of solc:

3.2. Installing the Solidity Compiler 15

https://github.com/ethereum/solidity/releases
https://snapcraft.io/
https://snapcraft.io/docs/core/install

Solidity Documentation, Release 0.7.5

sudo snap install solc

If you want to help testing the latest development version of Solidity with the most recent changes, please use the
following:

’sudo snap install solc —--edge

Note: The solc snap uses strict confinement. This is the most secure mode for snap packages but it comes with
limitations, like accessing only the files in your /home and /media directories. For more information, go to Demys-
tifying Snap Confinement.

Arch Linux also has packages, albeit limited to the latest development version:

pacman -S solidity

We distribute the Solidity compiler through Homebrew as a build-from-source version. Pre-built bottles are currently
not supported.

brew update

brew upgrade

brew tap ethereum/ethereum
brew install solidity

To install the most recent 0.4.x / 0.5.x version of Solidity you can also use brew install solidity@4 and
brew install solidity@5, respectively.

If you need a specific version of Solidity you can install a Homebrew formula directly from Github.
View solidity.rb commits on Github.

Copy the commit hash of the version you want and check it out on your machine.

git clone https://github.com/ethereum/homebrew-ethereum.git
cd homebrew—-ethereum
git checkout <your-hash-goes-here>

Install it using brew:

brew unlink solidity
eg. Install 0.4.8
brew install solidity.rb

Gentoo Linux has an Ethereum overlay that contains a solidity package. After the overlay is setup, solc can be
installed in x86_64 architectures by:

emerge dev-lang/solidity

3.2.6 Building from Source

Prerequisites - All Operating Systems

The following are dependencies for all builds of Solidity:

16 Chapter 3. Contents

https://snapcraft.io/blog/demystifying-snap-confinement
https://snapcraft.io/blog/demystifying-snap-confinement
https://github.com/ethereum/homebrew-ethereum/commits/master/solidity.rb
https://overlays.gentoo.org/#ethereum

Solidity Documentation, Release 0.7.5

Software Notes

CMake (version 3.9+) Cross-platform build file generator.

Boost (version 1.65+) C++ libraries.

Git Command-line tool for retrieving source code.
73 (version 4.6+, Optional) | For use with SMT checker.

cvc4 (Optional) For use with SMT checker.

Note: Solidity versions prior to 0.5.10 can fail to correctly link against Boost versions 1.70+. A possible workaround
is to temporarily rename <Boost install path>/lib/cmake/Boost-1.70.0 prior to running the cmake
command to configure solidity.

Starting from 0.5.10 linking against Boost 1.70+ should work without manual intervention.

Minimum compiler versions

The following C++ compilers and their minimum versions can build the Solidity codebase:
e GCC, version 5+
* Clang, version 3.4+

e MSVC, version 2019+

Prerequisites - macOS

For macOS builds, ensure that you have the latest version of Xcode installed. This contains the Clang C++ compiler,
the Xcode IDE and other Apple development tools that are required for building C++ applications on OS X. If you are
installing Xcode for the first time, or have just installed a new version then you will need to agree to the license before
you can do command-line builds:

sudo xcodebuild -license accept

Our OS X build script uses the Homebrew package manager for installing external dependencies. Here’s how to
uninstall Homebrew, if you ever want to start again from scratch.

Prerequisites - Windows

You need to install the following dependencies for Windows builds of Solidity:

Software Notes
Visual Studio 2019 Build Tools | C++ compiler
Visual Studio 2019 (Optional) C++ compiler and dev environment.

If you already have one IDE and only need the compiler and libraries, you could install Visual Studio 2019 Build
Tools.

Visual Studio 2019 provides both IDE and necessary compiler and libraries. So if you have not got an IDE and prefer
to develop solidity, Visual Studio 2019 may be a choice for you to get everything setup easily.

Here is the list of components that should be installed in Visual Studio 2019 Build Tools or Visual Studio 2019:

¢ Visual Studio C++ core features

3.2. Installing the Solidity Compiler 17

https://cmake.org/download/
https://www.boost.org
https://git-scm.com/download
https://github.com/Z3Prover/z3
https://cvc4.cs.stanford.edu/web/
https://gcc.gnu.org
https://clang.llvm.org/
https://visualstudio.microsoft.com/vs/
https://developer.apple.com/xcode/download/
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/Xcode
https://brew.sh
https://docs.brew.sh/FAQ#how-do-i-uninstall-homebrew
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2019
https://www.visualstudio.com/vs/

Solidity Documentation, Release 0.7.5

VC++ 2019 v141 toolset (x86,x64)
* Windows Universal CRT SDK

* Windows 8.1 SDK

e C++/CLI support

Dependencies Helper Script

We have a helper script which you can use to install all required external dependencies on macOS, Windows and on
numerous Linux distros.

’./scripts/install_deps.sh

Or, on Windows:

scripts\install_deps.psl

Note that the latter command will install boost and cmake to the deps subdirectory, while the former command
will attempt to install the dependencies globally.

Clone the Repository

To clone the source code, execute the following command:

git clone --recursive https://github.com/ethereum/solidity.git
cd solidity

If you want to help developing Solidity, you should fork Solidity and add your personal fork as a second remote:

git remote add personal git@github.com: [username]/solidity.git

Note: This method will result in a prerelease build leading to e.g. a flag being set in each bytecode produced by such
a compiler. If you want to re-build a released Solidity compiler, then please use the source tarball on the github release

page:
https://github.com/ethereum/solidity/releases/download/v0.X.Y/solidity_0.X.Y.tar.gz
(not the “Source code” provided by github).

Command-Line Build

Be sure to install External Dependencies (see above) before build.

Solidity project uses CMake to configure the build. You might want to install ccache to speed up repeated builds.
CMake will pick it up automatically. Building Solidity is quite similar on Linux, macOS and other Unices:

mkdir build
cd build
cmake .. && make

or even easier on Linux and macOS, you can run:

18 Chapter 3. Contents

https://github.com/ethereum/solidity/releases/download/v0.X.Y/solidity_0.X.Y.tar.gz

Solidity Documentation, Release 0.7.5

#note: this will install binaries solc and soltest at usr/local/bin
./scripts/build.sh

Warning: BSD builds should work, but are untested by the Solidity team.

And for Windows:

mkdir build
cd build
cmake -G "Visual Studio 16 2019 Wine4"

In case you want to use the version of boost installed by ./scripts/install_deps.psl, you
will additionally need to pass -DBoost_DIR="..\deps\boost\lib\cmake\Boost-*" and
-DCMAKE_MSVC_RUNTIME_LIBRARY=MultiThreaded as arguments to the call to cmake.

This should result in the creation of solidity.sln in that build directory. Double-clicking on that file should result in
Visual Studio firing up. We suggest building Release configuration, but all others work.

Alternatively, you can build for Windows on the command-line, like so:

cmake --build . --config Release

3.2.7 CMake options

If you are interested what CMake options are available run cmake .. -LH.

SMT Solvers

Solidity can be built against SMT solvers and will do so by default if they are found in the system. Each solver can be
disabled by a cmake option.

Note: In some cases, this can also be a potential workaround for build failures.

Inside the build folder you can disable them, since they are enabled by default:

disables only Z3 SMT Solver.
cmake .. —-DUSE_Z3=0FF

disables only CVC4 SMT Solver.
cmake .. —-DUSE_CVC4=0FF

disables both Z3 and CVC4
cmake .. —-DUSE_CVC4=0FF -DUSE_Z3=0FF

3.2.8 The version string in detail

The Solidity version string contains four parts:
* the version number
* pre-release tag, usually set to develop.YYYY.MM.DD or nightly.YYYY.MM.DD

e commit in the format of commit .GITHASH

3.2. Installing the Solidity Compiler 19

Solidity Documentation, Release 0.7.5

¢ platform, which has an arbitrary number of items, containing details about the platform and compiler
If there are local modifications, the commit will be postfixed with . mod.

These parts are combined as required by Semver, where the Solidity pre-release tag equals to the Semver pre-release
and the Solidity commit and platform combined make up the Semver build metadata.

A release example: 0.4 .8+commit.60ccl668.Emscripten.clang.

A pre-release example: 0.4.9-nightly.2017.1.17+commit.6ecb4aa3.Emscripten.clang

3.2.9 Important information about versioning

After a release is made, the patch version level is bumped, because we assume that only patch level changes follow.
When changes are merged, the version should be bumped according to semver and the severity of the change. Finally,
a release is always made with the version of the current nightly build, but without the prerelease specifier.

Example:
0. the 0.4.0 release is made
1. nightly build has a version of 0.4.1 from now on
2. non-breaking changes are introduced - no change in version
3. abreaking change is introduced - version is bumped to 0.5.0
4. the 0.5.0 release is made

This behaviour works well with the version pragma.

3.3 Solidity by Example

3.3.1 Voting

The following contract is quite complex, but showcases a lot of Solidity’s features. It implements a voting contract. Of
course, the main problems of electronic voting is how to assign voting rights to the correct persons and how to prevent
manipulation. We will not solve all problems here, but at least we will show how delegated voting can be done so that
vote counting is automatic and completely transparent at the same time.

The idea is to create one contract per ballot, providing a short name for each option. Then the creator of the contract
who serves as chairperson will give the right to vote to each address individually.

The persons behind the addresses can then choose to either vote themselves or to delegate their vote to a person they
trust.

At the end of the voting time, winningProposal () will return the proposal with the largest number of votes.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

/// @title Voting with delegation.
contract Ballot {
// This declares a new complex type which will
// be used for variables later.
// It will represent a single voter.
struct Voter {
uint weight; // weight is accumulated by delegation

(continues on next page)

20 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

bool voted; // if true, that person already voted
address delegate; // person delegated to
uint vote; // index of the voted proposal

// This is a type for a single proposal.

struct Proposal {
bytes32 name; // short name (up to 32 bytes)
uint voteCount; // number of accumulated votes

address public chairperson;

// This declares a state variable that
// stores a ‘Voter' struct for each possible address.
mapping (address => Voter) public voters;

// A dynamically-sized array of ‘Proposal' structs.
Proposal[] public proposals;

/// Create a new ballot to choose one of ‘proposalNames'.
constructor (bytes32[] memory proposalNames) {

chairperson = msg.sender;

voters[chairperson].weight = 1;

// For each of the provided proposal names,
// create a new proposal object and add it
// to the end of the array.
for (uint 1 = 0; i < proposalNames.length; i++) {
// ‘Proposal({...}) creates a temporary
// Proposal object and “proposals.push(...)"
// appends it to the end of ‘proposals’.
proposals.push (Proposal ({
name: proposalNames[i],
voteCount: 0
P

// Give ‘voter' the right to vote on this ballot.
// May only be called by ‘chairperson’.
function giveRightToVote (address voter) public ({
// If the first argument of ‘require’ evaluates
// to ‘false', execution terminates and all
// changes to the state and to Ether balances
// are reverted.
// This used to consume all gas in old EVM versions, but
// not anymore.
// It is often a good idea to use ‘require’' to check if
// functions are called correctly.
// As a second argument, you can also provide an
// explanation about what went wrong.
require (
msg.sender == chairperson,
"Only chairperson can give right to vote."
)i

require (

(continues on next page)

3.3. Solidity by Example 21

Solidity Documentation, Release 0.7.5

(continued from previous page)

!voters[voter] .voted,

"The voter already voted."
)i
require (voters[voter] .weight == 0);
voters[voter].weight = 1;

/// Delegate your vote to the voter ‘to’
function delegate (address to) public {
// assigns reference
Voter storage sender = voters[msg.sender];
require (!sender.voted, "You already voted.");

require(to != msg.sender, "Self-delegation is disallowed.");

// Forward the delegation as long as
// “to' also delegated.
// In general, such loops are very dangerous,
// because if they run too long, they might
// need more gas than is available in a block.
// In this case, the delegation will not be executed,
// but in other situations, such loops might
// cause a contract to get "stuck" completely.
while (voters[to].delegate != address(0)) {
to = voters[to].delegate;

// We found a loop in the delegation, not allowed.
require (to != msg.sender, "Found loop in delegation.");

// Since ‘sender' 1is a reference, this
// modifies ‘voters[msg.sender].voted"’
sender.voted = true;
sender.delegate = to;
Voter storage delegate_ = voters[to];
if (delegate_.voted) {
// If the delegate already voted,
// directly add to the number of votes
proposals|[delegate_.vote] .voteCount += sender.weight;
} else {
// If the delegate did not vote yet,
// add to her weight.
delegate_.weight += sender.weight;

/// Give your vote (including votes delegated to you)
/// to proposal ‘proposals/[proposal].name’.
function vote (uint proposal) public {
Voter storage sender = voters[msg.sender];
require (sender.weight != 0, "Has no right to vote");
require (!sender.voted, "Already voted.");
sender.voted = true;
sender.vote = proposal;

// If ‘proposal’ is out of the range of the array,
// this will throw automatically and revert all

(continues on next page)

22 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

// changes.
proposals|[proposal] .voteCount += sender.weight;

/// @dev Computes the winning proposal taking all
/// previous votes into account.
function winningProposal () public view

returns (uint winningProposal_)

uint winningVoteCount = 0;
for (uint p = 0; p < proposals.length; p++) {
if (proposals|[p].voteCount > winningVoteCount) {
winningVoteCount = proposals|[p].voteCount;
winningProposal_ = p;

// Calls winningProposal () function to get the index
// of the winner contained in the proposals array and then
// returns the name of the winner
function winnerName () public view
returns (bytes32 winnerName_)

winnerName_ = proposals|[winningProposal ()] .name;

Possible Improvements

Currently, many transactions are needed to assign the rights to vote to all participants. Can you think of a better way?

3.3.2 Blind Auction

In this section, we will show how easy it is to create a completely blind auction contract on Ethereum. We will start
with an open auction where everyone can see the bids that are made and then extend this contract into a blind auction
where it is not possible to see the actual bid until the bidding period ends.

Simple Open Auction

The general idea of the following simple auction contract is that everyone can send their bids during a bidding period.
The bids already include sending money / Ether in order to bind the bidders to their bid. If the highest bid is raised,
the previously highest bidder gets their money back. After the end of the bidding period, the contract has to be called
manually for the beneficiary to receive their money - contracts cannot activate themselves.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract SimpleAuction {
// Parameters of the auction. Times are either
// absolute unix timestamps (seconds since 1970-01-01)
// or time periods in seconds.

(continues on next page)

3.3. Solidity by Example 23

Solidity Documentation, Release 0.7.5

(continued from previous page)

address payable public beneficiary;
uint public auctionEndTime;

// Current state of the auction.
address public highestBidder;
uint public highestBid;

// Allowed withdrawals of previous bids
mapping (address => uint) pendingReturns;

// Set to true at the end, disallows any change.
// By default initialized to "false'.
bool ended;

// Events that will be emitted on changes.
event HighestBidIncreased(address bidder, uint amount);
event AuctionEnded (address winner, uint amount);

// The following is a so-called natspec comment,
// recognizable by the three slashes.

// It will be shown when the user is asked to
// confirm a transaction.

/// Create a simple auction with '_biddingTime"
/// seconds bidding time on behalf of the
/// beneficiary address '_beneficiary .
constructor (

uint _biddingTime,

address payable _beneficiary

beneficiary = _beneficiary;
auctionEndTime = block.timestamp + _biddingTime;

/// Bid on the auction with the value sent
/// together with this transaction.
/// The value will only be refunded if the
/// auction is not won.
function bid() public payable {
// No arguments are necessary, all
// information is already part of
// the transaction. The keyword payable
// 1is required for the function to
// be able to receive Ether.

// Revert the call if the bidding

// period is over.

require (
block.timestamp <= auctionEndTime,
"Auction already ended."

)i

// If the bid is not higher, send the
// money back (the failing require
// will revert all changes in this
// function execution including

// it having received the money).

(continues on next page)

24

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

require (

msg.value > highestBid,

"There already is a higher bid."
)i

if (highestBid != 0) {
// Sending back the money by simply using
// highestBidder.send (highestBid) is a security risk
// because it could execute an untrusted contract.
// It is always safer to let the recipients
// withdraw their money themselves.
pendingReturns [highestBidder] += highestBid;

}

highestBidder = msg.sender;

highestBid = msg.value;

emit HighestBidIncreased(msg.sender, msg.value);

/// Withdraw a bid that was overbid.
function withdraw () public returns (bool) {
uint amount = pendingReturns[msg.sender];
if (amount > 0) {
// It is important to set this to zero because the recipient
// can call this function again as part of the receiving call
// before ‘send’' returns.

pendingReturns[msg.sender] = 0;

if (!msg.sender.send(amount)) {
// No need to call throw here, just reset the amount owing
pendingReturns [msg.sender] = amount;

return false;

}

return true;

/// End the auction and send the highest bid

/// to the beneficiary.

function auctionEnd() public {
// It is a good guideline to structure functions that interact
// with other contracts (i.e. they call functions or send Ether)
// into three phases:
// 1. checking conditions
// 2. performing actions (potentially changing conditions)
// 3. interacting with other contracts
// If these phases are mixed up, the other contract could call
// back into the current contract and modify the state or cause
// effects (ether payout) to be performed multiple times.
// If functions called internally include interaction with external
// contracts, they also have to be considered interaction with
// external contracts.

// 1. Conditions
require (block.timestamp >= auctionEndTime, "Auction not yet ended.");

require (!ended, "auctionEnd has already been called.");

// 2. Effects

(continues on next page)

3.3. Solidity by Example 25

Solidity Documentation, Release 0.7.5

(continued from previous page)

ended = true;
emit AuctionEnded (highestBidder, highestBid);

// 3. Interaction
beneficiary.transfer (highestBid) ;

Blind Auction

The previous open auction is extended to a blind auction in the following. The advantage of a blind auction is that
there is no time pressure towards the end of the bidding period. Creating a blind auction on a transparent computing
platform might sound like a contradiction, but cryptography comes to the rescue.

During the bidding period, a bidder does not actually send their bid, but only a hashed version of it. Since it is
currently considered practically impossible to find two (sufficiently long) values whose hash values are equal, the
bidder commits to the bid by that. After the end of the bidding period, the bidders have to reveal their bids: They send
their values unencrypted and the contract checks that the hash value is the same as the one provided during the bidding
period.

Another challenge is how to make the auction binding and blind at the same time: The only way to prevent the bidder
from just not sending the money after they won the auction is to make them send it together with the bid. Since value
transfers cannot be blinded in Ethereum, anyone can see the value.

The following contract solves this problem by accepting any value that is larger than the highest bid. Since this can of
course only be checked during the reveal phase, some bids might be invalid, and this is on purpose (it even provides
an explicit flag to place invalid bids with high value transfers): Bidders can confuse competition by placing several
high or low invalid bids.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

contract BlindAuction {
struct Bid {
bytes32 blindedBid;
uint deposit;

address payable public beneficiary;
uint public biddingEnd;

uint public revealEnd;

bool public ended;

mapping (address => Bid[]) public bids;

address public highestBidder;
uint public highestBid;

// Allowed withdrawals of previous bids
mapping (address => uint) pendingReturns;

event AuctionEnded (address winner, uint highestBid);

/// Modifiers are a convenient way to validate inputs to
/// functions. ‘onlyBefore' 1is applied to ‘bid’ below:

(continues on next page)

26 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

/// The new function body is the modifier's body where

/// '_ is replaced by the old function body.

modifier onlyBefore (uint _time) { require(block.timestamp < _time); _; }
modifier onlyAfter (uint _time) { require(block.timestamp > _time); _; }

constructor (
uint _biddingTime,
uint _revealTime,
address payable _beneficiary

beneficiary = _beneficiary;
biddingEnd = block.timestamp + _biddingTime;
revealEnd = biddingEnd + _revealTime;

/// Place a blinded bid with '_blindedBid ' =
/// keccak256 (abi.encodePacked (value, fake, secret)).
/// The sent ether is only refunded if the bid is correctly
/// revealed in the revealing phase. The bid is valid if the
/// ether sent together with the bid is at least "value" and
/// "fake" 1is not true. Setting "fake" to true and sending
/// not the exact amount are ways to hide the real bid but
/// still make the required deposit. The same address can
/// place multiple bids.
function bid(bytes32 _blindedBid)

public

payable

onlyBefore (biddingEnd)

bids[msg.sender] .push (Bid ({
blindedBid: _blindedBid,
deposit: msg.value

1)

/// Reveal your blinded bids. You will get a refund for all
/// correctly blinded invalid bids and for all bids except for
/// the totally highest.
function reveal (

uint[] memory _values,

bool[] memory _fake,

bytes32[] memory _secret

public
onlyAfter (biddingEnd)

onlyBefore (revealEnd)

uint length = bids[msg.sender].length;

require (_values.length == length);
require (_fake.length == length);
require (_secret.length == length);

uint refund;
for (uint i = 0; i < length; i++) {
Bid storage bidToCheck = bids[msg.sender] [1i];
(uint value, bool fake, bytes32 secret) =
(_values[i], _fake[i], _secret[i]);

(continues on next page)

3.3. Solidity by Example 27

Solidity Documentation, Release 0.7.5

(continued from previous page)

if (bidToCheck.blindedBid != keccak256 (abi.encodePacked(value, fake,
—secret))) {
// Bid was not actually revealed.
// Do not refund deposit.
continue;
}
refund += bidToCheck.deposit;
if (!fake && bidToCheck.deposit >= value) {
if (placeBid(msg.sender, value))
refund —= value;
}
// Make it impossible for the sender to re-claim
// the same deposit.
bidToCheck.blindedBid = bytes32(0);
}

msg.sender.transfer (refund);

/// Withdraw a bid that was overbid.
function withdraw () public {
uint amount = pendingReturns[msg.sender];
if (amount > 0) {
// It is important to set this to zero because the recipient
// can call this function again as part of the receiving call
// before ‘transfer' returns (see the remark above about
// conditions -> effects —-> interaction).
pendingReturns [msg.sender] = 0;

msg.sender.transfer (amount) ;

/// End the auction and send the highest bid
/// to the beneficiary.
function auctionEnd()

public

onlyAfter (revealEnd)

require (!ended) ;

emit AuctionEnded (highestBidder, highestBid);
ended = true;

beneficiary.transfer (highestBid);

// This is an "internal" function which means that it

// can only be called from the contract itself (or from

// derived contracts).

function placeBid(address bidder, uint value) internal
returns (bool success)

if (value <= highestBid) {
return false;

}

if (highestBidder != address(0)) {
// Refund the previously highest bidder.
pendingReturns [highestBidder] += highestBid;

(continues on next page)

28 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

highestBid = value;
highestBidder = bidder;
return true;

3.3.3 Safe Remote Purchase

Purchasing goods remotely currently requires multiple parties that need to trust each other. The simplest configuration
involves a seller and a buyer. The buyer would like to receive an item from the seller and the seller would like to get
money (or an equivalent) in return. The problematic part is the shipment here: There is no way to determine for sure
that the item arrived at the buyer.

There are multiple ways to solve this problem, but all fall short in one or the other way. In the following example, both
parties have to put twice the value of the item into the contract as escrow. As soon as this happened, the money will
stay locked inside the contract until the buyer confirms that they received the item. After that, the buyer is returned the
value (half of their deposit) and the seller gets three times the value (their deposit plus the value). The idea behind this
is that both parties have an incentive to resolve the situation or otherwise their money is locked forever.

This contract of course does not solve the problem, but gives an overview of how you can use state machine-like
constructs inside a contract.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

contract Purchase ({
uint public value;
address payable public seller;
address payable public buyer;

enum State { Created, Locked, Release, Inactive }
// The state variable has a default value of the first member, 'State.created’
State public state;

modifier condition (bool _condition) {
require (_condition);

—r

modifier onlyBuyer () {
require (
msg.sender == buyer,
"Only buyer can call this."
)i

—r

modifier onlySeller () {
require (
msg.sender == seller,
"Only seller can call this."
)i

—

(continues on next page)

3.3. Solidity by Example 29

Solidity Documentation, Release 0.7.5

(continued from previous page)

modifier inState(State _state) {
require (
state == _state,
"Invalid state."
)

—r

event Aborted();

event PurchaseConfirmed();
event ItemReceived();
event SellerRefunded();

// Ensure that 'msg.value’' 1is an even number.
// Division will truncate if it is an odd number.
// Check via multiplication that it wasn't an odd number.
constructor () payable {
seller = msg.sender;
value = msg.value / 2;

require ((2 x value) == msg.value, "Value has to be even.

/// Abort the purchase and reclaim the ether.
/// Can only be called by the seller before
/// the contract is locked.
function abort ()

public

onlySeller

inState (State.Created)

emit Aborted();

state = State.Inactive;

// We use transfer here directly. It is
// reentrancy-safe, because it 1is the
// last call in this function and we

// already changed the state.
seller.transfer (address (this) .balance);

/// Confirm the purchase as buyer.
/// Transaction has to include ‘2 * value' ether.
/// The ether will be locked until confirmReceived
/// is called.
function confirmPurchase ()

public

inState (State.Created)

condition (msg.value == (2 * value))

payable

emit PurchaseConfirmed () ;
buyer = msg.sender;
state = State.Locked;

/// Confirm that you (the buyer) received the item.
/// This will release the locked ether.
function confirmReceived ()

")

(continues on next page)

30

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

public
onlyBuyer
inState (State.Locked)

emit ItemReceived();

// It is important to change the state first because
// otherwise, the contracts called using 'send’ below
// can call in again here.

state = State.Release;

buyer.transfer (value);

/// This function refunds the seller, 1i.e.
/// pays back the locked funds of the seller.
function refundSeller ()

public

onlySeller

inState (State.Release)

emit SellerRefunded();

// It is important to change the state first because
// otherwise, the contracts called using ‘send’ below
// can call in again here.

state = State.Inactive;

seller.transfer (3 » value);

3.3.4 Micropayment Channel

In this section we will learn how to build an example implementation of a payment channel. It uses cryptographic
signatures to make repeated transfers of Ether between the same parties secure, instantaneous, and without transaction
fees. For the example, we need to understand how to sign and verify signatures, and setup the payment channel.

Creating and verifying signatures

Imagine Alice wants to send a quantity of Ether to Bob, i.e. Alice is the sender and the Bob is the recipient.

Alice only needs to send cryptographically signed messages off-chain (e.g. via email) to Bob and it is similar to
writing checks.

Alice and Bob use signatures to authorise transactions, which is possible with smart contracts on Ethereum. Alice will
build a simple smart contract that lets her transmit Ether, but instead of calling a function herself to initiate a payment,
she will let Bob do that, and therefore pay the transaction fee.

The contract will work as follows:
1. Alice deploys the ReceiverPays contract, attaching enough Ether to cover the payments that will be made.
2. Alice authorises a payment by signing a message with their private key.

3. Alice sends the cryptographically signed message to Bob. The message does not need to be kept secret (ex-
plained later), and the mechanism for sending it does not matter.

3.3. Solidity by Example 31

Solidity Documentation, Release 0.7.5

4. Bob claims their payment by presenting the signed message to the smart contract, it verifies the authenticity of
the message and then releases the funds.

Creating the signature

Alice does not need to interact with the Ethereum network to sign the transaction, the process is completely offline.
In this tutorial, we will sign messages in the browser using web3.js and MetaMask, using the method described in
EIP-762, as it provides a number of other security benefits.

/// Hashing first makes things easier

var hash = web3.utils.sha3("message to sign");

web3.eth.personal.sign (hash, web3.eth.defaultAccount, function () { console.log(
"Signed™); });

Note: The web3.eth.personal.sign prepends the length of the message to the signed data. Since we hash
first, the message will always be exactly 32 bytes long, and thus this length prefix is always the same.

What to Sign

For a contract that fulfils payments, the signed message must include:
1. The recipient’s address.
2. The amount to be transferred.
3. Protection against replay attacks.

A replay attack is when a signed message is reused to claim authorization for a second action. To avoid replay
attacks we use the same technique as in Ethereum transactions themselves, a so-called nonce, which is the number of
transactions sent by an account. The smart contract checks if a nonce is used multiple times.

Another type of replay attack can occur when the owner deploys a ReceiverPays smart contract, makes some
payments, and then destroys the contract. Later, they decide to deploy the RecipientPays smart contract again,
but the new contract does not know the nonces used in the previous deployment, so the attacker can use the old
messages again.

Alice can protect against this attack by including the contract’s address in the message, and only messages con-
taining the contract’s address itself will be accepted. You can find an example of this in the first two lines of the
claimPayment () function of the full contract at the end of this section.

Packing arguments

Now that we have identified what information to include in the signed message, we are ready to put the message
together, hash it, and sign it. For simplicity, we concatenate the data. The ethereumjs-abi library provides a function
called soliditySHA3 that mimics the behaviour of Solidity’s keccak256 function applied to arguments encoded
using abi.encodePacked. Here is a JavaScript function that creates the proper signature for the ReceiverPays
example:

// recipient is the address that should be paid.

// amount, 1in wei, specifies how much ether should be sent.

// nonce can be any unique number to prevent replay attacks

// contractAddress 1s used to prevent cross-contract replay attacks

(continues on next page)

32 Chapter 3. Contents

https://github.com/ethereum/web3.js
https://metamask.io
https://github.com/ethereum/EIPs/pull/712
https://github.com/ethereumjs/ethereumjs-abi

Solidity Documentation, Release 0.7.5

(continued from previous page)

function signPayment (recipient, amount, nonce, contractAddress, callback) {
var hash = "Ox" + abi.soliditySHA3(
["address", "uint256", "uint256", "address"],
[recipient, amount, nonce, contractAddress]
) .toString ("hex");

web3.eth.personal.sign (hash, web3.eth.defaultAccount, callback);

Recovering the Message Signer in Solidity

In general, ECDSA signatures consist of two parameters, r and s. Signatures in Ethereum include a third parameter
called v, that you can use to verify which account’s private key was used to sign the message, and the transaction’s
sender. Solidity provides a built-in function ecrecover that accepts a message along with the r, s and v parameters
and returns the address that was used to sign the message.

Extracting the Signature Parameters

Signatures produced by web3.js are the concatenation of r, s and v, so the first step is to split these parameters apart.
You can do this on the client-side, but doing it inside the smart contract means you only need to send one signature
parameter rather than three. Splitting apart a byte array into its constituent parts is a mess, so we use inline assembly
to do the job in the splitSignature function (the third function in the full contract at the end of this section).

Computing the Message Hash

The smart contract needs to know exactly what parameters were signed, and so it must recreate the message from the
parameters and use that for signature verification. The functions prefixed and recoverSigner do this in the
claimPayment function.

The full contract

// SPDX-License—-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract ReceiverPays {
address owner = msg.sender;

mapping (uint256 => bool) usedNonces;
constructor () payable {}

function claimPayment (uint256 amount, uint256 nonce, bytes memory signature)

—public {
require (!usedNonces [nonce]);
usedNonces [nonce] = true;

// this recreates the message that was signed on the client
bytes32 message = prefixed(keccak256 (abi.encodePacked (msg.sender, amount,
—nonce, this)));

(continues on next page)

3.3. Solidity by Example 33

Solidity Documentation, Release 0.7.5

(continued from previous page)

require (recoverSigner (message, signature) == owner);

msg.sender.transfer (amount) ;

/// destroy the contract and reclaim the leftover funds.
function shutdown () public {

require (msg.sender == owner);

selfdestruct (msg.sender) ;

/// signature methods.

function splitSignature (bytes memory sig)
internal
pure
returns (uint8 v, bytes32 r, bytes32 s)

require (sig.length == 65);
assembly {
// first 32 bytes, after the length prefix.
r := mload(add(sig, 32))
// second 32 bytes.
s := mload(add(sig, 64))

// final byte (first byte of the next 32 bytes).
v := byte (0, mload(add(sig, 96)))
}

return (v, r, s)j

function recoverSigner (bytes32 message, bytes memory sig)
internal
pure
returns (address)
(uint8 v, bytes32 r, bytes32 s) = splitSignature(sig);
return ecrecover (message, v, ¥, s);

/// builds a prefixed hash to mimic the behavior of eth_sign.

function prefixed(bytes32 hash) internal pure returns (bytes32) ({
return keccak256 (abi.encodePacked ("\x19Ethereum Signed Message:\n32", hash));

Writing a Simple Payment Channel

Alice now builds a simple but complete implementation of a payment channel. Payment channels use cryptographic
signatures to make repeated transfers of Ether securely, instantaneously, and without transaction fees.

34 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

What is a Payment Channel?

Payment channels allow participants to make repeated transfers of Ether without using transactions. This means that
you can avoid the delays and fees associated with transactions. We are going to explore a simple unidirectional
payment channel between two parties (Alice and Bob). It involves three steps:

1. Alice funds a smart contract with Ether. This “opens” the payment channel.

2. Alice signs messages that specify how much of that Ether is owed to the recipient. This step is repeated for each
payment.

3. Bob “closes” the payment channel, withdrawing their portion of the Ether and sending the remainder back to
the sender.

Note: Only steps 1 and 3 require Ethereum transactions, step 2 means that the sender transmits a cryptographically
signed message to the recipient via off chain methods (e.g. email). This means only two transactions are required to
support any number of transfers.

Bob is guaranteed to receive their funds because the smart contract escrows the Ether and honours a valid signed
message. The smart contract also enforces a timeout, so Alice is guaranteed to eventually recover their funds even
if the recipient refuses to close the channel. It is up to the participants in a payment channel to decide how long to
keep it open. For a short-lived transaction, such as paying an internet café for each minute of network access, the
payment channel may be kept open for a limited duration. On the other hand, for a recurring payment, such as paying
an employee an hourly wage, the payment channel may be kept open for several months or years.

Opening the Payment Channel

To open the payment channel, Alice deploys the smart contract, attaching the Ether to be escrowed and specifying the
intended recipient and a maximum duration for the channel to exist. This is the function SimplePaymentChannel
in the contract, at the end of this section.

Making Payments

Alice makes payments by sending signed messages to Bob. This step is performed entirely outside of the Ethereum
network. Messages are cryptographically signed by the sender and then transmitted directly to the recipient.

Each message includes the following information:
* The smart contract’s address, used to prevent cross-contract replay attacks.
* The total amount of Ether that is owed the recipient so far.

A payment channel is closed just once, at the end of a series of transfers. Because of this, only one of the messages
sent is redeemed. This is why each message specifies a cumulative total amount of Ether owed, rather than the amount
of the individual micropayment. The recipient will naturally choose to redeem the most recent message because that is
the one with the highest total. The nonce per-message is not needed anymore, because the smart contract only honours
a single message. The address of the smart contract is still used to prevent a message intended for one payment channel
from being used for a different channel.

Here is the modified JavaScript code to cryptographically sign a message from the previous section:

function constructPaymentMessage (contractAddress, amount) {
return abi.soliditySHA3 (
["address", "uint256"],

(continues on next page)

3.3. Solidity by Example 35

Solidity Documentation, Release 0.7.5

(continued from previous page)

[contractAddress, amount]
)

function signMessage (message, callback) {
web3.eth.personal.sign(
"Ox" + message.toString("hex"),
web3.eth.defaultAccount,
callback
)i

// contractAddress 1is used to prevent cross-contract replay attacks.
// amount, in wei, specifies how much Ether should be sent.

function signPayment (contractAddress, amount, callback) {
var message = constructPaymentMessage (contractAddress, amount);
signMessage (message, callback);

Closing the Payment Channel

When Bob is ready to receive their funds, it is time to close the payment channel by calling a c1ose function on the
smart contract. Closing the channel pays the recipient the Ether they are owed and destroys the contract, sending any
remaining Ether back to Alice. To close the channel, Bob needs to provide a message signed by Alice.

The smart contract must verify that the message contains a valid signature from the sender. The process for doing
this verification is the same as the process the recipient uses. The Solidity functions isvalidSignature and
recoverSigner work just like their JavaScript counterparts in the previous section, with the latter function bor-
rowed from the ReceiverPays contract.

Only the payment channel recipient can call the close function, who naturally passes the most recent payment
message because that message carries the highest total owed. If the sender were allowed to call this function, they
could provide a message with a lower amount and cheat the recipient out of what they are owed.

The function verifies the signed message matches the given parameters. If everything checks out, the recipient is sent
their portion of the Ether, and the sender is sent the rest via a selfdestruct. You can see the close function in
the full contract.

Channel Expiration

Bob can close the payment channel at any time, but if they fail to do so, Alice needs a way to recover their escrowed
funds. An expiration time was set at the time of contract deployment. Once that time is reached, Alice can call
claimTimeout to recover their funds. You can see the claimTimeout function in the full contract.

After this function is called, Bob can no longer receive any Ether, so it is important that Bob closes the channel before
the expiration is reached.

The full contract

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

(continues on next page)

36 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract SimplePaymentChannel {
address payable public sender; // The account sending payments.
address payable public recipient; // The account receiving the payments.
uint256 public expiration; // Timeout in case the recipient never closes.

constructor (address payable _recipient, uint256 duration)
payable

sender = msg.sender;
recipient = _recipient;
expiration = block.timestamp + duration;

/// the recipient can close the channel at any time by presenting a
/// signed amount from the sender. the recipient will be sent that amount,
/// and the remainder will go back to the sender
function close (uint256 amount, bytes memory signature) public {
require (msg.sender == recipient);
require (isValidSignature (amount, signature));

recipient.transfer (amount) ;
selfdestruct (sender) ;

/// the sender can extend the expiration at any time
function extend(uint256 newExpiration) public {
require (msg.sender == sender);
require (newExpiration > expiration);

expiration = newExpiration;

/// 1f the timeout is reached without the recipient closing the channel,
/// then the Ether is released back to the sender.
function claimTimeout () public {

require (block.timestamp >= expiration);

selfdestruct (sender) ;

function isValidSignature (uint256 amount, bytes memory signature)
internal
view
returns (bool)

bytes32 message = prefixed(keccak256 (abi.encodePacked(this, amount)));
// check that the signature is from the payment sender
return recoverSigner (message, signature) == sender;

/// All functions below this are just taken from the chapter

/// 'creating and verifying signatures' chapter.

function splitSignature (bytes memory sig)

internal
pure

(continues on next page)

3.3. Solidity by Example 37

Solidity Documentation, Release 0.7.5

(continued from previous page)

returns (uint8 v, bytes32 r, bytes32 s)

require (sig.length == 65);
assembly {
// first 32 bytes, after the length prefix
r := mload(add(sig, 32))
// second 32 bytes
s := mload(add(sig, 64))

// final byte (first byte of the next 32 bytes)
v := byte (0, mload(add(sig, 96)))
}

return (v, r, S)I

function recoverSigner (bytes32 message, bytes memory sig)
internal
pure
returns (address)
(uint8 v, bytes32 r, bytes32 s) = splitSignature(sigqg);
return ecrecover (message, v, r, S);

/// builds a prefixed hash to mimic the behavior of eth _sign.

function prefixed(bytes32 hash) internal pure returns (bytes32) ({
return keccak256 (abi.encodePacked ("\x19Ethereum Signed Message:\n32", hash));

Note: The function splitSignature does not use all security checks. A real implementation should use a more
rigorously tested library, such as openzepplin’s version of this code.

Verifying Payments

Unlike in the previous section, messages in a payment channel aren’t redeemed right away. The recipient keeps track
of the latest message and redeems it when it’s time to close the payment channel. This means it’s critical that the
recipient perform their own verification of each message. Otherwise there is no guarantee that the recipient will be
able to get paid in the end.

The recipient should verify each message using the following process:
1. Verify that the contact address in the message matches the payment channel.
2. Verify that the new total is the expected amount.
3. Verify that the new total does not exceed the amount of Ether escrowed.
4. Verify that the signature is valid and comes from the payment channel sender.

We’ll use the ethereumjs-util library to write this verification. The final step can be done a number of ways, and we
use JavaScript. The following code borrows the constructMessage function from the signing JavaScript code
above:

38 Chapter 3. Contents

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/ethereumjs/ethereumjs-util

Solidity Documentation, Release 0.7.5

// this mimics the prefixing behavior of the eth_sign JSON-RPC method.
function prefixed (hash) {
return ethereumjs.ABI.soliditySHA3 (
["string", "bytes32"],
["\x19Ethereum Signed Message:\n32", hash]
)i

function recoverSigner (message, signature) {
var split = ethereumjs.Util.fromRpcSig(signature);
var publicKey = ethereumjs.Util.ecrecover (message, split.v, split.r, split.s);
var signer = ethereumjs.Util.pubToAddress (publicKey) .toString ("hex");
return signer;

function isValidSignature (contractAddress, amount, signature, expectedSigner) {
var message = prefixed(constructPaymentMessage (contractAddress, amount));
var signer = recoverSigner (message, signature);
return signer.toLowerCase () ==
ethereumjs.Util.stripHexPrefix (expectedSigner) .toLowerCase();

3.3.5 Modular Contracts

A modular approach to building your contracts helps you reduce the complexity and improve the readability which
will help to identify bugs and vulnerabilities during development and code review. If you specify and control the
behaviour or each module in isolation, the interactions you have to consider are only those between the module
specifications and not every other moving part of the contract. In the example below, the contract uses the move
method of the Balances library to check that balances sent between addresses match what you expect. In this way,
the Balances library provides an isolated component that properly tracks balances of accounts. It is easy to verify
that the Balances library never produces negative balances or overflows and the sum of all balances is an invariant
across the lifetime of the contract.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

library Balances {
function move (mapping (address => uint256) storage balances, address from, address
—~to, uint amount) internal {
require (balances[from] >= amount);
require (balances[to] + amount >= balances[to]);
balances[from] —= amount;
balances[to] += amount;

contract Token {
mapping (address => uint256) balances;
using Balances for x;
mapping (address => mapping (address => uint256)) allowed;

event Transfer (address from, address to, uint amount);
event Approval (address owner, address spender, uint amount);

function transfer (address to, uint amount) public returns (bool success) {

(continues on next page)

3.3. Solidity by Example 39

Solidity Documentation, Release 0.7.5

(continued from previous page)

balances.move (msg.sender, to, amount);
emit Transfer (msg.sender, to, amount);
return true;

function transferFrom(address from, address to, uint amount) public returns (bool
—success) {
require (allowed[from] [msg.sender] >= amount) ;
allowed[from] [msg.sender] —= amount;
balances.move (from, to, amount);
emit Transfer (from, to, amount);
return true;

function approve (address spender, uint tokens) public returns (bool success) {
require (allowed[msg.sender] [spender] == 0, "");
allowed[msg.sender] [spender] = tokens;
emit Approval (msg.sender, spender, tokens);
return true;

function balanceOf (address tokenOwner) public view returns (uint balance) ({
return balances[tokenOwner];

3.4 Layout of a Solidity Source File

Source files can contain an arbitrary number of contract definitions, import directives, pragma directives and struct,
enum, function and constant variable definitions.

3.4.1 SPDX License Identifier

Trust in smart contract can be better established if their source code is available. Since making source code available
always touches on legal problems with regards to copyright, the Solidity compiler encourages the use of machine-
readable SPDX license identifiers. Every source file should start with a comment indicating its license:

// SPDX-License-Identifier: MIT

The compiler does not validate that the license is part of the list allowed by SPDX, but it does include the supplied
string in the bytecode metadata.

If you do not want to specify a license or if the source code is not open-source, please use the special value
UNLICENSED.

Supplying this comment of course does not free you from other obligations related to licensing like having to mention
a specific license header in each source file or the original copyright holder.

The comment is recognized by the compiler anywhere in the file at the file level, but it is recommended to put it at the
top of the file.

More information about how to use SPDX license identifiers can be found at the SPDX website.

40 Chapter 3. Contents

https://spdx.org
https://spdx.org/licenses/
https://spdx.org/ids-how

Solidity Documentation, Release 0.7.5

3.4.2 Pragmas

The pragma keyword is used to enable certain compiler features or checks. A pragma directive is always local to a
source file, so you have to add the pragma to all your files if you want enable it in your whole project. If you import
another file, the pragma from that file does not automatically apply to the importing file.

Version Pragma

Source files can (and should) be annotated with a version pragma to reject compilation with future compiler versions
that might introduce incompatible changes. We try to keep these to an absolute minimum and introduce them in a
way that changes in semantics also require changes in the syntax, but this is not always possible. Because of this, it is
always a good idea to read through the changelog at least for releases that contain breaking changes. These releases
always have versions of the form 0.x.0 orx.0.0.

The version pragma is used as follows: pragma solidity ~0.5.2;

A source file with the line above does not compile with a compiler earlier than version 0.5.2, and it also does not
work on a compiler starting from version 0.6.0 (this second condition is added by using *). Because there will be
no breaking changes until version 0. 6. 0, you can be sure that your code compiles the way you intended. The exact
version of the compiler is not fixed, so that bugfix releases are still possible.

It is possible to specify more complex rules for the compiler version, these follow the same syntax used by npm.

Note: Using the version pragma does not change the version of the compiler. It also does not enable or disable
features of the compiler. It just instructs the compiler to check whether its version matches the one required by the
pragma. If it does not match, the compiler issues an error.

ABI Coder Pragma

By using pragma abicoder vl or pragma abicoder v2 you can select between the two implementations
of the ABI encoder and decoder.

The new ABI coder (v2) is able to encode and decode arbitrarily nested arrays and structs. It might produce less optimal
code and has not received as much testing as the old encoder, but is considered non-experimental as of Solidity 0.6.0.
You still have to explicitly activate it using pragma abicoder v2;. Since it will be activated by default starting
from Solidity 0.8.0, there is the option to select the old coder using pragma abicoder v1;.

The set of types supported by the new encoder is a strict superset of the ones supported by the old one. Contracts
that use it can interact with ones that do not without limitations. The reverse is possible only as long as the non-
abicoder v2 contract does not try to make calls that would require decoding types only supported by the new
encoder. The compiler can detect this and will issue an error. Simply enabling abicoder wv2 for your contract is
enough to make the error go away.

Note: This pragma applies to all the code defined in the file where it is activated, regardless of where that code ends
up eventually. This means that a contract whose source file is selected to compile with ABI coder v1 can still contain
code that uses the new encoder by inheriting it from another contract. This is allowed if the new types are only used
internally and not in external function signatures.

Note: Up to Solidity 0.7.4, it was possible to select the ABI coder v2 by using pragma experimental
ABIEncoderV2, but it was not possible to explicitly select coder v1 because it was the default.

3.4. Layout of a Solidity Source File 41

https://docs.npmjs.com/misc/semver

Solidity Documentation, Release 0.7.5

Experimental Pragma

The second pragma is the experimental pragma. It can be used to enable features of the compiler or language that are
not yet enabled by default. The following experimental pragmas are currently supported:

ABIEncoderV2

Because the ABI coder v2 is not considered experimental anymore, it can be selected via pragma abicoder v2
(please see above) since Solidity 0.7.4.

SMTChecker

This component has to be enabled when the Solidity compiler is built and therefore it is not available in all Solidity
binaries. The build instructions explain how to activate this option. It is activated for the Ubuntu PPA releases in most
versions, but not for the Docker images, Windows binaries or the statically-built Linux binaries. It can be activated for
solc-js via the smtCallback if you have an SMT solver installed locally and run solc-js via node (not via the browser).

If youuse pragma experimental SMTChecker;, then you get additional safety warnings which are obtained
by querying an SMT solver. The component does not yet support all features of the Solidity language and likely
outputs many warnings. In case it reports unsupported features, the analysis may not be fully sound.

3.4.3 Importing other Source Files

Syntax and Semantics

Solidity supports import statements to help modularise your code that are similar to those available in JavaScript (from
ES6 on). However, Solidity does not support the concept of a default export.

At a global level, you can use import statements of the following form:

import "filename";

This statement imports all global symbols from “filename” (and symbols imported there) into the current global scope
(different than in ES6 but backwards-compatible for Solidity). This form is not recommended for use, because it
unpredictably pollutes the namespace. If you add new top-level items inside “filename”, they automatically appear in
all files that import like this from “filename”. It is better to import specific symbols explicitly.

The following example creates a new global symbol symbolName whose members are all the global symbols from
"filename":

’import * as symbolName from "filename'";

which results in all global symbols being available in the format symbolName . symbol.

A variant of this syntax that is not part of ES6, but possibly useful is:

’import "filename" as symbolName;

which is equivalent to import = as symbolName from "filename";.

If there is a naming collision, you can rename symbols while importing. For example, the code below creates new
global symbols alias and symbol2 which reference symboll and symbol2 frominside "filename", respec-
tively.

42 Chapter 3. Contents

https://github.com/ethereum/solc-js#example-usage-with-smtsolver-callback
https://developer.mozilla.org/en-US/docs/web/javascript/reference/statements/export#Description

Solidity Documentation, Release 0.7.5

import {symboll as alias, symbol2} from "filename";

Paths

In the above, £ilename is always treated as a path with / as directory separator, and . as the current and . . as the
parent directory. When . or . . is followed by a character except /, it is not considered as the current or the parent
directory. All path names are treated as absolute paths unless they start with the current . or the parent directory . ..

To import a file filename from the same directory as the current file, use import "./filename" as
symbolName;. If you use import "filename" as symbolName; instead, a different file could be refer-
enced (in a global “include directory”).

It depends on the compiler (see Use in Actual Compilers) how to actually resolve the paths. In general, the directory
hierarchy does not need to strictly map onto your local filesystem, and the path can also map to resources such as ipfs,
http or git.

Note: Always use relative imports like import "./filename.sol"; and avoid using . . in path specifiers. In
the latter case, it is probably better to use global paths and set up remappings as explained below.

Use in Actual Compilers

When invoking the compiler, you can specify how to discover the first element of a path, and also path prefix remap-
pings. For example you can setup a remapping so that everything imported from the virtual directory github.com/
ethereum/dapp-bin/library would actually be read from your local directory /usr/local/dapp-bin/
library. If multiple remappings apply, the one with the longest key is tried first. An empty prefix is not allowed.
The remappings can depend on a context, which allows you to configure packages to import e.g., different versions of
a library of the same name.

solc:

For solc (the commandline compiler), you provide these path remappings as context :prefix=target argu-
ments, where both the context : and the =target parts are optional (target defaults to prefix in this case).
All remapping values that are regular files are compiled (including their dependencies).

This mechanism is backwards-compatible (as long as no filename contains = or :) and thus not a breaking change.
All files in or below the context directory that import a file that starts with prefix are redirected by replacing
prefix by target.

For example, if you clone github.com/ethereum/dapp-bin/ locally to /usr/local/dapp-bin, youcan
use the following in your source file:

import "github.com/ethereum/dapp-bin/library/iterable_mapping.sol" as it_mapping;

Then run the compiler:

’solc github.com/ethereum/dapp-bin/=/usr/local/dapp-bin/ source.sol

As a more complex example, suppose you rely on a module that uses an old version of dapp-bin that you checked out
to /usr/local/dapp-bin_old, then you can run:

solc modulel:github.com/ethereum/dapp-bin/=/usr/local/dapp-bin/ \
module?2:github.com/ethereum/dapp-bin/=/usr/local/dapp-bin_old/ \
source.sol

3.4. Layout of a Solidity Source File 43

Solidity Documentation, Release 0.7.5

This means that all imports in module?2 point to the old version but imports in modulel point to the new version.

Note: solc only allows you to include files from certain directories. They have to be in the directory (or subdirectory)
of one of the explicitly specified source files or in the directory (or subdirectory) of a remapping target. If you want to
allow direct absolute includes, add the remapping /=/.

If there are multiple remappings that lead to a valid file, the remapping with the longest common prefix is chosen.
Remix:

Remix provides an automatic remapping for GitHub and automatically retrieves the file over the network. You can
import the iterable mapping as above, e.g.

import "github.com/ethereum/dapp-bin/library/iterable_mapping.sol" as it_mapping;

Remix may add other source code providers in the future.

3.4.4 Comments

Single-line comments (/ /) and multi-line comments (/* . . . = /) are possible.

// This is a single-line comment.

/ *
This is a
multi-line comment.

*/

Note: A single-line comment is terminated by any unicode line terminator (LF, VF, FF, CR, NEL, LS or PS) in utf8
encoding. The terminator is still part of the source code after the comment, so if it is not an ascii symbol (these are
NEL, LS and PS), it will lead to a parser error.

Additionally, there is another type of comment called a natspec comment, which is detailed in the style guide. They
are written with a triple slash (// /) or a double asterisk block(/« ... x/)and they should be used directly above
function declarations or statements. You can use Doxygen-style tags inside these comments to document functions,
annotate conditions for formal verification, and provide a confirmation text which is shown to users when they attempt
to invoke a function.

In the following example we document the title of the contract, the explanation for the two function parameters and
two return variables.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.21 <0.8.0;

/++ @title Shape calculator. #*/
contract ShapeCalculator {
/// @dev Calculates a rectangle's surface and perimeter.
/// @param w Width of the rectangle.
/// @param h Height of the rectangle.
/// @return s The calculated surface.
/// @return p The calculated perimeter.
function rectangle (uint w, uint h) public pure returns (uint s, uint p) {
s = w % hj;

(continues on next page)

44 Chapter 3. Contents

https://remix.ethereum.org/
https://en.wikipedia.org/wiki/Doxygen

Solidity Documentation, Release 0.7.5

(continued from previous page)

2 % (w + h);

o]
Il

3.5 Structure of a Contract

Contracts in Solidity are similar to classes in object-oriented languages. Each contract can contain declarations of
State Variables, Functions, Function Modifiers, Events, Struct Types and Enum Types. Furthermore, contracts can
inherit from other contracts.

There are also special kinds of contracts called /ibraries and interfaces.

The section about contracts contains more details than this section, which serves to provide a quick overview.

3.5.1 State Variables

State variables are variables whose values are permanently stored in contract storage.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract SimpleStorage {
uint storedData; // State variable

//

See the Types section for valid state variable types and Visibility and Getters for possible choices for visibility.

3.5.2 Functions

Functions are the executable units of code. Functions are usually defined inside a contract, but they can also be defined
outside of contracts.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >0.7.0 <0.8.0;

contract SimpleAuction {
function bid() public payable { // Function
//

// Helper function defined outside of a contract
function helper (uint x) pure returns (uint) {
return x * 2;

Function Calls can happen internally or externally and have different levels of visibility towards other contracts.
Functions accept parameters and return variables to pass parameters and values between them.

3.5. Structure of a Contract 45

Solidity Documentation, Release 0.7.5

3.5.3 Function Modifiers

Function modifiers can be used to amend the semantics of functions in a declarative way (see Function Modifiers in
the contracts section).

Overloading, that is, having the same modifier name with different parameters, is not possible.

Like functions, modifiers can be overridden.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract Purchase {
address public seller;

modifier onlySeller() { // Modifier
require (
msg.sender == seller,
"Only seller can call this."
)

—

function abort () public view onlySeller { // Modifier usage
//

3.5.4 Events

Events are convenience interfaces with the EVM logging facilities.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.21 <0.8.0;

contract SimpleAuction {
event HighestBidIncreased (address bidder, uint amount); // Event

function bid() public payable {
//

emit HighestBidIncreased (msg.sender, msg.value); // Triggering event

See Events in contracts section for information on how events are declared and can be used from within a dapp.

3.5.5 Struct Types

Structs are custom defined types that can group several variables (see Structs in types section).

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract Ballot {
struct Voter { // Struct

(continues on next page)

46 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

uint weight;

bool voted;
address delegate;
uint vote;

3.5.6 Enum Types

Enums can be used to create custom types with a finite set of ‘constant values’ (see Enums in types section).

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract Purchase {
enum State { Created, Locked, Inactive } // Enum

3.6 Types

Solidity is a statically typed language, which means that the type of each variable (state and local) needs to be specified.
Solidity provides several elementary types which can be combined to form complex types.

In addition, types can interact with each other in expressions containing operators. For a quick reference of the various
operators, see Order of Precedence of Operators.

The concept of “undefined” or “null” values does not exist in Solidity, but newly declared variables always have a
default value dependent on its type. To handle any unexpected values, you should use the revert function to revert the
whole transaction, or return a tuple with a second bool value denoting success.

3.6.1 Value Types

The following types are also called value types because variables of these types will always be passed by value, i.e.
they are always copied when they are used as function arguments or in assignments.

Booleans

bool: The possible values are constants t rue and false.
Operators:

¢ ! (logical negation)

* && (logical conjunction, “and”)

* | | (logical disjunction, “or’)

e == (equality)

* != (inequality)

The operators | | and && apply the common short-circuiting rules. This means that in the expression f (x) | |
g (y),if £ (x) evaluates to true, g (y) will not be evaluated even if it may have side-effects.

3.6. Types 47

Solidity Documentation, Release 0.7.5

Integers
int /uint: Signed and unsigned integers of various sizes. Keywords uint8 to uint256 in steps of 8 (unsigned
of 8 up to 256 bits) and int 8 to int256. uint and int are aliases for uint256 and int256, respectively.
Operators:

e Comparisons: <=, <, ==, ! =, >=, > (evaluate to bool)

* Bit operators: &, |, * (bitwise exclusive or), ~ (bitwise negation)

* Shift operators: << (left shift), >> (right shift)

* Arithmetic operators: +, —, unary —, *, /, $ (modulo), % (exponentiation)

For an integer type X, you can use type (X) .min and type (X) .max to access the minimum and maximum value
representable by the type.

Warning: Integers in Solidity are restricted to a certain range. For example, with uint32, this is 0 up to
2x%32 — 1. If the result of some operation on those numbers does not fit inside this range, it is truncated. These
truncations can have serious consequences that you should be aware of and mitigate against.

Comparisons

The value of a comparison is the one obtained by comparing the integer value.

Bit operations

Bit operations are performed on the two’s complement representation of the number. This means that, for example
~int256(0) == int256(-1).

Shifts

The result of a shift operation has the type of the left operand, truncating the result to match the type. Right operand
must be unsigned type. Trying to shift by signed type will produce a compilation error.

* For positive and negative x values, x << vy isequivalentto x * 2xx*y.
* For positive x values, x >> yisequivalenttox / 2xxy.

 For negative x values, x >> yisequivalentto (x + 1) / 2%xy — 1 (whichis the same as dividing x by
2 %y while rounding down towards negative infinity).

Warning: Before version 0.5.0 a right shift x >> y for negative x was equivalent to x / 2xx*y, i.e., right
shifts used rounding up (towards zero) instead of rounding down (towards negative infinity).

Addition, Subtraction and Multiplication

Addition, subtraction and multiplication have the usual semantics. They wrap in two’s complement representation,
meaning that for example uint256 (0) - uint256 (1) == 2x%x256 - 1. You have to take these overflows
into account when designing safe smart contracts.

48 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

The expression —x is equivalent to (T (0) - x) where T is the type of x. This means that —x will not be negative
if the type of x is an unsigned integer type. Also, —x can be positive if x is negative. There is another caveat also
resulting from two’s complement representation:

int x = -2x%255;
assert (-x == x);

This means that even if a number is negative, you cannot assume that its negation will be positive.
Division

Since the type of the result of an operation is always the type of one of the operands, division on integers always
results in an integer. In Solidity, division rounds towards zero. This mean that int256 (-5) / int256(2) ==
int256 (-2).

Note that in contrast, division on /iferals results in fractional values of arbitrary precision.

Note: Division by zero causes a failing assert.

Modulo

The modulo operation a % n yields the remainder r after the division of the operand a by the operand n, where g

= int(a / n)andr = a - (n *). This means that modulo results in the same sign as its left operand (or
zero)anda % n == —(-a $%$ n) holds for negative a:

e int256(5) % 1int256(2) == int256(1)

* int256(5) % int256(-2) == int256(1)

e int256(-5) % int256(2) == int256(-1)

e int256(=5) % 1int256(-2) == int256(-1)

Note: Modulo with zero causes a failing assert.

Exponentiation

Exponentiation is only available for unsigned types in the exponent. The resulting type of an exponentiation is always
equal to the type of the base. Please take care that it is large enough to hold the result and prepare for potential
wrapping behaviour.

Note: Note that 00 is defined by the EVM as 1.

Fixed Point Numbers

Warning: Fixed point numbers are not fully supported by Solidity yet. They can be declared, but cannot be
assigned to or from.

3.6. Types 49

Solidity Documentation, Release 0.7.5

fixed / ufixed: Signed and unsigned fixed point number of various sizes. Keywords ufixedMxN and
fixedMxN, where M represents the number of bits taken by the type and N represents how many decimal points
are available. M must be divisible by 8 and goes from 8 to 256 bits. N must be between 0 and 80, inclusive. ufixed
and fixed are aliases for ufixed128x18 and fixed128x18, respectively.

Operators:
e Comparisons: <=, <, ==, ! =, >=, > (evaluate to bool)

* Arithmetic operators: +, —, unary —, *, /, % (modulo)

Note: The main difference between floating point (f1loat and double in many languages, more precisely IEEE
754 numbers) and fixed point numbers is that the number of bits used for the integer and the fractional part (the part
after the decimal dot) is flexible in the former, while it is strictly defined in the latter. Generally, in floating point
almost the entire space is used to represent the number, while only a small number of bits define where the decimal
point is.

Address

The address type comes in two flavours, which are largely identical:
* address: Holds a 20 byte value (size of an Ethereum address).
¢ address payable: Same as address, but with the additional members t ransfer and send.

The idea behind this distinction is that address payable is an address you can send Ether to, while a plain
address cannot be sent Ether.

Type conversions:

Implicit conversions from address payable to address are allowed, whereas conversions from address to
address payable must be explicit via payable (<address>).

Address literals can be implicitly converted to address payable.

Explicit conversions to and from address are allowed for integers, integer literals, bytes20 and contract types
with the following caveat: The result of a conversion of the form address (x) has the type address payable,
if x is of integer or fixed bytes type, a literal or a contract with a receive or payable fallback function. If x is a contract
without a receive or payable fallback function, then address (x) will be of type address. In external function
signatures address is used for both the address and the address payable type.

Only expressions of type address can be converted to type address payable viapayable (<address>).

Note: It might very well be that you do not need to care about the distinction between address and address
payable and just use address everywhere. For example, if you are using the withdrawal pattern, you can (and
should) store the address itself as address, because you invoke the t ransfer function on msg. sender, which
isan address payable.

Operators:

50 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Warning: If you convert a type that uses a larger byte size to an address, for example bytes32,
then the address is truncated. To reduce conversion ambiguity version 0.4.24 and higher of the com-
piler force you make the truncation explicit in the conversion. Take for example the 32-byte value
0x111122223333444455556666777788889999AAAABBBBCCCCDDDDEEEEFFFFECCCC.

You can use address (uint160 (bytes20 (b))), which results in
0x111122223333444455556666777788889999%aAaa, or you can use
address (uint160 (uint256 (b))), whichresultsin 0x777788889999AaAAbBbbCcccddDdeeceEfFF{CcCc.

Note: The distinction between address and address payable was introduced with version 0.5.0. Also starting
from that version, contracts do not derive from the address type, but can still be explicitly converted to address or
to address payable, if they have a receive or payable fallback function.

Members of Addresses

For a quick reference of all members of address, see Members of Address Types.
* balance and transfer

It is possible to query the balance of an address using the property balance and to send Ether (in units of wei) to a
payable address using the t ransfer function:

address payable x = address (0x123);
address myAddress = address (this);
if (x.balance < 10 && myAddress.balance >= 10) x.transfer (10);

The transfer function fails if the balance of the current contract is not large enough or if the Ether transfer is
rejected by the receiving account. The t rans fer function reverts on failure.

Note: If x is a contract address, its code (more specifically: its Receive Ether Function, if present, or otherwise its
Fallback Function, if present) will be executed together with the transfer call (this is a feature of the EVM and
cannot be prevented). If that execution runs out of gas or fails in any way, the Ether transfer will be reverted and the
current contract will stop with an exception.

* send

Send is the low-level counterpart of transfer. If the execution fails, the current contract will not stop with an
exception, but send will return false.

Warning: There are some dangers in using send: The transfer fails if the call stack depth is at 1024 (this can
always be forced by the caller) and it also fails if the recipient runs out of gas. So in order to make safe Ether
transfers, always check the return value of send, use t ransfer or even better: use a pattern where the recipient
withdraws the money.

e call,delegatecall and staticcall

In order to interface with contracts that do not adhere to the ABI, or to get more direct control over the encoding,
the functions call, delegatecall and staticcall are provided. They all take a single bytes memory
parameter and return the success condition (as a bool) and the returned data (bytes memory). The functions
abi.encode, abi.encodePacked, abi.encodeWithSelectorand abi.encodeWithSignature can
be used to encode structured data.

3.6. Types 51

Solidity Documentation, Release 0.7.5

Example:

bytes memory payload = abi.encodeWithSignature ("register (string)", "MyName");
(bool success, bytes memory returnData) = address (nameReg) .call (payload);
require (success);

Warning: All these functions are low-level functions and should be used with care. Specifically, any unknown
contract might be malicious and if you call it, you hand over control to that contract which could in turn call back
into your contract, so be prepared for changes to your state variables when the call returns. The regular way to
interact with other contracts is to call a function on a contract object (x. £ ()).

Note: Previous versions of Solidity allowed these functions to receive arbitrary arguments and would also handle a
first argument of type bytes4 differently. These edge cases were removed in version 0.5.0.

It is possible to adjust the supplied gas with the gas modifier:

address (nameReg) .call{gas: 1000000} (abi.encodeWithSignature ("register (string)",
—"MyName")) ;

Similarly, the supplied Ether value can be controlled too:

address (nameReg) .call{value: 1 ether} (abi.encodeWithSignature ("register (string)",
—"MyName")) ;

Lastly, these modifiers can be combined. Their order does not matter:

address (nameReg) .call{gas: 1000000, wvalue: 1 ether} (abi.encodeWithSignature (
—"register(string)", "MyName"));

In a similar way, the function delegatecall can be used: the difference is that only the code of the given address
is used, all other aspects (storage, balance, ...) are taken from the current contract. The purpose of delegatecall
is to use library code which is stored in another contract. The user has to ensure that the layout of storage in both
contracts is suitable for delegatecall to be used.

Note: Prior to homestead, only a limited variant called callcode was available that did not provide access to the
original msg. sender and msg.value values. This function was removed in version 0.5.0.

Since byzantium staticcall can be used as well. This is basically the same as call, but will revert if the called
function modifies the state in any way.

All three functions call, delegatecall and staticcall are very low-level functions and should only be used
as a last resort as they break the type-safety of Solidity.

The gas option is available on all three methods, while the value option is not supported for delegatecall.

Note: It is best to avoid relying on hardcoded gas values in your smart contract code, regardless of whether state is
read from or written to, as this can have many pitfalls. Also, access to gas might change in the future.

Note: All contracts can be converted to address type, so it is possible to query the balance of the current contract

52 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

using address (this) .balance.

Contract Types

Every contract defines its own type. You can implicitly convert contracts to contracts they inherit from. Contracts can
be explicitly converted to and from the address type.

Explicit conversion to and from the address payable type is only possible if the contract type has a re-
ceive or payable fallback function. The conversion is still performed using address (x). If the contract type
does not have a receive or payable fallback function, the conversion to address payable can be done using
payable (address (x)). You can find more information in the section about the address type.

Note: Before version 0.5.0, contracts directly derived from the address type and there was no distinction between
address and address payable.

If you declare a local variable of contract type (MyContract c), you can call functions on that contract. Take care
to assign it from somewhere that is the same contract type.

You can also instantiate contracts (which means they are newly created). You can find more details in the ‘Contracts
via new’ section.

The data representation of a contract is identical to that of the address type and this type is also used in the ABI.
Contracts do not support any operators.

The members of contract types are the external functions of the contract including any state variables marked as
public.

For a contract C you can use type (C) to access fype information about the contract.

Fixed-size byte arrays
The value types bytes1, bytes2, bytes3, ..., bytes32 hold a sequence of bytes from one to up to 32. byte is
an alias for bytes1.
Operators:
e Comparisons: <=, <, ==, ! =, >=, > (evaluate to bool)
* Bit operators: &, |, ~ (bitwise exclusive or), ~ (bitwise negation)
* Shift operators: << (left shift), >> (right shift)
* Index access: If x is of type bytesI, then x [k] for 0 <= k < I returns the k th byte (read-only).

The shifting operator works with unsigned integer type as right operand (but returns the type of the left operand),
which denotes the number of bits to shift by. Shifting by a signed type will produce a compilation error.

Members:

e .length yields the fixed length of the byte array (read-only).

Note: The type byte [] is an array of bytes, but due to padding rules, it wastes 31 bytes of space for each element
(except in storage). It is better to use the bytes type instead.

3.6. Types 53

Solidity Documentation, Release 0.7.5

Dynamically-sized byte array

bytes: Dynamically-sized byte array, see Arrays. Not a value-type!

string: Dynamically-sized UTF-8-encoded string, see Arrays. Not a value-type!

Address Literals

Hexadecimal literals that pass the address checksum test, for example 0xdCad3a6d3569DF655070DEd06¢cb7A1b2Ccd1D3AF
are of address payable type. Hexadecimal literals that are between 39 and 41 digits long and do not pass the

checksum test produce an error. You can prepend (for integer types) or append (for bytesNN types) zeros to remove

the error.

Note: The mixed-case address checksum format is defined in EIP-55.

Rational and Integer Literals

Integer literals are formed from a sequence of numbers in the range 0-9. They are interpreted as decimals. For example,
69 means sixty nine. Octal literals do not exist in Solidity and leading zeros are invalid.

Decimal fraction literals are formed by a . with at least one number on one side. Examples include 1., .1 and 1. 3.

Scientific notation is also supported, where the base can have fractions and the exponent cannot. Examples include
2el0, -2e10, 2e-10, 2. 5el.

Underscores can be used to separate the digits of a numeric literal to aid readability. For example, decimal 123_000,
hexadecimal 0x2e ff_abde, scientific decimal notation 1_2e345_678 are all valid. Underscores are only allowed
between two digits and only one consecutive underscore is allowed. There is no additional semantic meaning added
to a number literal containing underscores, the underscores are ignored.

Number literal expressions retain arbitrary precision until they are converted to a non-literal type (i.e. by using them
together with a non-literal expression or by explicit conversion). This means that computations do not overflow and
divisions do not truncate in number literal expressions.

For example, (2+x«800 + 1) — 2x%800 results in the constant 1 (of type uint 8) although intermediate results
would not even fit the machine word size. Furthermore, . 5 * 8 results in the integer 4 (although non-integers were
used in between).

Any operator that can be applied to integers can also be applied to number literal expressions as long as the operands
are integers. If any of the two is fractional, bit operations are disallowed and exponentiation is disallowed if the
exponent is fractional (because that might result in a non-rational number).

Shifts and exponentiation with literal numbers as left (or base) operand and integer types as the right (exponent)
operand are always performed in the uint256 (for non-negative literals) or int256 (for a negative literals) type,
regardless of the type of the right (exponent) operand.

Warning: Division on integer literals used to truncate in Solidity prior to version 0.4.0, but it now converts into a
rational number, i.e. 5 / 2 isnotequal to 2, butto 2. 5.

Note: Solidity has a number literal type for each rational number. Integer literals and rational number literals belong
to number literal types. Moreover, all number literal expressions (i.e. the expressions that contain only number literals

54 Chapter 3. Contents

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md

Solidity Documentation, Release 0.7.5

and operators) belong to number literal types. So the number literal expressions 1 + 2 and 2 + 1 both belong to
the same number literal type for the rational number three.

Note: Number literal expressions are converted into a non-literal type as soon as they are used with non-literal
expressions. Disregarding types, the value of the expression assigned to b below evaluates to an integer. Because a is
of type uint 128, the expression 2.5 + a has to have a proper type, though. Since there is no common type for the
type of 2.5 and uint 128, the Solidity compiler does not accept this code.

uintl128 a = 1;
uintl28 b = 2.5 + a + 0.5;

String Literals and Types

String literals are written with either double or single-quotes ("foo" or 'bar'), and they can also be split into
multiple consecutive parts ("foo" "bar" is equivalent to "foobar") which can be helpful when dealing with
long strings. They do not imply trailing zeroes as in C; "foo" represents three bytes, not four. As with integer

literals, their type can vary, but they are implicitly convertible to bytes1, ..., bytes32, if they fit, to bytes and
to string.
For example, with bytes32 samevar = "stringliteral" the string literal is interpreted in its raw byte form

when assigned to a bytes32 type.

String literals can only contain printable ASCII characters, which means the characters between and including Ox1F ..
O0x7E.

Additionally, string literals also support the following escape characters:
* \<newline> (escapes an actual newline)
¢ \\ (backslash)

e \'' (single quote)

e \" (double quote)

* \b (backspace)

¢ \ f (form feed)

¢ \n (newline)

* \r (carriage return)

e \t (tab)

¢ \v (vertical tab)

* \xNN (hex escape, see below)

¢ \uNNNN (unicode escape, see below)

\xNN takes a hex value and inserts the appropriate byte, while \uNNNN takes a Unicode codepoint and inserts an
UTF-8 sequence.

The string in the following example has a length of ten bytes. It starts with a newline byte, followed by a double quote,
a single quote a backslash character and then (without separator) the character sequence abcdef.

"\n\"\"\\abc\
def"

3.6. Types 55

Solidity Documentation, Release 0.7.5

Any Unicode line terminator which is not a newline (i.e. LF, VF, FF, CR, NEL, LS, PS) is considered to terminate the
string literal. Newline only terminates the string literal if it is not preceded by a \.

Unicode Literals

While regular string literals can only contain ASCII, Unicode literals — prefixed with the keyword unicode — can
contain any valid UTF-8 sequence. They also support the very same escape sequences as regular string literals.

string memory a = unicode"Hello ";

Hexadecimal Literals

Hexadecimal literals are prefixed with the keyword hex and are enclosed in double or single-quotes
(hex"001122FF", hex'0011_22_FF"). Their content must be hexadecimal digits which can optionally use a
single underscore as separator between byte boundaries. The value of the literal will be the binary representation of
the hexadecimal sequence.

Multiple hexadecimal literals separated by whitespace are concatenated into a single literal: hex"00112233"
hex"44556677" is equivalent to hex"0011223344556677"

Hexadecimal literals behave like string literals and have the same convertibility restrictions.

Enums

Enums are one way to create a user-defined type in Solidity. They are explicitly convertible to and from all integer
types but implicit conversion is not allowed. The explicit conversion from integer checks at runtime that the value lies
inside the range of the enum and causes a failing assert otherwise. Enums require at least one member, and its default
value when declared is the first member.

The data representation is the same as for enums in C: The options are represented by subsequent unsigned integer
values starting from 0.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
ActionChoices choice;
ActionChoices constant defaultChoice = ActionChoices.GoStraight;

function setGoStraight () public {
choice = ActionChoices.GoStraight;

// Since enum types are not part of the ABI, the signature of "getChoice"
// will automatically be changed to "getChoice () returns (uint8)"
// for all matters external to Solidity. The integer type used 1s just
// large enough to hold all enum values, i.e. if you have more than 256 values,
// ‘uintl6’' will be used and so on.
function getChoice () public view returns (ActionChoices) {
return choice;

function getDefaultChoice () public pure returns (uint) ({

(continues on next page)

56 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

return uint (defaultChoice);

Note: Enums can also be declared on the file level, outside of contract or library definitions.

Function Types

Function types are the types of functions. Variables of function type can be assigned from functions and function
parameters of function type can be used to pass functions to and return functions from function calls. Function types
come in two flavours - internal and external functions:

Internal functions can only be called inside the current contract (more specifically, inside the current code unit, which
also includes internal library functions and inherited functions) because they cannot be executed outside of the context
of the current contract. Calling an internal function is realized by jumping to its entry label, just like when calling a
function of the current contract internally.

External functions consist of an address and a function signature and they can be passed via and returned from external
function calls.

Function types are notated as follows:

function (<parameter types>) {internal|external} [pure|view|payable] [returns (
—<return types>)]

In contrast to the parameter types, the return types cannot be empty - if the function type should not return anything,
the whole returns (<return types>) part has to be omitted.

By default, function types are internal, so the internal keyword can be omitted. Note that this only applies to
function types. Visibility has to be specified explicitly for functions defined in contracts, they do not have a default.

Conversions:

A function type A is implicitly convertible to a function type B if and only if their parameter types are identical, their
return types are identical, their internal/external property is identical and the state mutability of A is not more restrictive
than the state mutability of B. In particular:

* pure functions can be converted to view and non—-payable functions
¢ view functions can be converted to non-payable functions
¢ payable functions can be converted to non—-payable functions

No other conversions between function types are possible.

The rule about payable and non-payable might be a little confusing, but in essence, if a function is payable,
this means that it also accepts a payment of zero Ether, so it also is non-payable. On the other hand, a
non-payable function will reject Ether sent to it, so non-payable functions cannot be converted to payable
functions.

If a function type variable is not initialised, calling it results in a failed assertion. The same happens if you call a
function after using delete onit.

If external function types are used outside of the context of Solidity, they are treated as the function type, which
encodes the address followed by the function identifier together in a single bytes24 type.

Note that public functions of the current contract can be used both as an internal and as an external function. To use £
as an internal function, just use £, if you want to use its external form, use this. f.

3.6. Types 57

Solidity Documentation, Release 0.7.5

Members:
External (or public) functions have the following members:
e .address returns the address of the contract of the function.

e .selector returns the ABI function selector

Note: External (or public) functions used to have the additional members .gas (uint) and .value (uint).
These were deprecated in Solidity 0.6.2 and removed in Solidity 0.7.0. Instead use {gas: ...} and {value:
. . . } to specify the amount of gas or the amount of wei sent to a function, respectively. See External Function Calls
for more information.

Example that shows how to use the members:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.4 <0.8.0;

contract Example {
function f () public payable returns (bytes4) ({
assert (this.f.address == address (this));
return this.f.selector;

function g () public {
this.f{gas: 10, value: 800} ();

Example that shows how to use internal function types:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

library ArrayUtils {
// internal functions can be used in internal library functions because
// they will be part of the same code context
function map (uint[] memory self, function (uint) pure returns (uint) f)

internal
pure
returns (uint[] memory r)
{
r = new uint[] (self.length);
for (uint i1 = 0; i < self.length; i++) {
r(i] = f(selfl[il]);

function reduce (
uint[] memory self,
function (uint, uint) pure returns (uint) £

internal
pure

returns (uint r)

r = self[0];

(continues on next page)

58 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

for (uint i = 1; i < self.length; i++) {

(
r = f(r, selflil]);

function range (uint length) internal pure returns (uint[] memory r) ({

r = new uint|[] (length);
for (uint i1 = 0; i < r.length; i++) {
r(i] = 1i;

contract Pyramid {
using ArrayUtils for x;

function pyramid(uint 1) public pure returns (uint) {

return ArrayUtils.range(l) .map (square) .reduce (sum) ;

function square (uint x) internal pure returns (uint) ({
return x *x x;

function sum(uint x, uint y) internal pure returns (uint) {
return x + y;

Another example that uses external function types:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract Oracle {
struct Request {
bytes data;
function (uint) external callback;

Request[] private requests;
event NewRequest (uint) ;

function query (bytes memory data, function (uint) external callback) public {
requests.push (Request (data, callback));
emit NewRequest (requests.length - 1);

function reply (uint requestID, uint response) public ({
// Here goes the check that the reply comes from a trusted source
requests|[requestID].callback (response);

(continues on next page)

3.6. Types 59

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract OracleUser {
Oracle constant private ORACLE_CONST = Oracle(0x1234567); // known contract
uint private exchangeRate;

function buySomething () public {
ORACLE_CONST.query ("USD", this.oracleResponse);

function oracleResponse (uint response) public {
require (
msg.sender == address (ORACLE_CONST),
"Only oracle can call this."
)i
exchangeRate = response;

Note: Lambda or inline functions are planned but not yet supported.

3.6.2 Reference Types

Values of reference type can be modified through multiple different names. Contrast this with value types where
you get an independent copy whenever a variable of value type is used. Because of that, reference types have to be
handled more carefully than value types. Currently, reference types comprise structs, arrays and mappings. If you use
a reference type, you always have to explicitly provide the data area where the type is stored: memory (whose lifetime
is limited to an external function call), st orage (the location where the state variables are stored, where the lifetime
is limited to the lifetime of a contract) or calldata (special data location that contains the function arguments).

An assignment or type conversion that changes the data location will always incur an automatic copy operation, while
assignments inside the same data location only copy in some cases for storage types.

Data location

Every reference type has an additional annotation, the “data location”, about where it is stored. There are three data
locations: memory, storage and calldata. Calldata is a non-modifiable, non-persistent area where function
arguments are stored, and behaves mostly like memory. It is required for parameters of external functions but can also
be used for other variables.

Note: Prior to version 0.5.0 the data location could be omitted, and would default to different locations depending on
the kind of variable, function type, etc., but all complex types must now give an explicit data location.

Note: If you can, try to use calldata as data location because it will avoid copies and also makes sure that the
data cannot be modified. Arrays and structs with calldata data location can also be returned from functions, but it
is not possible to allocate such types.

60 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Data location and assignment behaviour

Data locations are not only relevant for persistency of data, but also for the semantics of assignments:
* Assignments between storage and memory (or from calldata) always create an independent copy.

* Assignments from memory to memory only create references. This means that changes to one memory variable
are also visible in all other memory variables that refer to the same data.

* Assignments from storage to a local storage variable also only assign a reference.

* All other assignments to st orage always copy. Examples for this case are assignments to state variables or to
members of local variables of storage struct type, even if the local variable itself is just a reference.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

contract C {
// The data location of x 1s storage.
// This is the only place where the
// data location can be omitted.
uint[] x;

// The data location of memoryArray 1S memory.
function f (uint[] memory memoryArray) public ({

x = memoryArray; // works, copies the whole array to storage
uint[] storage y = x; // works, assigns a pointer, data location of y 1is_
—storage

y[71; // fine, returns the 8th element

y.pop(); // fine, modifies x through y

delete x; // fine, clears the array, also modifies y

// The following does not work; it would need to create a new temporary /
// unnamed array 1in storage, but storage 1is "statically" allocated:

// vy = memoryArray;

// This does not work either, since it would "reset" the pointer, but there
// 1s no sensible location it could point to.

// delete y;

g(x); // calls g, handing over a reference to x

h(x); // calls h and creates an independent, temporary copy 1in memory

function g (uint[] storage) internal pure {}
function h(uint[] memory) public pure {}

Arrays

Arrays can have a compile-time fixed size, or they can have a dynamic size.
The type of an array of fixed size k and element type T is written as T [k], and an array of dynamic size as T[].

For example, an array of 5 dynamic arrays of uint is written as uint [] [5]. The notation is reversed compared to
some other languages. In Solidity, X [3] is always an array containing three elements of type X, even if X is itself an
array. This is not the case in other languages such as C.

Indices are zero-based, and access is in the opposite direction of the declaration.

For example, if you have a variable uint [] [5] memory x, you access the second uint in the third dynamic
array using x [2] [1], and to access the third dynamic array, use x [2]. Again, if you have an array T[5] a for a

3.6. Types 61

Solidity Documentation, Release 0.7.5

type T that can also be an array, then a [2] always has type T.

Array elements can be of any type, including mapping or struct. The general restrictions for types apply, in that
mappings can only be stored in the st orage data location and publicly-visible functions need parameters that are
ABI types.

It is possible to mark state variable arrays public and have Solidity create a getfer. The numeric index becomes a
required parameter for the getter.

Accessing an array past its end causes a failing assertion. Methods .push () and .push (value) can be used
to append a new element at the end of the array, where .push () appends a zero-initialized element and returns a
reference to it.

bytes and strings as Arrays

Variables of type bytes and string are special arrays. A bytes is similar to byte [], but it is packed tightly in
calldata and memory. st ring is equal to bytes but does not allow length or index access.

Solidity does not have string manipulation functions, but there are third-party string libraries. You can also compare
two strings by their keccak256-hash using keccak256 (abi.encodePacked(sl)) == keccak256 (abi.
encodePacked (s2)) and concatenate two strings using abi .encodePacked (sl, s2).

You should use bytes over byte [] because it is cheaper, since byte [] adds 31 padding bytes between the el-
ements. As a general rule, use bytes for arbitrary-length raw byte data and string for arbitrary-length string
(UTF-8) data. If you can limit the length to a certain number of bytes, always use one of the value types bytes1 to
bytes32 because they are much cheaper.

Note: If you want to access the byte-representation of a string s, use bytes (s) .length /bytes (s) [7] =
'x";. Keep in mind that you are accessing the low-level bytes of the UTF-8 representation, and not the individual
characters.

Allocating Memory Arrays

Memory arrays with dynamic length can be created using the new operator. As opposed to storage arrays, it is not
possible to resize memory arrays (e.g. the . push member functions are not available). You either have to calculate
the required size in advance or create a new memory array and copy every element.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract C {
function f (uint len) public pure {

uint[] memory a = new uint([] (7);
bytes memory b = new bytes(len);
assert (a.length == 7);

assert (b.length == len);

al[e] = 8;

62 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Array Literals

An array literal is a comma-separated list of one or more expressions, enclosed in square brackets ([...]). For
example [1, a, £ (3)]. There must be a common type all elements can be implicitly converted to. This is the
elementary type of the array.

Array literals are always statically-sized memory arrays.

In the example below, the type of [1, 2, 3] isuint8[3] memory. Because the type of each of these constants
is uint8, if you want the result to be a uint [3] memory type, you need to convert the first element to uint.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract C {
function f () public pure {
g(luint (1), 2, 31);
}
function g (uint[3] memory) public pure {

/7

Fixed size memory arrays cannot be assigned to dynamically-sized memory arrays, i.e. the following is not possible:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

// This will not compile.
contract C {
function f () public {
// The next line creates a type error because uint/[3] memory
// cannot be converted to uint[] memory.
uint[] memory x = [uint(l), 3, 4];

It is planned to remove this restriction in the future, but it creates some complications because of how arrays are passed
in the ABL

If you want to initialize dynamically-sized arrays, you have to assign the individual elements:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract C {
function f () public pure {
uint[] memory x = new uint([] (3);

x[0] = 1;
x[1] = 3;
x[2] = 4;

3.6. Types 63

Solidity Documentation, Release 0.7.5

Array Members

length: Arrays have a 1ength member that contains their number of elements. The length of memory arrays is fixed
(but dynamic, i.e. it can depend on runtime parameters) once they are created.

push(): Dynamic storage arrays and bytes (not st ring) have a member function called push () that you can use
to append a zero-initialised element at the end of the array. It returns a reference to the element, so that it can be
used like x .push () .t = 2orx.push() = b.

push(x): Dynamic storage arrays and bytes (not st ring) have a member function called push (x) that you can
use to append a given element at the end of the array. The function returns nothing.

pop: Dynamic storage arrays and bytes (not string) have a member function called pop that you can use to
remove an element from the end of the array. This also implicitly calls delete on the removed element.

Note: Increasing the length of a storage array by calling push () has constant gas costs because storage is zero-
initialised, while decreasing the length by calling pop () has a cost that depends on the “size” of the element being
removed. If that element is an array, it can be very costly, because it includes explicitly clearing the removed elements
similar to calling delete on them.

Note: To use arrays of arrays in external (instead of public) functions, you need to activate ABI coder v2.

Note: In EVM versions before Byzantium, it was not possible to access dynamic arrays return from function calls. If
you call functions that return dynamic arrays, make sure to use an EVM that is set to Byzantium mode.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

contract ArrayContract {
uint [2+x%x20] m_aLotOfIntegers;
// Note that the following is not a pair of dynamic arrays but a
// dynamic array of pairs (i.e. of fixed size arrays of length two).
// Because of that, T[] is always a dynamic array of T, even if T
// itself is an array.
// Data location for all state variables is storage.
bool[2][] m_pairsOfFlags;

// newPairs 1s stored in memory - the only possibility
// for public contract function arguments
function setAllFlagPairs (bool[2][] memory newPairs) public {

// assignment to a storage array performs a copy of '‘newPairs'' and
// replaces the complete array ' 'm_pairsOfFlags’’
m_pairsOfFlags = newPairs;

struct StructType {
uint[] contents;
uint morelInfo;

}

StructType s;

function f (uint[] memory c) public {

(continues on next page)

64 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

// stores a reference to ‘s’ in " g
StructType storage g = s;

// also changes ' ‘'s.moreInfo '
g.moreInfo = 2;

// assigns a copy because ' ‘g.contents'’

// 1is not a local variable, but a member of
// a local variable.

g.contents = c;

function setFlagPair (uint index, bool flagA, bool flagB) public ({
// access to a non-existing index will throw an exception
m_pairsOfFlags[index] [0] = flagh;
m_pairsOfFlags[index] [1] = flagB;

function changeFlagArraySize (uint newSize) public {
// using push and pop is the only way to change the
// length of an array
if (newSize < m_pairsOfFlags.length) {
while (m_pairsOfFlags.length > newSize)
m_pairsOfFlags.pop () ;
} else if (newSize > m_pairsOfFlags.length) {
while (m_pairsOfFlags.length < newSize)
m_pairsOfFlags.push();

function clear () public ({
// these clear the arrays completely
delete m_pairsOfFlags;
delete m_alotOfIntegers;
// identical effect here
m_pairsOfFlags = new bool[2][] (0);

bytes m_byteData;

function byteArrays (bytes memory data) public {
// byte arrays ("bytes") are different as they are stored without padding,

// but can be treated identical to "uint8[]"
m_byteData = data;

for (uint 1 = 0; 1 < 7; i++)
m_byteData.push () ;
m_byteData[3] = 0x08;

delete m_byteDatal2];

function addFlag(bool[2] memory flag) public returns (uint) {
m_pairsOfFlags.push (flag);
return m_pairsOfFlags.length;

function createMemoryArray (uint size) public pure returns (bytes memory) {
// Dynamic memory arrays are created using 'new ' :
uint [2] [] memory arrayOfPairs = new uint([2][] (size);

(continues on next page)

3.6. Types 65

Solidity Documentation, Release 0.7.5

(continued from previous page)

// Inline arrays are always statically-sized and if you only
// use literals, you have to provide at least one type.
arrayOfPairs[0] = [uint (1), 2];

// Create a dynamic byte array:

bytes memory b = new bytes (200);

for (uint i = 0; i < b.length; i++)
b[i] = byte(uint8(i));

return b;

Array Slices

Array slices are a view on a contiguous portion of an array. They are written as x [start :end], where start
and end are expressions resulting in a uint256 type (or implicitly convertible to it). The first element of the slice is
x [start] and the last element is x [end - 1].

If start is greater than end or if end is greater than the length of the array, an exception is thrown.
Both start and end are optional: start defaults to 0 and end defaults to the length of the array.

Array slices do not have any members. They are implicitly convertible to arrays of their underlying type and support
index access. Index access is not absolute in the underlying array, but relative to the start of the slice.

Array slices do not have a type name which means no variable can have an array slices as type, they only exist in
intermediate expressions.

Note: As of now, array slices are only implemented for calldata arrays.

Array slices are useful to ABI-decode secondary data passed in function parameters:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract Proxy {
/// @dev Address of the client contract managed by proxy i.e., this contract
address client;

constructor (address _client) {
client = _client;

/// Forward call to "setOwner (address)" that is implemented by client
/// after doing basic validation on the address argument.
function forward(bytes calldata _payload) external {
// Since ABI decoding requires padded data, we cannot
// use abi.decode (_payload[:4], (bytes4)).
bytes4 sig =
_payload[0] |
(bytes4 (_payload[1l]) >> 8) |
(bytes4 (_payload[2]) >> 16) |
(bytes4 (_payload[3]) >> 24);
if (sig == bytes4 (keccak256 ("setOwner (address)"))) {
address owner = abi.decode(_payload[4:], (address));

(continues on next page)

66 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

require (owner != address(0), "Address of owner cannot be zero.");
}
(bool status,) = client.delegatecall (_payload);
require (status, "Forwarded call failed.");

Structs

Solidity provides a way to define new types in the form of structs, which is shown in the following example:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

// Defines a new type with two fields.
// Declaring a struct outside of a contract allows
// it to be shared by multiple contracts.
// Here, this is not really needed.
struct Funder {
address addr;
uint amount;

contract CrowdFunding {
// Structs can also be defined inside contracts, which makes them
// visible only there and in derived contracts.
struct Campaign {
address payable beneficiary;
uint fundingGoal;
uint numFunders;
uint amount;
mapping (uint => Funder) funders;

uint numCampaigns;
mapping (uint => Campaign) campaigns;

function newCampaign (address payable beneficiary, uint goal) public returns (uint

—campaignID) {

campaignID = numCampaigns++; // campaignID is return variable

// We cannot use "campaigns[campaignID] = Campaign (beneficiary, goal, 0, 0)"

// because the RHS creates a memory-struct "Campaign" that contains a_
—mapping.

Campaign storage c = campaigns[campaignID];

c.beneficiary = beneficiary;

c.fundingGoal = goal;

function contribute (uint campaignID) public payable {
Campaign storage c = campaigns[campaignID];
// Creates a new temporary memory struct, initialised with the given values
// and copies it over to storage.
// Note that you can also use Funder (msg.sender, msg.value) to initialise.
c.funders[c.numFunders++] = Funder ({addr: msg.sender, amount: msg.value});
c.amount += msg.value;

(continues on next page)

3.6. Types 67

Solidity Documentation, Release 0.7.5

(continued from previous page)

function checkGoalReached (uint campaignID) public returns (bool reached) {
Campaign storage c = campaigns[campaignID];
if (c.amount < c.fundingGoal)
return false;
uint amount = c.amount;
c.amount = 0;
c.beneficiary.transfer (amount) ;
return true;

The contract does not provide the full functionality of a crowdfunding contract, but it contains the basic concepts
necessary to understand structs. Struct types can be used inside mappings and arrays and they can themselves contain
mappings and arrays.

It is not possible for a struct to contain a member of its own type, although the struct itself can be the value type of a
mapping member or it can contain a dynamically-sized array of its type. This restriction is necessary, as the size of the
struct has to be finite.

Note how in all the functions, a struct type is assigned to a local variable with data location st orage. This does not
copy the struct but only stores a reference so that assignments to members of the local variable actually write to the
state.

Of course, you can also directly access the members of the struct without assigning it to a local variable, as in
campaigns[campaignID] .amount = O.

3.6.3 Mapping Types

Mapping types use the syntax mapping (_KeyType => _ValueType) and variables of mapping type are de-
clared using the syntax mapping (_KeyType => _ValueType) _VariableName. The _KeyType can be
any built-in value type, bytes, string, or any contract or enum type. Other user-defined or complex types, such
as mappings, structs or array types are not allowed. _ValueType can be any type, including mappings, arrays and
structs.

You can think of mappings as hash tables, which are virtually initialised such that every possible key exists and is
mapped to a value whose byte-representation is all zeros, a type’s default value. The similarity ends there, the key data
is not stored in a mapping, only its keccak256 hash is used to look up the value.

Because of this, mappings do not have a length or a concept of a key or value being set, and therefore cannot be erased
without extra information regarding the assigned keys (see Clearing Mappings).

Mappings can only have a data location of storage and thus are allowed for state variables, as storage reference
types in functions, or as parameters for library functions. They cannot be used as parameters or return parameters of
contract functions that are publicly visible. These restrictions are also true for arrays and structs that contain mappings.

You can mark state variables of mapping type as public and Solidity creates a getter for you. The _KeyType
becomes a parameter for the getter. If _ValueType is a value type or a struct, the getter returns _ValueType. If
_ValueType is an array or a mapping, the getter has one parameter for each _KeyType, recursively.

In the example below, the MappingExample contract defines a public balances mapping, with the key type an
address, and a value type a uint, mapping an Ethereum address to an unsigned integer value. As uint is a value
type, the getter returns a value that matches the type, which you can see in the MappingUser contract that returns
the value at the specified address.

68 Chapter 3. Contents

https://en.wikipedia.org/wiki/Hash_table

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract MappingExample {
mapping (address => uint) public balances;

function update (uint newBalance) public {
balances[msg.sender] = newBalance;

contract MappingUser {
function f () public returns (uint) ({
MappingExample m = new MappingExample () ;
m.update (100) ;
return m.balances (address (this));

The example below is a simplified version of an ERC20 token. _allowances is an example of a mapping type
inside another mapping type. The example below uses _allowances to record the amount someone else is allowed
to withdraw from your account.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract MappingExample {

mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;

event Transfer (address indexed from, address indexed to, uint256 value);
event Approval (address indexed owner, address indexed spender, uint256 value);

function allowance (address owner, address spender) public view returns (uint256) {
return _allowances[owner] [spender];

function transferFrom(address sender, address recipient, uint256 amount) public
—returns (bool) {
_transfer (sender, recipient, amount);
approve (sender, msg.sender, amount);
return true;

function approve (address owner, address spender, uint256 amount) public returns
— (bool) {

require (owner != address(0), "ERC20: approve from the zero address");
require (spender != address(0), "ERC20: approve to the zero address");
_allowances[owner] [spender] = amount;

emit Approval (owner, spender, amount);
return true;

function _transfer (address sender, address recipient, uint256 amount) internal {
require (sender != address(0), "ERC20: transfer from the zero address");

(continues on next page)

3.6. Types 69

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

Solidity Documentation, Release 0.7.5

(continued from previous page)

require (recipient != address(0), "ERC20: transfer to the zero address");

_balances[sender] —= amount;
_balances[recipient] += amount;
emit Transfer (sender, recipient, amount);

Iterable Mappings

You cannot iterate over mappings, i.e. you cannot enumerate their keys. It is possible, though, to implement a data
structure on top of them and iterate over that. For example, the code below implements an TterableMapping
library that the User contract then adds data too, and the sum function iterates over to sum all the values.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

struct IndexValue { uint keyIndex; uint value; }
struct KeyFlag { uint key; bool deleted; }

struct itmap {
mapping (uint => IndexValue) data;
KeyFlag[] keys;
uint size;

library IterableMapping {
function insert (itmap storage self, uint key, uint value) internal returns (bool
—replaced) {
uint keyIndex = self.datalkey].keyIndex;
self.datalkey] .value = value;
if (keyIndex > 0)
return true;
else {
keyIndex = self.keys.length;
self.keys.push();
self.datalkey] .keyIndex = keyIndex + 1;
self.keys[keyIndex].key = key;
self.size++;
return false;

function remove (itmap storage self, uint key) internal returns (bool success) {
uint keyIndex = self.datalkey].keyIndex;
if (keyIndex == 0)
return false;
delete self.datalkey];
self.keys[keyIndex - 1].deleted = true;
self.size ——;

function contains (itmap storage self, uint key) internal view returns (bool) {
return self.datalkey].keyIndex > 0;

(continues on next page)

70 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

function iterate_start (itmap storage self) internal view returns (uint keyIndex) {
return iterate_next (self, uint(-1));

function iterate_valid(itmap storage self, uint keyIndex) internal view returns
— (bool) {
return keyIndex < self.keys.length;

function iterate_next (itmap storage self, uint keyIndex) internal view returns
— (uint r_keyIndex) {
keyIndex++;
while (keyIndex < self.keys.length && self.keys[keyIndex].deleted)
keyIndex++;
return keyIndex;

function iterate_get (itmap storage self, uint keyIndex) internal view returns
— (uint key, uint wvalue) {
key = self.keys[keyIndex] .key;
value = self.datalkey].value;

// How to use it
contract User {
// Just a struct holding our data.
itmap data;
// Apply library functions to the data type.
using IterableMapping for itmap;

// Insert something

function insert (uint k, uint v) public returns (uint size) {
// This calls IterableMapping.insert (data, k, v)
data.insert (k, Vv);
// We can still access members of the struct,
// but we should take care not to mess with them.
return data.size;

// Computes the sum of all stored data.
function sum() public view returns (uint s) {
for (
uint i = data.iterate_start();
data.iterate_valid(i);
i = data.iterate_next (i)

(, uint value) = data.iterate_get(i);
s += value;

3.6. Types 71

Solidity Documentation, Release 0.7.5

3.6.4 Operators Involving LValues

If a is an LValue (i.e. a variable or something that can be assigned to), the following operators are available as
shorthands:

a += eisequivalenttoa = a + e. The operators —=, =, /=, $=, | =, &= and "= are defined accordingly. a++
and a—— are equivalentto a += 1/a —= 1 but the expression itself still has the previous value of a. In contrast,
——a and ++a have the same effect on a but return the value after the change.

delete

delete a assigns the initial value for the type to a. Le. for integers it is equivalent to a = 0, but it can also be
used on arrays, where it assigns a dynamic array of length zero or a static array of the same length with all elements
set to their initial value. delete a[x] deletes the item at index x of the array and leaves all other elements and the
length of the array untouched. This especially means that it leaves a gap in the array. If you plan to remove items, a
mapping is probably a better choice.

For structs, it assigns a struct with all members reset. In other words, the value of a after delete a is the same as if
a would be declared without assignment, with the following caveat:

delete has no effect on mappings (as the keys of mappings may be arbitrary and are generally unknown). So if
you delete a struct, it will reset all members that are not mappings and also recurse into the members unless they are
mappings. However, individual keys and what they map to can be deleted: If a is a mapping, then delete a[x]

will delete the value stored at x.

It is important to note that delete a really behaves like an assignment to a, i.e. it stores a new object in a. This
distinction is visible when a is reference variable: It will only reset a itself, not the value it referred to previously.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract DeleteExample {
uint data;
uint [] dataArray;

function f () public {
uint x data;
delete x; // sets x to 0, does not affect data
delete data; // sets data to 0, does not affect x
uint[] storage y = dataArray;
delete dataArray; // this sets dataArray.length to zero, but as uint/[] is a_
—complex object, also

// vy 1s affected which is an alias to the storage object

// On the other hand: "delete y" is not valid, as assignments to local,,
—variables

// referencing storage objects can only be made from existing storage,,
—objects.

assert (y.length == 0);

3.6.5 Conversions between Elementary Types

72 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Implicit Conversions

An implicit type conversion is automatically applied by the compiler in some cases during assignments, when passing
arguments to functions and when applying operators. In general, an implicit conversion between value-types is possible
if it makes sense semantically and no information is lost.

For example, uint 8 is convertible to uint16 and int128 to int256, but int8 is not convertible to uint256,
because uint 256 cannot hold values such as —1.

If an operator is applied to different types, the compiler tries to implicitly convert one of the operands to the type of
the other (the same is true for assignments). This means that operations are always performed in the type of one of the
operands.

For more details about which implicit conversions are possible, please consult the sections about the types themselves.

In the example below, y and z, the operands of the addition, do not have the same type, but uint 8 can be implicitly
converted to uint16 and not vice-versa. Because of that, y is converted to the type of z before the addition is
performed in the uint16 type. The resulting type of the expression y + z is uintl6’ . Because it is
assigned to a variable of type ° uint32 another implicit conversion is performed after the addition.

uint8 vy;
uintlé z;
uint32 x = y + z;

Explicit Conversions

If the compiler does not allow implicit conversion but you are confident a conversion will work, an explicit type
conversion is sometimes possible. This may result in unexpected behaviour and allows you to bypass some security
features of the compiler, so be sure to test that the result is what you want and expect!

Take the following example that converts a negative int toauint:

int y = -3;
uint x = uint (y);

At the end of this code snippet, x will have the value Oxfffff. . fd (64 hex characters), which is -3 in the two’s
complement representation of 256 bits.

If an integer is explicitly converted to a smaller type, higher-order bits are cut off:

uint32 a
uintl6é b

0x12345678;
uintlé6(a); // b will be 0x5678 now

If an integer is explicitly converted to a larger type, it is padded on the left (i.e., at the higher order end). The result of
the conversion will compare equal to the original integer:

uintlé a = 0x1234;
uint32 b = uint32(a); // b will be 0x00001234 now
assert (a == b);

Fixed-size bytes types behave differently during conversions. They can be thought of as sequences of individual bytes
and converting to a smaller type will cut off the sequence:

bytes2 a 0x1234;
bytesl b = bytesl(a); // b will be 0x12

If a fixed-size bytes type is explicitly converted to a larger type, it is padded on the right. Accessing the byte at a fixed
index will result in the same value before and after the conversion (if the index is still in range):

3.6. Types 73

Solidity Documentation, Release 0.7.5

bytes2 a = 0x1234;

bytes4 b = bytesd(a); // b will be 0x12340000
assert (a[0] == [01);

assert(al[l] == b[1l]);

Since integers and fixed-size byte arrays behave differently when truncating or padding, explicit conversions between
integers and fixed-size byte arrays are only allowed, if both have the same size. If you want to convert between integers
and fixed-size byte arrays of different size, you have to use intermediate conversions that make the desired truncation
and padding rules explicit:

bytes2 a 0x1234;

uint32 b uintlé(a); // b will be 0x00001234

uint32 c = uint32 (bytesd(a)); // ¢ will be 0x12340000
uint8 d = uint8(uintlé(a)); // d will be 0x34

uint8 e = uint8(bytesl(a)); // e will be 0x12

3.6.6 Conversions between Literals and Elementary Types

Integer Types

Decimal and hexadecimal number literals can be implicitly converted to any integer type that is large enough to
represent it without truncation:

uint8 a = 12; // fine
uint32 b 1234; // fine
uintlé c 0x123456; // fails, since it would have to truncate to 0x3456

Fixed-Size Byte Arrays

Decimal number literals cannot be implicitly converted to fixed-size byte arrays. Hexadecimal number literals can
be, but only if the number of hex digits exactly fits the size of the bytes type. As an exception both decimal and
hexadecimal literals which have a value of zero can be converted to any fixed-size bytes type:

bytes2 a = 54321; // not allowed
bytes2 b = 0x12; // not allowed
bytes2 ¢ = 0x123; // not allowed
bytes2 d = 0x1234; // fine
bytes2 e = 0x0012; // fine
bytesd f = 0; // fine

bytesd g = 0x0; // fine

String literals and hex string literals can be implicitly converted to fixed-size byte arrays, if their number of characters
matches the size of the bytes type:

bytes2 a = hex"1234"; // fine
bytes2 b = "xy"; // fine

bytes2 ¢ = hex"12"; // not allowed
bytes2 d = hex"123"; // not allowed
bytes2 e = "x"; // not allowed
bytes2 £ = "xyz"; // not allowed

74 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Addresses

As described in Address Literals, hex literals of the correct size that pass the checksum test are of address type. No
other literals can be implicitly converted to the address type.

Explicit conversions from bytes20 or any integer type to address result in address payable.

An address a can be converted to address payable viapayable (a).

3.7 Units and Globally Available Variables

3.7.1 Ether Units

A literal number can take a suffix of wei, gwei or ether to specify a subdenomination of Ether, where Ether
numbers without a postfix are assumed to be Wei.

assert (1 wei == 1);
assert (1 gwel == 1e9);
assert (1 ether == 1e18);

The only effect of the subdenomination suffix is a multiplication by a power of ten.

Note: The denominations finney and szabo have been removed in version 0.7.0.

3.7.2 Time Units

Suffixes like seconds, minutes, hours, days and weeks after literal numbers can be used to specify units of
time where seconds are the base unit and units are considered naively in the following way:

el == 1 seconds
* 1 minutes == 60 seconds
* 1 hours == 60 minutes

* 1 days == 24 hours

¢ 1 weeks == 7 days

Take care if you perform calendar calculations using these units, because not every year equals 365 days and not
even every day has 24 hours because of leap seconds. Due to the fact that leap seconds cannot be predicted, an exact
calendar library has to be updated by an external oracle.

Note: The suffix years has been removed in version 0.5.0 due to the reasons above.

These suffixes cannot be applied to variables. For example, if you want to interpret a function parameter in days, you
can in the following way:

function f (uint start, uint daysAfter) public {
if (block.timestamp >= start + daysAfter = 1 days) {
VAR

3.7. Units and Globally Available Variables 75

https://en.wikipedia.org/wiki/Leap_second

Solidity Documentation, Release 0.7.5

3.7.3 Special Variables and Functions

There are special variables and functions which always exist in the global namespace and are mainly used to provide
information about the blockchain or are general-use utility functions.

Block and Transaction Properties
* blockhash (uint blockNumber) returns (bytes32): hash of the given block - only works for
256 most recent, excluding current, blocks
e block.coinbase (address payable): current block miner’s address
* block.difficulty (uint): current block difficulty
* block.gaslimit (uint): current block gaslimit
* block.number (uint): current block number
* block.timestamp (uint): current block timestamp as seconds since unix epoch
* gasleft () returns (uint256): remaining gas
* msg.data (bytes calldata): complete calldata
* msg.sender (address payable): sender of the message (current call)
* msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)
* msg.value (uint): number of wei sent with the message
* tx.gasprice (uint): gas price of the transaction

e tx.origin (address payable): sender of the transaction (full call chain)

Note: The values of all members of msg, including msg. sender and msg. value can change for every external
function call. This includes calls to library functions.

Note: Do not rely on block.timestamp or blockhash as a source of randomness, unless you know what you
are doing.

Both the timestamp and the block hash can be influenced by miners to some degree. Bad actors in the mining com-
munity can for example run a casino payout function on a chosen hash and just retry a different hash if they did not
receive any money.

The current block timestamp must be strictly larger than the timestamp of the last block, but the only guarantee is that
it will be somewhere between the timestamps of two consecutive blocks in the canonical chain.

Note: The block hashes are not available for all blocks for scalability reasons. You can only access the hashes of the
most recent 256 blocks, all other values will be zero.

Note: The function blockhash was previously known as block .blockhash, which was deprecated in version
0.4.22 and removed in version 0.5.0.

76 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Note: The function gasleft was previously known as msg.gas, which was deprecated in version 0.4.21 and
removed in version 0.5.0.

Note: In version 0.7.0, the alias now (for block.timestamp) was removed.

ABI Encoding and Decoding Functions

* abi.decode (bytes memory encodedData, (...)) returns (...): ABI-decodes the given
data, while the types are given in parentheses as second argument. Example: (uint a, uint[2] memory
b, bytes memory c) = abi.decode(data, (uint, uint[2], bytes))

* abi.encode(...) returns (bytes memory): ABl-encodes the given arguments

e abi.encodePacked(...) returns (bytes memory): Performs packed encoding of the given ar-
guments. Note that packed encoding can be ambiguous!

* abi.encodeWithSelector (bytes4 selector, ...) returns (bytes memory): ABI-
encodes the given arguments starting from the second and prepends the given four-byte selector

* abi.encodeWithSignature (string memory signature, ...) returns (bytes
memory) : Equivalentto abi.encodeWithSelector (bytes4 (keccak256 (bytes (signature))),
)0

Note: These encoding functions can be used to craft data for external function calls without actually calling an
external function. Furthermore, keccak256 (abi.encodePacked (a, b)) is a way to compute the hash of
structured data (although be aware that it is possible to craft a “hash collision” using different function parameter

types).

See the documentation about the ABI and the fightly packed encoding for details about the encoding.

Error Handling

See the dedicated section on assert and require for more details on error handling and when to use which function.

assert (bool condition) causes an invalid opcode and thus state change reversion if the condition is not met
- to be used for internal errors.

require (bool condition) reverts if the condition is not met - to be used for errors in inputs or external
components.

require (bool condition, string memory message) reverts if the condition is not met - to be used
for errors in inputs or external components. Also provides an error message.

revert () abort execution and revert state changes

revert (string memory reason) abortexecution and revert state changes, providing an explanatory string
Mathematical and Cryptographic Functions
addmod (uint x, uint y, uint k) returns (uint) compute (x + y) % k where the addition is

performed with arbitrary precision and does not wrap around at 2+ +256. Assert that k != 0 starting from
version 0.5.0.

3.7. Units and Globally Available Variables 77

Solidity Documentation, Release 0.7.5

mulmod (uint x, uint y, uint k) returns (uint) compute (x * y) % k where the multiplica-
tion is performed with arbitrary precision and does not wrap around at 2+ «256. Assert that k != 0 starting
from version 0.5.0.

keccak256 (bytes memory) returns (bytes32) compute the Keccak-256 hash of the input

Note: There used to be an alias for keccak256 called sha3, which was removed in version 0.5.0.

sha256 (bytes memory) returns (bytes32) compute the SHA-256 hash of the input
ripemdl160 (bytes memory) returns (bytes20) compute RIPEMD-160 hash of the input

ecrecover (bytes32 hash, uint8 v, bytes32 r, bytes32 s) returns (address) recover
the address associated with the public key from elliptic curve signature or return zero on error. The function
parameters correspond to ECDSA values of the signature:

* r = first 32 bytes of signature
* s =second 32 bytes of signature
» v = final 1 byte of signature

ecrecover returns an address, and not an address payable. See address payable for conversion, in
case you need to transfer funds to the recovered address.

For further details, read example usage.

Warning: If you use ecrecover, be aware that a valid signature can be turned into a different valid signature
without requiring knowledge of the corresponding private key. In the Homestead hard fork, this issue was fixed for
transaction signatures (see EIP-2), but the ecrecover function remained unchanged.

This is usually not a problem unless you require signatures to be unique or use them to identify items. OpenZep-
pelin have a ECDSA helper library that you can use as a wrapper for ecrecover without this issue.

Note: When running sha256, ripemdl160 or ecrecover on a private blockchain, you might encounter Out-
of-Gas. This is because these functions are implemented as “precompiled contracts” and only really exist after they
receive the first message (although their contract code is hardcoded). Messages to non-existing contracts are more
expensive and thus the execution might run into an Out-of-Gas error. A workaround for this problem is to first send
Wei (1 for example) to each of the contracts before you use them in your actual contracts. This is not an issue on the
main or test net.

Members of Address Types

<address>.balance (uint256) balance of the Address in Wei

<address payable>.transfer (uint256 amount) send given amount of Wei to Address, reverts on fail-
ure, forwards 2300 gas stipend, not adjustable

<address payable>.send(uint256 amount) returns (bool) send given amount of Wei to Ad-
dress, returns false on failure, forwards 2300 gas stipend, not adjustable

<address>.call (bytes memory) returns (bool, bytes memory) issue low-level CALL with the
given payload, returns success condition and return data, forwards all available gas, adjustable

78 Chapter 3. Contents

https://ethereum.stackexchange.com/questions/1777/workflow-on-signing-a-string-with-private-key-followed-by-signature-verificatio
https://eips.ethereum.org/EIPS/eip-2#specification
https://docs.openzeppelin.com/contracts/2.x/api/cryptography#ECDSA

Solidity Documentation, Release 0.7.5

<address>.delegatecall (bytes memory) returns (bool, bytes memory) issue low-level
DELEGATECALL with the given payload, returns success condition and return data, forwards all available gas,

adjustable

<address>.staticcall (bytes memory) returns (bool, bytes memory) issue low-level
STATICCALL with the given payload, returns success condition and return data, forwards all available gas,
adjustable

For more information, see the section on Address.

Warning: You should avoid using .call () whenever possible when executing another contract function as it
bypasses type checking, function existence check, and argument packing.

Warning: There are some dangers in using send: The transfer fails if the call stack depth is at 1024 (this can
always be forced by the caller) and it also fails if the recipient runs out of gas. So in order to make safe Ether
transfers, always check the return value of send, use t ransfer or even better: Use a pattern where the recipient
withdraws the money.

Note: Prior to version 0.5.0, Solidity allowed address members to be accessed by a contract instance, for example
this.balance. This is now forbidden and an explicit conversion to address must be done: address (this) .
balance.

Note: If state variables are accessed via a low-level delegatecall, the storage layout of the two contracts must align in
order for the called contract to correctly access the storage variables of the calling contract by name. This is of course
not the case if storage pointers are passed as function arguments as in the case for the high-level libraries.

Note: Prior to version 0.5.0, .call, .delegatecall and .staticcall only returned the success condition
and not the return data.

Note: Prior to version 0.5.0, there was a member called callcode with similar but slightly different semantics than
delegatecall.

Contract Related

this (current contract’s type) the current contract, explicitly convertible to Address

selfdestruct (address payable recipient) Destroy the current contract, sending its funds to the given
Address and end execution. Note that sel fdestruct has some peculiarities inherited from the EVM:

* the receiving contract’s receive function is not executed.

* the contract is only really destroyed at the end of the transaction and revert s might “undo” the destruc-
tion.

Furthermore, all functions of the current contract are callable directly including the current function.

3.7. Units and Globally Available Variables 79

Solidity Documentation, Release 0.7.5

Note: Prior to version 0.5.0, there was a function called suicide with the same semantics as selfdestruct.

Type Information

The expression type (X) can be used to retrieve information about the type X. Currently, there is limited support for
this feature (X can be either a contract or an integer type) but it might be expanded in the future.

The following properties are available for a contract type C:

type (C) .name The name of the contract.

type (C) .creationCode Memory byte array that contains the creation bytecode of the contract. This can be used
in inline assembly to build custom creation routines, especially by using the create?2 opcode. This property
can not be accessed in the contract itself or any derived contract. It causes the bytecode to be included in the
bytecode of the call site and thus circular references like that are not possible.

type (C) . runtimeCode Memory byte array that contains the runtime bytecode of the contract. This is the code
that is usually deployed by the constructor of C. If C has a constructor that uses inline assembly, this might be
different from the actually deployed bytecode. Also note that libraries modify their runtime bytecode at time of
deployment to guard against regular calls. The same restrictions as with . creationCode also apply for this

property.
In addition to the properties above, the following properties are available for an interface type I:

type (I) .interfaceId: A bytes4 value containing the EIP-165 interface identifier of the given interface I.
This identifier is defined as the XOR of all function selectors defined within the interface itself - excluding all
inherited functions.

The following properties are available for an integer type T:
type (T) .min The smallest value representable by type T.

type (T) .max The largest value representable by type T.

3.8 Expressions and Control Structures

3.8.1 Control Structures

Most of the control structures known from curly-braces languages are available in Solidity:

There is: if, else, while, do, for, break, continue, return, with the usual semantics known from C or
JavaScript.

Solidity also supports exception handling in the form of t ry/cat ch-statements, but only for external function calls
and contract creation calls.

Parentheses can not be omitted for conditionals, but curly braces can be omitted around single-statement bodies.

Note that there is no type conversion from non-boolean to boolean types as there is in C and JavaScript, so if (1)
{ ... }isnotvalid Solidity.

3.8.2 Function Calls

80 Chapter 3. Contents

https://eips.ethereum.org/EIPS/eip-165

Solidity Documentation, Release 0.7.5

Internal Function Calls

Functions of the current contract can be called directly (“internally”), also recursively, as seen in this nonsensical
example:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract C {
function g (uint a) public pure returns (uint ret) { return a + £(); }
function f () internal pure returns (uint ret) { return g(7) + £(); }

These function calls are translated into simple jumps inside the EVM. This has the effect that the current memory is
not cleared, i.e. passing memory references to internally-called functions is very efficient. Only functions of the same
contract instance can be called internally.

You should still avoid excessive recursion, as every internal function call uses up at least one stack slot and there are
only 1024 slots available.

External Function Calls

The expressions this.g(8); and c.g(2); (where c is a contract instance) are also valid function calls, but this
time, the function will be called “externally”, via a message call and not directly via jumps. Please note that function
calls on this cannot be used in the constructor, as the actual contract has not been created yet.

Functions of other contracts have to be called externally. For an external call, all function arguments have to be copied
to memory.

Note: A function call from one contract to another does not create its own transaction, it is a message call as part of
the overall transaction.

When calling functions of other contracts, you can specify the amount of Wei or gas sent with the call with the special
options {value: 10, gas: 10000}. Note that it is discouraged to specify gas values explicitly, since the
gas costs of opcodes can change in the future. Any Wei you send to the contract is added to the total balance of that
contract:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.2 <0.8.0;

contract InfoFeed {
function info () public payable returns (uint ret) { return 42; }

contract Consumer {
InfoFeed feed;
function setFeed(InfoFeed addr) public { feed = addr; }
function callFeed() public { feed.info{value: 10, gas: 800} (); }

You need to use the modifier payable with the info function because otherwise, the value option would not be
available.

3.8. Expressions and Control Structures 81

Solidity Documentation, Release 0.7.5

Warning: Be careful that feed.info{value: 10, gas: 800} only locally sets the value and
amount of gas sent with the function call, and the parentheses at the end perform the actual call. So in this
case, the function is not called and the value and gas settings are lost.

Due to the fact that the EVM considers a call to a non-existing contract to always succeed, Solidity uses the
extcodesize opcode to check that the contract that is about to be called actually exists (it contains code) and
causes an exception if it does not.

Function calls also cause exceptions if the called contract itself throws an exception or goes out of gas.

Warning: Any interaction with another contract imposes a potential danger, especially if the source code of
the contract is not known in advance. The current contract hands over control to the called contract and that
may potentially do just about anything. Even if the called contract inherits from a known parent contract, the
inheriting contract is only required to have a correct interface. The implementation of the contract, however, can
be completely arbitrary and thus, pose a danger. In addition, be prepared in case it calls into other contracts of your
system or even back into the calling contract before the first call returns. This means that the called contract can
change state variables of the calling contract via its functions. Write your functions in a way that, for example, calls
to external functions happen after any changes to state variables in your contract so your contract is not vulnerable
to a reentrancy exploit.

Note: Before Solidity 0.6.2, the recommended way to specify the value and gas was to use f.value (x) .
gas (g) (). This was deprecated in Solidity 0.6.2 and is no longer possible since Solidity 0.7.0.

Named Calls and Anonymous Function Parameters

Function call arguments can be given by name, in any order, if they are enclosed in { } as can be seen in the following
example. The argument list has to coincide by name with the list of parameters from the function declaration, but can
be in arbitrary order.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract C {
mapping (uint => uint) data;

function f () public {
set ({value: 2, key: 3});

function set (uint key, uint value) public ({
datalkey] = value;
}

Omitted Function Parameter Names

The names of unused parameters (especially return parameters) can be omitted. Those parameters will still be present
on the stack, but they are inaccessible.

82 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract C {
// omitted name for parameter
function func (uint k, uint) public pure returns (uint) ({
return k;

3.8.3 Creating Contracts via new

A contract can create other contracts using the new keyword. The full code of the contract being created has to be
known when the creating contract is compiled so recursive creation-dependencies are not possible.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract D {
uint public x;
constructor (uint a) payable ({
X = a;

contract C {
Dd=newD(4); // will be executed as part of C's constructor

function createD (uint arg) public {
D newD = new D (arg);
newD.x () ;

function createAndEndowD (uint arg, uint amount) public payable ({
// Send ether along with the creation
D newD = new D{value: amount} (arg);
newD.x () ;

As seen in the example, it is possible to send Ether while creating an instance of D using the value option, but it is not
possible to limit the amount of gas. If the creation fails (due to out-of-stack, not enough balance or other problems),
an exception is thrown.

Salted contract creations / create2
When creating a contract, the address of the contract is computed from the address of the creating contract and a
counter that is increased with each contract creation.

If you specify the option salt (a bytes32 value), then contract creation will use a different mechanism to come up
with the address of the new contract:

It will compute the address from the address of the creating contract, the given salt value, the (creation) bytecode of
the created contract and the constructor arguments.

3.8. Expressions and Control Structures 83

Solidity Documentation, Release 0.7.5

In particular, the counter (“nonce”) is not used. This allows for more flexibility in creating contracts: You are able to
derive the address of the new contract before it is created. Furthermore, you can rely on this address also in case the
creating contracts creates other contracts in the meantime.

The main use-case here is contracts that act as judges for off-chain interactions, which only need to be created if there
is a dispute.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

contract D {
uint public x;
constructor (uint a) {
X = aj;

contract C {
function createDSalted (bytes32 salt, uint arg) public {
// This complicated expression just tells you how the address
// can be pre-computed. It is just there for illustration.
// You actually only need " ‘new D{salt: salt} (arg) .
address predictedAddress = address (uint (keccak256 (abi.encodePacked (
byte (0xff),
address (this),
salt,
keccak256 (abi.encodePacked (
type (D) .creationCode,
arg

)))) i

D d = new D{salt: salt} (arqg);
require (address (d) == predictedAddress);

Warning: There are some peculiarities in relation to salted creation. A contract can be re-created at the same
address after having been destroyed. Yet, it is possible for that newly created contract to have a different deployed
bytecode even though the creation bytecode has been the same (which is a requirement because otherwise the
address would change). This is due to the fact that the compiler can query external state that might have changed
between the two creations and incorporate that into the deployed bytecode before it is stored.

3.8.4 Order of Evaluation of Expressions

The evaluation order of expressions is not specified (more formally, the order in which the children of one node in
the expression tree are evaluated is not specified, but they are of course evaluated before the node itself). It is only
guaranteed that statements are executed in order and short-circuiting for boolean expressions is done.

3.8.5 Assignment

84 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Destructuring Assignments and Returning Multiple Values

Solidity internally allows tuple types, i.e. a list of objects of potentially different types whose number is a constant at
compile-time. Those tuples can be used to return multiple values at the same time. These can then either be assigned
to newly declared variables or to pre-existing variables (or LValues in general).

Tuples are not proper types in Solidity, they can only be used to form syntactic groupings of expressions.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

contract C {
uint index;

function f () public pure returns (uint, bool, uint) {
return (7, true, 2);

function g () public {
// Variables declared with type and assigned from the returned tuple,
// not all elements have to be specified (but the number must match) .

(uint x, , uint y) = £();

// Common trick to swap values -- does not work for non-value storage types.
(x, y) = (v, %)

// Components can be left out (also for variable declarations).

(index, ,) = £(); // Sets the index to 7

It is not possible to mix variable declarations and non-declaration assignments, i.e. the following is not valid: (x,
uint y) = (1, 2);

Note: Prior to version 0.5.0 it was possible to assign to tuples of smaller size, either filling up on the left or on the
right side (which ever was empty). This is now disallowed, so both sides have to have the same number of components.

Warning: Be careful when assigning to multiple variables at the same time when reference types are involved,
because it could lead to unexpected copying behaviour.

Complications for Arrays and Structs
The semantics of assignments are more complicated for non-value types like arrays and structs, including bytes and
string, see Data location and assignment behaviour for details.

In the example below the call to g (x) has no effect on x because it creates an independent copy of the storage value
in memory. However, h (x) successfully modifies x because only a reference and not a copy is passed.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract C {
uint[20] x;

function f () public ({

(continues on next page)

3.8. Expressions and Control Structures 85

Solidity Documentation, Release 0.7.5

(continued from previous page)

function g (uint[20] memory y) internal pure {
yl2] = 3;
}

function h(uint[20] storage y) internal {
y[3] = 4;
}

3.8.6 Scoping and Declarations

A variable which is declared will have an initial default value whose byte-representation is all zeros. The “default
values” of variables are the typical “zero-state” of whatever the type is. For example, the default value for a bool
is false. The default value for the uint or int types is 0. For statically-sized arrays and bytes1 to bytes32,
each individual element will be initialized to the default value corresponding to its type. For dynamically-sized arrays,
bytes and string, the default value is an empty array or string. For the enum type, the default value is its first
member.

Scoping in Solidity follows the widespread scoping rules of C99 (and many other languages): Variables are visible
from the point right after their declaration until the end of the smallest { }-block that contains the declaration. As
an exception to this rule, variables declared in the initialization part of a for-loop are only visible until the end of the
for-loop.

Variables that are parameter-like (function parameters, modifier parameters, catch parameters, ...) are visible inside
the code block that follows - the body of the function/modifier for a function and modifier parameter and the catch
block for a catch parameter.

Variables and other items declared outside of a code block, for example functions, contracts, user-defined types, etc.,
are visible even before they were declared. This means you can use state variables before they are declared and call
functions recursively.

As a consequence, the following examples will compile without warnings, since the two variables have the same name
but disjoint scopes.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;
contract C {
function minimalScoping () pure public {
{
uint same;
same = 1;

uint same;
same = 3;

As a special example of the C99 scoping rules, note that in the following, the first assignment to x will actually assign
the outer and not the inner variable. In any case, you will get a warning about the outer variable being shadowed.

86 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;
// This will report a warning
contract C {
function f () pure public returns (uint) {
uint x = 1;
{
X = 2; // this will assign to the outer variable
uint x;
}

return x; // x has value 2

Warning: Before version 0.5.0 Solidity followed the same scoping rules as JavaScript, that is, a variable declared
anywhere within a function would be in scope for the entire function, regardless where it was declared. The
following example shows a code snippet that used to compile but leads to an error starting from version 0.5.0.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;
// This will not compile
contract C {
function f () pure public returns (uint) {
X = 2;
uint x;
return x;

3.8.7 Error handling: Assert, Require, Revert and Exceptions

Solidity uses state-reverting exceptions to handle errors. Such an exception undoes all changes made to the state in the
current call (and all its sub-calls) and flags an error to the caller.

When exceptions happen in a sub-call, they “bubble up” (i.e., exceptions are rethrown) automatically. Exceptions to
this rule are send and the low-level functions call, delegatecall and staticcall: they return false as
their first return value in case of an exception instead of “bubbling up”.

Warning: The low-level functions call, delegatecall and staticcall return true as their first return
value if the account called is non-existent, as part of the design of the EVM. Account existence must be checked
prior to calling if needed.

Exceptions can be caught with the t ry/catch statement.

assert and require

The convenience functions assert and require can be used to check for conditions and throw an exception if the
condition is not met.

The assert function should only be used to test for internal errors, and to check invariants. Properly functioning
code should never reach a failing assert statement; if this happens there is a bug in your contract which you should

3.8. Expressions and Control Structures 87

Solidity Documentation, Release 0.7.5

fix. Language analysis tools can evaluate your contract to identify the conditions and function calls which will reach
a failing assert.

An assert-style exception is generated in the following situations:

1. If you access an array or an array slice at a too large or negative index (i.e. x [1] where 1 >= x.length or
i < 0).

2. If you access a fixed-length bytesN at a too large or negative index.
3. If you divide or modulo by zero (e.g. 5 / Oor23 % 0).

4. If you convert a value too big or negative into an enum type.

5. If you call a zero-initialized variable of internal function type.

6. If you call assert with an argument that evaluates to false.

The require function should be used to ensure valid conditions that cannot be detected until execution time. This
includes conditions on inputs or return values from calls to external contracts.

A require-style exception is generated in the following situations:
1. Calling require with an argument that evaluates to false.

2. If you call a function via a message call but it does not finish properly (i.e., it runs out of gas, has no matching
function, or throws an exception itself), except when a low level operation call, send, delegatecall,
callcode or staticcall is used. The low level operations never throw exceptions but indicate failures by
returning false.

3. If you create a contract using the new keyword but the contract creation does not finish properly.
4. If you perform an external function call targeting a contract that contains no code.

5. If your contract receives Ether via a public function without payable modifier (including the constructor and
the fallback function).

6. If your contract receives Ether via a public getter function.
7. Ifa .transfer () fails.
You can optionally provide a message string for require, but not for assert.

The following example shows how you can use require to check conditions on inputs and assert for internal
error checking.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

contract Sharer {
function sendHalf (address payable addr) public payable returns (uint balance) {
require (msg.value % 2 == 0, "Even value required.");
uint balanceBeforeTransfer = address(this) .balance;
addr.transfer (msg.value / 2);
// Since transfer throws an exception on failure and
// cannot call back here, there should be no way for us to
// still have half of the money.
assert (address (this) .balance == balanceBeforeTransfer - msg.value / 2);
return address (this) .balance;

Internally, Solidity performs a revert operation (instruction 0xfd) for a require-style exception and executes an
invalid operation (instruction Ox fe) to throw an assert-style exception. In both cases, this causes the EVM to revert

88 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

all changes made to the state. The reason for reverting is that there is no safe way to continue execution, because an
expected effect did not occur. Because we want to keep the atomicity of transactions, the safest action is to revert all
changes and make the whole transaction (or at least call) without effect.

In both cases, the caller can react on such failures using t ry/catch (in the failing assert-style exception only if
enough gas is left), but the changes in the caller will always be reverted.

Note: assert-style exceptions consume all gas available to the call, while require-style exceptions do not
consume any gas starting from the Metropolis release.

revert

The revert function is another way to trigger exceptions from within other code blocks to flag an error and revert
the current call. The function takes an optional string message containing details about the error that is passed back to
the caller.

The following example shows how to use an error string together with revert and the equivalent require:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

contract VendingMachine ({
function buy (uint amount) public payable {
if (amount > msg.value / 2 ether)

revert ("Not enough Ether provided.");
// Alternative way to do it:
require (

amount <= msg.value / 2 ether,
"Not enough Ether provided."
)i
// Perform the purchase.

If you provide the reason string directly, then the two syntax options are equivalent, it is the developer’s preference
which one to use.

Note: The require function is evaluated just as any other function. This means that all arguments are evaluated
before the function itself is executed. In particular, in require (condition, £ ()) the function f is executed
even if condition is true.

The provided string is abi-encoded as if it were a call to a function Error (string). In the above example,
revert ("Not enough Ether provided."); returns the following hexadecimal as error return data:

0x08c379a0 // Function,
—selector for Error (string)
0x0020 // Data offset
0x001a // String length
0x4e6f7420656e6f7567682045746865722070726£f76696465642e000000000000 // String data

The provided message can be retrieved by the caller using t ry/catch as shown below.

Note: There used to be a keyword called throw with the same semantics as revert () which was deprecated in

3.8. Expressions and Control Structures 89

Solidity Documentation, Release 0.7.5

version 0.4.13 and removed in version 0.5.0.

try/catch

A failure in an external call can be caught using a try/catch statement, as follows:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

interface DataFeed { function getData (address token) external returns (uint value); }

contract FeedConsumer {
DataFeed feed;
uint errorCount;
function rate (address token) public returns (uint value, bool success) {
// Permanently disable the mechanism if there are
// more than 10 errors.
require (errorCount < 10);
try feed.getData(token) returns (uint v) {
return (v, true);
} catch Error (string memory /x*reasonx*/) {
// This 1s executed 1in case
// revert was called inside getData
// and a reason string was provided.
errorCount++;
return (0, false);
} catch (bytes memory /sxlowLevelDatax/) {
// This is executed in case revert () was used
// or there was a failing assertion, division
// by zero, etc. inside getData.
errorCount++;
return (0, false);

The try keyword has to be followed by an expression representing an external function call or a contract creation
(new ContractName ()). Errors inside the expression are not caught (for example if it is a complex expression
that also involves internal function calls), only a revert happening inside the external call itself. The returns part
(which is optional) that follows declares return variables matching the types returned by the external call. In case there
was no error, these variables are assigned and the contract’s execution continues inside the first success block. If the
end of the success block is reached, execution continues after the cat ch blocks.

Currently, Solidity supports different kinds of catch blocks depending on the type of error. If the error was caused by
revert ("reasonString") orrequire (false, "reasonString") (or aninternal error that causes such
an exception), then the catch clause of the type catch Error (string memory reason) will be executed.

It is planned to support other types of error data in the future. The string Error is currently parsed as is and is not
treated as an identifier.

The clause catch (bytes memory lowLevelData) is executed if the error signature does not match any
other clause, there was an error during decoding of the error message, if there was a failing assertion in the external
call (for example due to a division by zero or a failing assert ()) or if no error data was provided with the exception.
The declared variable provides access to the low-level error data in that case.

If you are not interested in the error data, you can justuse catch { ... } (even as the only catch clause).

90 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

In order to catch all error cases, you have to have at least the clause catch { ...} ortheclause catch (bytes
memory lowLevelData) { ... }.

The variables declared in the returns and the cat ch clause are only in scope in the block that follows.

Note: If an error happens during the decoding of the return data inside a try/catch-statement, this causes an exception
in the currently executing contract and because of that, it is not caught in the catch clause. If there is an error during
decoding of catch Error (string memory reason) and thereis a low-level catch clause, this error is caught
there.

Note: If execution reaches a catch-block, then the state-changing effects of the external call have been reverted. If
execution reaches the success block, the effects were not reverted. If the effects have been reverted, then execution
either continues in a catch block or the execution of the try/catch statement itself reverts (for example due to decoding
failures as noted above or due to not providing a low-level catch clause).

Note: The reason behind a failed call can be manifold. Do not assume that the error message is coming directly
from the called contract: The error might have happened deeper down in the call chain and the called contract just
forwarded it. Also, it could be due to an out-of-gas situation and not a deliberate error condition: The caller always
retains 63/64th of the gas in a call and thus even if the called contract goes out of gas, the caller still has some gas left.

3.9 Contracts

Contracts in Solidity are similar to classes in object-oriented languages. They contain persistent data in state variables,
and functions that can modify these variables. Calling a function on a different contract (instance) will perform an
EVM function call and thus switch the context such that state variables in the calling contract are inaccessible. A
contract and its functions need to be called for anything to happen. There is no “cron” concept in Ethereum to call a
function at a particular event automatically.

3.9.1 Creating Contracts

Contracts can be created “from outside” via Ethereum transactions or from within Solidity contracts.
IDEs, such as Remix, make the creation process seamless using Ul elements.

One way to create contracts programmatically on Ethereum is via the JavaScript API web3.js. It has a function called
web3.eth.Contract to facilitate contract creation.

When a contract is created, its constructor (a function declared with the constructor keyword) is executed once.
A constructor is optional. Only one constructor is allowed, which means overloading is not supported.

After the constructor has executed, the final code of the contract is stored on the blockchain. This code includes all
public and external functions and all functions that are reachable from there through function calls. The deployed code
does not include the constructor code or internal functions only called from the constructor.

Internally, constructor arguments are passed ABI encoded after the code of the contract itself, but you do not have to
care about this if you use web3. js.

If a contract wants to create another contract, the source code (and the binary) of the created contract has to be known
to the creator. This means that cyclic creation dependencies are impossible.

3.9. Contracts 91

https://remix.ethereum.org/
https://github.com/ethereum/web3.js
https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html#new-contract

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract OwnedToken {

// ‘TokenCreator' 1s a contract type that is defined below.

// It is fine to reference it as long as it is not used
// to create a new contract.

TokenCreator creator;

address owner;

bytes32 name;

// This 1is the constructor which registers the

// creator and the assigned name.

constructor (bytes32 _name) {
// State variables are accessed via their name
// and not via e.g. ‘this.owner' . Functions can
// be accessed directly or through ‘this.f',
// but the latter provides an external view
// to the function. Especially in the constructor,
// you should not access functions externally,
// because the function does not exist yet.
// See the next section for details.
owner = msg.sender;

// We perform an explicit type conversion from ‘address’

// to ‘TokenCreator' and assume that the type of
// the calling contract is ‘TokenCreator', there 1is
// no real way to verify that.

// This does not create a new contract.

creator = TokenCreator (msg.sender);

name = _name;

function changeName (bytes32 newName) public ({
// Only the creator can alter the name.
// We compare the contract based on its
// address which can be retrieved by
// explicit conversion to address.
if (msg.sender == address (creator))
name = newName;

function transfer (address newOwner) public {
// Only the current owner can transfer the token.
if (msg.sender != owner) return;

// We ask the creator contract if the transfer

// should proceed by using a function of the

// ‘TokenCreator' contract defined below. If

// the call fails (e.g. due to out-of-gas),

// the execution also fails here.

if (creator.isTokenTransferOK (owner, newOwner))
owner = newOwner;

(continues on next page)

92

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract TokenCreator ({
function createToken (bytes32 name)
public
returns (OwnedToken tokenAddress)

// Create a new ‘Token' contract and return its address.
// From the JavaScript side, the return type

// of this function is ‘address’', as this 1is

// the closest type available in the ABIT.

return new OwnedToken (name) ;

function changeName (OwnedToken tokenAddress, bytes32 name) public {
// Again, the external type of ‘tokenAddress' is
// simply “address’.
tokenAddress.changeName (name) ;

// Perform checks to determine if transferring a token to the

// ‘OwnedToken' contract should proceed

function isTokenTransferOK (address currentOwner, address newOwner)
public
pure
returns (bool ok)

// Check an arbitrary condition to see if transfer should proceed
return keccak256 (abi.encodePacked (currentOwner, newOwner)) [0] == 0x7f;

3.9.2 Visibility and Getters

Solidity knows two kinds of function calls: internal ones that do not create an actual EVM call (also called a “message
call”) and external ones that do. Because of that, there are four types of visibility for functions and state variables.

Functions have to be specified as being external, public, internal or private. For state variables,
external is not possible.

external External functions are part of the contract interface, which means they can be called from other contracts
and via transactions. An external function £ cannot be called internally (i.e. £ () does not work, butthis. f ()
works). External functions are sometimes more efficient when they receive large arrays of data, because the data
is not copied from calldata to memory.

public Public functions are part of the contract interface and can be either called internally or via messages. For
public state variables, an automatic getter function (see below) is generated.

internal Those functions and state variables can only be accessed internally (i.e. from within the current contract
or contracts deriving from it), without using this.

private Private functions and state variables are only visible for the contract they are defined in and not in derived
contracts.

Note: Everything that is inside a contract is visible to all observers external to the blockchain. Making something
private only prevents other contracts from reading or modifying the information, but it will still be visible to the

3.9. Contracts 93

Solidity Documentation, Release 0.7.5

whole world outside of the blockchain.

The visibility specifier is given after the type for state variables and between parameter list and return parameter list
for functions.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract C {
function f (uint a) private pure returns (uint b) { return a + 1; }
function setData (uint a) internal { data = a; }
uint public data;

In the following example, D, can call c.getData () to retrieve the value of data in state storage, but is not able to
call £. Contract E is derived from C and, thus, can call compute.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract C {
uint private data;

function f (uint a) private pure returns (uint b) { return a + 1; }

function setData (uint a) public { data = a; }

function getData() public view returns (uint) { return data; }

function compute (uint a, uint b) internal pure returns (uint) { return a + b; }

// This will not compile
contract D {
function readData() public {
C c = new C();
uint local = c¢.f(7); // error: member "f 1is not visible
c.setData(3);
local = c.getDatal();
local = c.compute(3, 5); // error: member ‘compute 1is not visible

contract E is C {
function g () public {
C c = new C();
uint val = compute (3, 5); // access to internal member (from derived to,,
—parent contract)

}

Getter Functions

The compiler automatically creates getter functions for all public state variables. For the contract given below, the
compiler will generate a function called data that does not take any arguments and returns a uint, the value of the
state variable data. State variables can be initialized when they are declared.

94 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract C {
uint public data = 42;

contract Caller {
C ¢ = new C();
function f () public view returns (uint) {
return c.data();

The getter functions have external visibility. If the symbol is accessed internally (i.e. without this.), it evaluates to
a state variable. If it is accessed externally (i.e. with this.), it evaluates to a function.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract C {
uint public data;
function x () public returns (uint) ({
data = 3; // internal access
return this.data(); // external access

If you have a public state variable of array type, then you can only retrieve single elements of the array via the
generated getter function. This mechanism exists to avoid high gas costs when returning an entire array. You can use
arguments to specify which individual element to return, for example data (0) . If you want to return an entire array
in one call, then you need to write a function, for example:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract arrayExample {
// public state variable
uint[] public myArray;

// Getter function generated by the compiler

/%

function myArray (uint i) public view returns (uint) {
return myArray[i];

}

*/

// function that returns entire array
function getArray () public view returns (uint[] memory) ({
return myArray;

Now you can use getArray () to retrieve the entire array, instead of myArray (1), which returns a single element
per call.

The next example is more complex:

3.9. Contracts 95

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract Complex {
struct Data {
uint a;
bytes3 b;
mapping (uint => uint) map;
}
mapping (uint => mapping(bool => Datal[])) public data;

It generates a function of the following form. The mapping in the struct is omitted because there is no good way to
provide the key for the mapping:

function data (uint argl, bool arg2, uint arg3) public returns (uint a, bytes3 b) {
a = datalargl] [arg2] [arg3].a;
b = datalargl] [arg2] [arg3].b;

3.9.3 Function Modifiers
Modifiers can be used to change the behaviour of functions in a declarative way. For example, you can use a modifier
to automatically check a condition prior to executing the function.

Modifiers are inheritable properties of contracts and may be overridden by derived contracts, but only if they are
marked virtual. For details, please see Modifier Overriding.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >0.7.0 <0.8.0;

contract owned {
constructor () { owner = msg.sender; }
address payable owner;

// This contract only defines a modifier but does not use
// it: it will be used in derived contracts.
// The function body is inserted where the special symbol
// "_; 1n the definition of a modifier appears.
// This means that 1f the owner calls this function, the
// function is executed and otherwise, an exception is
// thrown.
modifier onlyOwner {
require (
msg.sender == owner,
"Only owner can call this function."

contract destructible is owned {
// This contract inherits the ‘onlyOwner' modifier from
// ‘owned' and applies it to the ‘destroy' function, which
// causes that calls to ‘destroy' only have an effect if
// they are made by the stored owner.

(continues on next page)

96 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

function destroy() public onlyOwner {
selfdestruct (owner) ;

contract priced {
// Modifiers can receive arguments:
modifier costs (uint price) {
if (msg.value >= price) {

—r

contract Register is priced, destructible {
mapping (address => bool) registeredAddresses;
uint price;

constructor (uint initialPrice) { price = initialPrice; }

// It 1is important to also provide the

// ‘payable’ keyword here, otherwise the function will

// automatically reject all Ether sent to it.

function register () public payable costs(price) {
registeredAddresses[msg.sender] = true;

function changePrice (uint _price) public onlyOwner {
price = _price;

contract Mutex {
bool locked;
modifier noReentrancy () {
require (
!'locked,
"Reentrant call."
)i
locked = true;

—

locked = false;

/// This function is protected by a mutex, which means that
/// reentrant calls from within ‘msg.sender.call’ cannot call "f' again.
/// The ‘return 7' statement assigns 7 to the return value but still

/// executes the statement ‘locked = false' in the modifier.
function f () public noReentrancy returns (uint) ({
(bool success,) = msg.sender.call("");

require (success) ;
return 7;

Multiple modifiers are applied to a function by specifying them in a whitespace-separated list and are evaluated in the
order presented.

3.9. Contracts 97

Solidity Documentation, Release 0.7.5

Warning: In an earlier version of Solidity, ret urn statements in functions having modifiers behaved differently.

Explicit returns from a modifier or function body only leave the current modifier or function body. Return variables
are assigned and control flow continues after the “_" in the preceding modifier.

Arbitrary expressions are allowed for modifier arguments and in this context, all symbols visible from the function are
visible in the modifier. Symbols introduced in the modifier are not visible in the function (as they might change by
overriding).

3.9.4 Constant and Immutable State Variables

State variables can be declared as constant or immutable. In both cases, the variables cannot be modified after
the contract has been constructed. For constant variables, the value has to be fixed at compile-time, while for
immutable, it can still be assigned at construction time.

It is also possible to define constant variables at the file level.

The compiler does not reserve a storage slot for these variables, and every occurrence is replaced by the respective
value.

Compared to regular state variables, the gas costs of constant and immutable variables are much lower. For a constant
variable, the expression assigned to it is copied to all the places where it is accessed and also re-evaluated each time.
This allows for local optimizations. Immutable variables are evaluated once at construction time and their value is
copied to all the places in the code where they are accessed. For these values, 32 bytes are reserved, even if they would
fit in fewer bytes. Due to this, constant values can sometimes be cheaper than immutable values.

Not all types for constants and immutables are implemented at this time. The only supported types are strings (only
for constants) and value types.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >0.7.2;

uint constant X = 32xx22 + 8;

contract C {
string constant TEXT = "abc";
bytes32 constant MY_HASH = keccak256 ("abc");
uint immutable decimals;
uint immutable maxBalance;
address immutable owner = msg.sender;

constructor (uint _decimals, address _reference) {
decimals = _decimals;
// Assignments to immutables can even access the environment.
maxBalance = _reference.balance;

function isBalanceTooHigh (address _other) public view returns (bool) {
return _other.balance > maxBalance;

98 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Constant

For constant variables, the value has to be a constant at compile time and it has to be assigned where the variable
is declared. Any expression that accesses storage, blockchain data (e.g. block.timestamp, address (this) .
balance orblock.number) or execution data (msg.value orgasleft ()) or makes calls to external contracts
is disallowed. Expressions that might have a side-effect on memory allocation are allowed, but those that might
have a side-effect on other memory objects are not. The built-in functions keccak256, sha256, ripemd160,
ecrecover, addmod and mulmod are allowed (even though, with the exception of keccak256, they do call
external contracts).

The reason behind allowing side-effects on the memory allocator is that it should be possible to construct complex
objects like e.g. lookup-tables. This feature is not yet fully usable.

Immutable

Variables declared as immutable are a bit less restricted than those declared as constant: Immutable variables
can be assigned an arbitrary value in the constructor of the contract or at the point of their declaration. They cannot be
read during construction time and can only be assigned once.

The contract creation code generated by the compiler will modify the contract’s runtime code before it is returned by
replacing all references to immutables by the values assigned to the them. This is important if you are comparing the
runtime code generated by the compiler with the one actually stored in the blockchain.

3.9.5 Functions

Functions can be defined inside and outside of contracts.

Functions outside of a contract, also called “free functions”, always have implicit internal visibility. Their code is
included in all contracts that call them, similar to internal library functions.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >0.7.0 <0.8.0;

function sum(uint[] memory _arr) pure returns (uint s) ({
for (uint i = 0; i < _arr.length; i++)
s += _arr[i];

contract ArrayExample {

bool found;

function f (uint[] memory _arr) public {
// This calls the free function internally.
// The compiler will add its code to the contract.
uint s = sum(_arr);
require (s >= 10);
found = true;

Function Parameters and Return Variables

Functions take typed parameters as input and may, unlike in many other languages, also return an arbitrary number of
values as output.

3.9. Contracts 99

Solidity Documentation, Release 0.7.5

Function Parameters

Function parameters are declared the same way as variables, and the name of unused parameters can be omitted.

For example, if you want your contract to accept one kind of external call with two integers, you would use something
like the following:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract Simple {
uint sum;
function taker (uint _a, uint _Db) public {
sum = _a + _b;

Function parameters can be used as any other local variable and they can also be assigned to.

Note: An external function cannot accept a multi-dimensional array as an input parameter. This functionality is
possible if you enable the ABI coder v2 by adding pragma abicoder v2; to your source file.

An internal function can accept a multi-dimensional array without enabling the feature.

Return Variables

Function return variables are declared with the same syntax after the returns keyword.

For example, suppose you want to return two results: the sum and the product of two integers passed as function
parameters, then you use something like:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract Simple {
function arithmetic (uint _a, uint _Db)
public
pure
returns (uint o_sum, uint o_product)

o_sum = _a + _Db;

o_product = _a * _b;

The names of return variables can be omitted. Return variables can be used as any other local variable and they are
initialized with their default value and have that value until they are (re-)assigned.

You can either explicitly assign to return variables and then leave the function as above, or you can provide return
values (either a single or multiple ones) directly with the return statement:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract Simple {

(continues on next page)

100 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

function arithmetic(uint _a, uint _b)
public
pure
returns (uint o_sum, uint o_product)

return (_a + _Db, a ~ _b);

If you use an early return to leave a function that has return variables, you must provide return values together with
the return statement.

Note: You cannot return some types from non-internal functions, notably multi-dimensional dynamic arrays and
structs. If you enable the ABI coder v2 by adding pragma abicoder v2; to your source file then more types are
available, but mapping types are still limited to inside a single contract and you cannot transfer them.

Returning Multiple Values

When a function has multiple return types, the statement return (v0, v1, ..., wvn) can be used to return
multiple values. The number of components must be the same as the number of return variables and their types have
to match, potentially after an implicit conversion.

View Functions

Functions can be declared view in which case they promise not to modify the state.

Note: If the compiler’s EVM target is Byzantium or newer (default) the opcode STATICCALL is used when view
functions are called, which enforces the state to stay unmodified as part of the EVM execution. For library view
functions DELEGATECALL is used, because there is no combined DELEGATECALL and STATICCALL. This means
library view functions do not have run-time checks that prevent state modifications. This should not impact security
negatively because library code is usually known at compile-time and the static checker performs compile-time checks.

The following statements are considered modifying the state:
1. Writing to state variables.

Emitting events.

Creating other contracts.

Using selfdestruct.

Sending Ether via calls.

Calling any function not marked view or pure.

Using low-level calls.

® N A » N

Using inline assembly that contains certain opcodes.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

(continues on next page)

3.9. Contracts 101

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract C {
function f (uint a, uint b) public view returns (uint) ({
return a ~ (b + 42) + block.timestamp;

Note: constant on functions used to be an alias to view, but this was dropped in version 0.5.0.

Note: Getter methods are automatically marked view.

Note: Prior to version 0.5.0, the compiler did not use the STATICCALL opcode for view functions. This enabled
state modifications in view functions through the use of invalid explicit type conversions. By using STATICCALL
for view functions, modifications to the state are prevented on the level of the EVM.

Pure Functions

Functions can be declared pure in which case they promise not to read from or modify the state.

Note: If the compiler’s EVM target is Byzantium or newer (default) the opcode STATICCALL is used, which does
not guarantee that the state is not read, but at least that it is not modified.

In addition to the list of state modifying statements explained above, the following are considered reading from the
state:

1. Reading from state variables.

2. Accessing address (this) .balance or <address>.balance.

3. Accessing any of the members of block, tx, msg (with the exception of msg. sig and msg.data).
4. Calling any function not marked pure.
5

. Using inline assembly that contains certain opcodes.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

contract C {
function f (uint a, uint b) public pure returns (uint) {
return a * (b + 42);

Pure functions are able to use the revert () and require () functions to revert potential state changes when an
error occurs.

Reverting a state change is not considered a “state modification”, as only changes to the state made previously in code
that did not have the view or pure restriction are reverted and that code has the option to catch the revert and not
pass it on.

This behaviour is also in line with the STATICCALL opcode.

102 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Warning: It is not possible to prevent functions from reading the state at the level of the EVM, it is only possible
to prevent them from writing to the state (i.e. only view can be enforced at the EVM level, pure can not).

Note: Prior to version 0.5.0, the compiler did not use the STATICCALL opcode for pure functions. This enabled
state modifications in pure functions through the use of invalid explicit type conversions. By using STATICCALL
for pure functions, modifications to the state are prevented on the level of the EVM.

Note: Prior to version 0.4.17 the compiler did not enforce that pure is not reading the state. It is a compile-time type
check, which can be circumvented doing invalid explicit conversions between contract types, because the compiler
can verify that the type of the contract does not do state-changing operations, but it cannot check that the contract that
will be called at runtime is actually of that type.

Receive Ether Function

A contract can have at most one receive function, declared using receive () external payable {

} (without the function keyword). This function cannot have arguments, cannot return anything and must have
external visibility and payable state mutability. It is executed on a call to the contract with empty calldata. This
is the function that is executed on plain Ether transfers (e.g. via . send () or .transfer ()). If no such function
exists, but a payable fallback function exists, the fallback function will be called on a plain Ether transfer. If neither a
receive Ether nor a payable fallback function is present, the contract cannot receive Ether through regular transactions
and throws an exception.

In the worst case, the receive function can only rely on 2300 gas being available (for example when send or
transfer is used), leaving little room to perform other operations except basic logging. The following operations
will consume more gas than the 2300 gas stipend:

» Writing to storage
* Creating a contract
 Calling an external function which consumes a large amount of gas

» Sending Ether

Warning: Contracts that receive Ether directly (without a function call, i.e. using send or transfer) but
do not define a receive Ether function or a payable fallback function throw an exception, sending back the Ether
(this was different before Solidity v0.4.0). So if you want your contract to receive Ether, you have to implement
a receive Ether function (using payable fallback functions for receiving Ether is not recommended, since it would
not fail on interface confusions).

Warning: A contract without a receive Ether function can receive Ether as a recipient of a coinbase transaction
(aka miner block reward) or as a destination of a sel fdestruct.

A contract cannot react to such Ether transfers and thus also cannot reject them. This is a design choice of the
EVM and Solidity cannot work around it.

It also means that address (this) .balance can be higher than the sum of some manual accounting imple-
mented in a contract (i.e. having a counter updated in the receive Ether function).

3.9. Contracts 103

Solidity Documentation, Release 0.7.5

Below you can see an example of a Sink contract that uses function receive.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

// This contract keeps all Ether sent to it with no way
// to get it back.
contract Sink ({
event Received (address, uint);
receive () external payable ({
emit Received(msg.sender, msg.value);

Fallback Function

A contract can have at most one fallback function, declared using fallback () external [payable]
(without the function keyword). This function cannot have arguments, cannot return anything and must have
external visibility. It is executed on a call to the contract if none of the other functions match the given function
signature, or if no data was supplied at all and there is no receive Ether function. The fallback function always receives
data, but in order to also receive Ether it must be marked payable.

In the worst case, if a payable fallback function is also used in place of a receive function, it can only rely on 2300 gas
being available (see receive Ether function for a brief description of the implications of this).

Like any function, the fallback function can execute complex operations as long as there is enough gas passed on to it.

Warning: A payable fallback function is also executed for plain Ether transfers, if no receive Ether function
is present. It is recommended to always define a receive Ether function as well, if you define a payable fallback
function to distinguish Ether transfers from interface confusions.

Note: Even though the fallback function cannot have arguments, one can still use msg.data to retrieve any pay-
load supplied with the call. After having checked the first four bytes of msg.data, you can use abi.decode
together with the array slice syntax to decode ABI-encoded data: (c, d) = abi.decode (msg.data[4:],
(uint256, uint256)); Note that this should only be used as a last resort and proper functions should be used
instead.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.2 <0.8.0;

contract Test {
// This function is called for all messages sent to
// this contract (there is no other function).
// Sending Ether to this contract will cause an exception,
// because the fallback function does not have the ‘payable’
// modifier.
fallback () external { x = 1; }
uint x;

contract TestPayable {
// This function is called for all messages sent to

(continues on next page)

104 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

// this contract, except plain Ether transfers

// (there is no other function except the receive function).

// Any call with non-empty calldata to this contract will execute

// the fallback function (even if Ether is sent along with the call).
fallback () external payable { x = 1; y = msg.value; }

// This function is called for plain Ether transfers, i.e.
// for every call with empty calldata.

receive () external payable { x = 2; y = msg.value; }

uint x;

uint y;

contract Caller {
function callTest (Test test) public returns (bool) {
(bool success,) = address (test).call (abi.encodeWithSignature (
—"nonExistingFunction()"));
require (success) ;
// results in test.x becoming ==

// address(test) will not allow to call '‘send’ ' directly, since ' ‘test'' has,

—no payable
// fallback function.
// It has to be converted to the '‘address payable' ' type to even allow,

—calling "~ “send’ on 1it.
address payable testPayable = payable (address (test));

// If someone sends Ether to that contract,

// the transfer will fail, i.e. this returns false here.
return testPayable.send (2 ether);

function callTestPayable (TestPayable test) public returns (bool) {

(bool success,) = address (test).call (abi.encodeWithSignature (
—"nonExistingFunction()"));

require (success) ;

// results in test.x becoming == 1 and test.y becoming 0.

(success,) = address(test) .call{value: 1} (abi.encodeWithSignature (
—"nonExistingFunction()"));

require (success) ;

// results in test.x becoming == 1 and test.y becoming 1.

// If someone sends Ether to that contract, the receive function in_

—TestPayable will be called.
require (address (test) .send (2 ether));
// results in test.x becoming == 2 and test.y becoming 2 ether.

return true;

Function Overloading

A contract can have multiple functions of the same name but with different parameter types. This process is called
“overloading” and also applies to inherited functions. The following example shows overloading of the function f in

the scope of contract A.

3.9. Contracts 105

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract A {
function f (uint _in) public pure returns (uint out) ({
out = _in;

function f (uint _in, bool _really) public pure returns (uint out) ({
if (_really)
out = _in;

Overloaded functions are also present in the external interface. It is an error if two externally visible functions differ
by their Solidity types but not by their external types.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

// This will not compile
contract A {
function f (B _in) public pure returns (B out) {
out = _in;

function f (address _in) public pure returns (address out) {
out = _inj;

contract B {

}

Both £ function overloads above end up accepting the address type for the ABI although they are considered different
inside Solidity.

Overload resolution and Argument matching

Overloaded functions are selected by matching the function declarations in the current scope to the arguments supplied
in the function call. Functions are selected as overload candidates if all arguments can be implicitly converted to the
expected types. If there is not exactly one candidate, resolution fails.

Note: Return parameters are not taken into account for overload resolution.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract A {

function f (uint8 _in) public pure returns (uint8 out) {
out = _in;

function f (uint256 _in) public pure returns (uint256 out) {

(continues on next page)

106 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

out = _inj;

Calling £ (50) would create a type error since 50 can be implicitly converted both to uint8 and uint256 types.
On another hand £ (256) would resolve to £ (uint256) overload as 256 cannot be implicitly converted to uint8.

3.9.6 Events

Solidity events give an abstraction on top of the EVM’s logging functionality. Applications can subscribe and listen to
these events through the RPC interface of an Ethereum client.

Events are inheritable members of contracts. When you call them, they cause the arguments to be stored in the
transaction’s log - a special data structure in the blockchain. These logs are associated with the address of the contract,
are incorporated into the blockchain, and stay there as long as a block is accessible (forever as of now, but this might
change with Serenity). The Log and its event data is not accessible from within contracts (not even from the contract
that created them).

It is possible to request a Merkle proof for logs, so if an external entity supplies a contract with such a proof, it can
check that the log actually exists inside the blockchain. You have to supply block headers because the contract can
only see the last 256 block hashes.

You can add the attribute indexed to up to three parameters which adds them to a special data structure known as
“topics” instead of the data part of the log. If you use arrays (including st ring and bytes) as indexed arguments,
its Keccak-256 hash is stored as a topic instead, this is because a topic can only hold a single word (32 bytes).

All parameters without the indexed attribute are ABI-encoded into the data part of the log.

Topics allow you to search for events, for example when filtering a sequence of blocks for certain events. You can also
filter events by the address of the contract that emitted the event.

For example, the code below uses the web3.js subscribe ("1logs") method to filter logs that match a topic with a
certain address value:

var options = {
fromBlock: O,
address: web3.eth.defaultAccount,
topics: ["0x00", _,
—null, null]
bi
web3.eth.subscribe ('logs', options, function (error, result) ({
if (l!error)
console.log(result);
})
.on("data", function (log) {
console.log(log);
1)
.on("changed", function (log) {
}) i

The hash of the signature of the event is one of the topics, except if you declared the event with the anonymous
specifier. This means that it is not possible to filter for specific anonymous events by name, you can only filter by the
contract address. The advantage of anonymous events is that they are cheaper to deploy and call.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.21 <0.8.0;

(continues on next page)

3.9. Contracts 107

https://web3js.readthedocs.io/en/1.0/web3-eth-subscribe.html#subscribe-logs

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract ClientReceipt {
event Deposit (
address indexed _ from,
bytes32 indexed _id,
uint _value
)

function deposit (bytes32 _id) public payable {
// Events are emitted using ‘emit', followed by
// the name of the event and the arguments
// (if any) in parentheses. Any such invocation
// (even deeply nested) can be detected from
// the JavaScript API by filtering for ‘Deposit’.
emit Deposit (msg.sender, _id, msg.value);

The use in the JavaScript API is as follows:

var abi = /% abi as generated by the compiler +*/;
var ClientReceipt = web3.eth.contract (abi);
var clientReceipt = ClientReceipt.at ("0x1234...ab67" /+ address x/);

var event = clientReceipt.Deposit ();

// watch for changes
event .watch (function (error, result) {
// result contains non-indexed arguments and topics
// given to the ‘Deposit’ call.
if (!error)
console.log(result);

)i

// Or pass a callback to start watching immediately
var event = clientReceipt.Deposit (function (error, result) {
if (!error)
console.log(result);
}) i

The output of the above looks like the following (trimmed):

{

"returnValues": {
" from": "Ox1111...FFFFCCCC",
"_id": "0x50...sd5adb20",
"_value": "0x420042"

}I

"raw": {
"data": "Ox7f...91385",

"topics": ["Oxfd4...bdead7", "Ox7f...1a91385"]

108 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Low-Level Interface to Logs

It is also possible to access the low-level interface to the logging mechanism via the functions 10g0, 1logl, 1log2,
log3 and log4. Each function 1ogi takes 1 + 1 parameter of type bytes32, where the first argument will be
used for the data part of the log and the others as topics. The event call above can be performed in the same way as

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.10 <0.8.0;

contract C {
function f () public payable {
uint256 _id = 0x420042;
log3(
bytes32 (msg.value),

—bytes32 (0x50cb9fe53daad9737b786ab3646£04d0150dc50e£4e75£59509d83667ad5adb20),
bytes32 (uint256 (msg.sender)),
bytes32(_id)
)i

where the long hexadecimal number is equal to keccak256 ("Deposit (address,bytes32,uint256)"),
the signature of the event.

Additional Resources for Understanding Events

¢ Javascript documentation
* Example usage of events

* How to access them in js

3.9.7 Inheritance

Solidity supports multiple inheritance including polymorphism.

Polymorphism means that a function call (internal and external) always executes the function of the same name (and
parameter types) in the most derived contract in the inheritance hierarchy. This has to be explicitly enabled on each
function in the hierarchy using the virtual and override keywords. See Function Overriding for more details.

It is possible to call functions further up in the inheritance hierarchy internally by explicitly specifying the contract
using ContractName. functionName () orusing super.functionName () if you want to call the function
one level higher up in the flattened inheritance hierarchy (see below).

When a contract inherits from other contracts, only a single contract is created on the blockchain, and the code from all
the base contracts is compiled into the created contract. This means that all internal calls to functions of base contracts
also just use internal function calls (super. £ (. .) will use JUMP and not a message call).

State variable shadowing is considered as an error. A derived contract can only declare a state variable x, if there is no
visible state variable with the same name in any of its bases.

The general inheritance system is very similar to Python’s, especially concerning multiple inheritance, but there are
also some differences.

Details are given in the following example.

3.9. Contracts 109

https://github.com/ethereum/web3.js/blob/1.x/docs/web3-eth-contract.rst#events
https://github.com/ethchange/smart-exchange/blob/master/lib/contracts/SmartExchange.sol
https://github.com/ethchange/smart-exchange/blob/master/lib/exchange_transactions.js
https://docs.python.org/3/tutorial/classes.html#inheritance

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract Owned {
constructor () { owner = msg.sender; }
address payable owner;

// Use 'is’ to derive from another contract. Derived

// contracts can access all non-private members including

// internal functions and state variables. These cannot be

// accessed externally via ‘this', though.

contract Destructible is Owned {
// The keyword ‘virtual' means that the function can change
// its behaviour in derived classes ("overriding").
function destroy () wvirtual public {

if (msg.sender == owner) selfdestruct (owner);

// These abstract contracts are only provided to make the
// interface known to the compiler. Note the function
// without body. If a contract does not implement all
// functions it can only be used as an interface.
abstract contract Config {
function lookup (uint id) public virtual returns (address adr);

abstract contract NameReg {
function register (bytes32 name) public virtual;
function unregister () public virtual;

// Multiple inheritance is possible. Note that ‘owned' 1is
// also a base class of ‘Destructible’, yet there is only a single
// instance of ‘owned' (as for virtual inheritance in C++).
contract Named is Owned, Destructible {
constructor (bytes32 name) {
Config config = Config(0xD5£9D8D94886E70b06E474c3£fB14Fd43E2£23970);
NameReg (config.lookup(l)) .register (name) ;

// Functions can be overridden by another function with the same name and
// the same number/types of inputs. If the overriding function has different
// types of output parameters, that causes an error.
// Both local and message-based function calls take these overrides
// into account.
// If you want the function to override, you need to use the
// ‘override' keyword. You need to specify the ‘virtual keyword again
// 1f you want this function to be overridden again.
function destroy () public virtual override {
if (msg.sender == owner) {

(continues on next page)

110 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

Config config = Config(0xD5f9D8D94886E70b06E474c3fB14Fd43E2£23970);
NameReg (config.lookup(l)) .unregister();

// It is still possible to call a specific

// overridden function.

Destructible.destroy () ;

// If a constructor takes an argument, it needs to be
// provided in the header or modifier—invocation-style at
// the constructor of the derived contract (see below).
contract PriceFeed is Owned, Destructible, Named("GoldFeed") {
function updatelInfo (uint newInfo) public {
if (msg.sender == owner) info = newlInfo;

// Here, we only specify ‘override and not ‘virtual .

// This means that contracts deriving from ‘PriceFeed’

// cannot change the behaviour of ‘destroy’' anymore.

function destroy () public override (Destructible, Named) { Named.destroy(); }
function get () public view returns (uint r) { return info; }

uint info;

Note that above, we call Destructible.destroy () to “forward” the destruction request. The way this is done
is problematic, as seen in the following example:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity ~70.7.0;

contract owned {
constructor () { owner = msg.sender; }
address payable owner;

contract Destructible is owned {
function destroy () public virtual ({
if (msg.sender == owner) selfdestruct (owner);

contract Basel is Destructible {
function destroy () public virtual override { /x do cleanup 1 =/ Destructible.

—destroy(); 1}
}

contract Base?2 is Destructible {
function destroy () public wvirtual override { /x do cleanup 2 =/ Destructible.

—destroy(); 1}
}

contract Final is Basel, Base2 {
function destroy () public override (Basel, Base2) { Base2.destroy(); }

3.9. Contracts 111

Solidity Documentation, Release 0.7.5

AcalltoFinal.destroy () will call Base2.destroy because we specify it explicitly in the final override, but
this function will bypass Basel .destroy. The way around this is to use super:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract owned {
constructor () { owner = msg.sender; }
address payable owner;

contract Destructible is owned {
function destroy () virtual public ({
if (msg.sender == owner) selfdestruct (owner);

contract Basel is Destructible {
function destroy () public virtual override { /* do cleanup 1 #/ super.destroy(); }

contract Base2 is Destructible {
function destroy () public virtual override { /* do cleanup 2 x/ super.destroy(); }

contract Final is Basel, Base2 {
function destroy () public override (Basel, Base2) { super.destroy(); }

If Base2 calls a function of super, it does not simply call this function on one of its base contracts. Rather, it calls
this function on the next base contract in the final inheritance graph, so it will call Basel.destroy () (note that
the final inheritance sequence is — starting with the most derived contract: Final, Base2, Basel, Destructible, owned).
The actual function that is called when using super is not known in the context of the class where it is used, although
its type is known. This is similar for ordinary virtual method lookup.

Function Overriding

Base functions can be overridden by inheriting contracts to change their behavior if they are marked as virtual.
The overriding function must then use the override keyword in the function header. The overriding function may
only change the visibility of the overridden function from external to public. The mutability may be changed to
a more strict one following the order: nonpayable can be overridden by view and pure. view can be overridden
by pure. payable is an exception and cannot be changed to any other mutability.

The following example demonstrates changing mutability and visibility:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract Base

{

function foo () wvirtual external view {}

contract Middle is Base {}

(continues on next page)

112 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract Inherited is Middle

{

function foo () override public pure {}

For multiple inheritance, the most derived base contracts that define the same function must be specified explicitly
after the override keyword. In other words, you have to specify all base contracts that define the same function and
have not yet been overridden by another base contract (on some path through the inheritance graph). Additionally, if
a contract inherits the same function from multiple (unrelated) bases, it has to explicitly override it:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

contract Basel

{

function foo () wvirtual public {}

contract Base2

{

function foo () wvirtual public {}

contract Inherited is Basel, Base?2

{
// Derives from multiple bases defining foo(), so we must explicitly
// override it
function foo () public override (Basel, Base2) {}

An explicit override specifier is not required if the function is defined in a common base contract or if there is a unique
function in a common base contract that already overrides all other functions.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

contract A { function f () public pure{} }
contract B is A {}

contract C is A {}

// No explicit override required
contract D is B, C {}

More formally, it is not required to override a function (directly or indirectly) inherited from multiple bases if there
is a base contract that is part of all override paths for the signature, and (1) that base implements the function and no
paths from the current contract to the base mentions a function with that signature or (2) that base does not implement
the function and there is at most one mention of the function in all paths from the current contract to that base.

In this sense, an override path for a signature is a path through the inheritance graph that starts at the contract under
consideration and ends at a contract mentioning a function with that signature that does not override.

If you do not mark a function that overrides as virtual, derived contracts can no longer change the behaviour of
that function.

Note: Functions with the private visibility cannot be virtual.

3.9. Contracts 113

Solidity Documentation, Release 0.7.5

Note: Functions without implementation have to be marked virtual outside of interfaces. In interfaces, all
functions are automatically considered virtual.

Public state variables can override external functions if the parameter and return types of the function matches the
getter function of the variable:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

contract A

{

function f () external view virtual returns (uint) { return 5; }

contract B is A
{

uint public override f;

Note: While public state variables can override external functions, they themselves cannot be overridden.

Modifier Overriding

Function modifiers can override each other. This works in the same way as function overriding (except that there is
no overloading for modifiers). The virtual keyword must be used on the overridden modifier and the override
keyword must be used in the overriding modifier:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

contract Base

{

modifier foo () wvirtual {_;}

contract Inherited is Base
{

modifier foo () override {_;}

In case of multiple inheritance, all direct base contracts must be specified explicitly:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

contract Basel

{

modifier foo () wvirtual {_;}

contract Base2

{

(continues on next page)

114 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

modifier foo () wvirtual {_;}

contract Inherited is Basel, Base2

{

modifier foo () override (Basel, Base2) {_;}

Constructors

A constructor is an optional function declared with the constructor keyword which is executed upon contract
creation, and where you can run contract initialisation code.

Before the constructor code is executed, state variables are initialised to their specified value if you initialise them
inline, or zero if you do not.

After the constructor has run, the final code of the contract is deployed to the blockchain. The deployment of the
code costs additional gas linear to the length of the code. This code includes all functions that are part of the public
interface and all functions that are reachable from there through function calls. It does not include the constructor code
or internal functions that are only called from the constructor.

If there is no constructor, the contract will assume the default constructor, which is equivalent to constructor ()
{ }. For example:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

abstract contract A {
uint public 3;

constructor (uint _a) {
a = _aj

contract B is A (1) {
constructor () {}

You can use internal parameters in a constructor (for example storage pointers). In this case, the contract has to
be marked abstract, because these parameters cannot be assigned valid values from outside but only through the
constructors of derived contracts.

Warning: Prior to version 0.4.22, constructors were defined as functions with the same name as the contract.
This syntax was deprecated and is not allowed anymore in version 0.5.0.

Warning: Prior to version 0.7.0, you had to specify the visibility of constructors as either internal orpublic.

3.9. Contracts 115

Solidity Documentation, Release 0.7.5

Arguments for Base Constructors

The constructors of all the base contracts will be called following the linearization rules explained below. If the base
constructors have arguments, derived contracts need to specify all of them. This can be done in two ways:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

contract Base {
uint x;
constructor (uint _x) { x = _x; }

// Either directly specify in the inheritance 1list...
contract Derivedl is Base (7) {
constructor () {}

// or through a "modifier" of the derived constructor.
contract Derived2 is Base {
constructor (uint _y) Base(_y * _y) {}

One way is directly in the inheritance list (1s Base (7)). The other is in the way a modifier is invoked as part of
the derived constructor (Base (_y * _y)). The first way to do it is more convenient if the constructor argument is
a constant and defines the behaviour of the contract or describes it. The second way has to be used if the constructor
arguments of the base depend on those of the derived contract. Arguments have to be given either in the inheritance
list or in modifier-style in the derived constructor. Specifying arguments in both places is an error.

If a derived contract does not specify the arguments to all of its base contracts’ constructors, it will be abstract.

Multiple Inheritance and Linearization

Languages that allow multiple inheritance have to deal with several problems. One is the Diamond Problem. Solidity
is similar to Python in that it uses “C3 Linearization” to force a specific order in the directed acyclic graph (DAG) of
base classes. This results in the desirable property of monotonicity but disallows some inheritance graphs. Especially,
the order in which the base classes are given in the is directive is important: You have to list the direct base contracts
in the order from “most base-like” to “most derived”. Note that this order is the reverse of the one used in Python.

Another simplifying way to explain this is that when a function is called that is defined multiple times in different
contracts, the given bases are searched from right to left (left to right in Python) in a depth-first manner, stopping at
the first match. If a base contract has already been searched, it is skipped.

In the following code, Solidity will give the error “Linearization of inheritance graph impossible”.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract X {}

contract A is X {}

// This will not compile
contract C is A, X {}

The reason for this is that C requests X to override A (by specifying 2, X in this order), but A itself requests to override
X, which is a contradiction that cannot be resolved.

Due to the fact that you have to explicitly override a function that is inherited from multiple bases without a unique
override, C3 linearization is not too important in practice.

116 Chapter 3. Contents

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem
https://en.wikipedia.org/wiki/C3_linearization

Solidity Documentation, Release 0.7.5

One area where inheritance linearization is especially important and perhaps not as clear is when there are multiple
constructors in the inheritance hierarchy. The constructors will always be executed in the linearized order, regardless
of the order in which their arguments are provided in the inheriting contract’s constructor. For example:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract Basel {
constructor () {}

contract Base2 {
constructor () {}

// Constructors are executed in the following order:
// 1 - Basel
// 2 - BaseZ
// 3 - Derivedl
contract Derivedl is Basel, Base2 {
constructor () Basel () Base2 () {}

// Constructors are executed in the following order:
// 1 - BaseZ2
// 2 - Basel
// 3 - Derived?2
contract Derived2 is Base2, Basel {
constructor () Base2 () Basel() {}

// Constructors are still executed in the following order:
// 1 - BaseZ
// 2 - Basel
// 3 - Derived3
contract Derived3 is Base2, Basel {
constructor () Basel () Base2 () {}

Inheriting Different Kinds of Members of the Same Name

It is an error when any of the following pairs in a contract have the same name due to inheritance:
¢ a function and a modifier
¢ a function and an event
* an event and a modifier

As an exception, a state variable getter can override an external function.

3.9.8 Abstract Contracts

Contracts need to be marked as abstract when at least one of their functions is not implemented. Contracts may be
marked as abstract even though all functions are implemented.

3.9. Contracts 117

Solidity Documentation, Release 0.7.5

This can be done by using the abstract keyword as shown in the following example. Note that this contract needs
to be defined as abstract, because the function utterance () was defined, but no implementation was provided (no
implementation body { } was given).:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

abstract contract Feline {
function utterance () public virtual returns (bytes32);

Such abstract contracts can not be instantiated directly. This is also true, if an abstract contract itself does implement
all defined functions. The usage of an abstract contract as a base class is shown in the following example:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

abstract contract Feline {

function utterance() public pure virtual returns (bytes32);

contract Cat is Feline {
function utterance () public pure override returns (bytes32) { return "miaow"; }

If a contract inherits from an abstract contract and does not implement all non-implemented functions by overriding,
it needs to be marked as abstract as well.

Note that a function without implementation is different from a Function Type even though their syntax looks very
similar.

Example of function without implementation (a function declaration):

’function foo (address) external returns (address);

Example of a declaration of a variable whose type is a function type:

’function(address) external returns (address) foo;

Abstract contracts decouple the definition of a contract from its implementation providing better extensibility and self-
documentation and facilitating patterns like the Template method and removing code duplication. Abstract contracts
are useful in the same way that defining methods in an interface is useful. It is a way for the designer of the abstract
contract to say “any child of mine must implement this method”.

Note: Abstract contracts cannot override an implemented virtual function with an unimplemented one.

3.9.9 Interfaces
Interfaces are similar to abstract contracts, but they cannot have any functions implemented. There are further restric-
tions:

* They cannot inherit from other contracts, but they can inherit from other interfaces.

¢ All declared functions must be external.

* They cannot declare a constructor.

118 Chapter 3. Contents

https://en.wikipedia.org/wiki/Template_method_pattern

Solidity Documentation, Release 0.7.5

* They cannot declare state variables.
Some of these restrictions might be lifted in the future.

Interfaces are basically limited to what the Contract ABI can represent, and the conversion between the ABI and an
interface should be possible without any information loss.

Interfaces are denoted by their own keyword:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.2 <0.8.0;

interface Token {
enum TokenType { Fungible, NonFungible }
struct Coin { string obverse; string reverse; }
function transfer (address recipient, uint amount) external;

Contracts can inherit interfaces as they would inherit other contracts.

All functions declared in interfaces are implicitly virtual, which means that they can be overridden. This does not
automatically mean that an overriding function can be overridden again - this is only possible if the overriding function
is marked virtual.

Interfaces can inherit from other interfaces. This has the same rules as normal inheritance.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.2 <0.8.0;

interface ParentA {
function test () external returns (uint256);

interface ParentB {
function test () external returns (uint256);

interface SubInterface is ParentA, ParentB {
// Must redefine test in order to assert that the parent
// meanings are compatible.
function test () external override (ParentA, ParentB) returns (uint256);

Types defined inside interfaces and other contract-like structures can be accessed from other contracts: Token.
TokenType or Token.Coin.

3.9.10 Libraries

Libraries are similar to contracts, but their purpose is that they are deployed only once at a specific address and their
code is reused using the DELEGATECALL (CALLCODE until Homestead) feature of the EVM. This means that if
library functions are called, their code is executed in the context of the calling contract, i.e. this points to the calling
contract, and especially the storage from the calling contract can be accessed. As a library is an isolated piece of
source code, it can only access state variables of the calling contract if they are explicitly supplied (it would have no
way to name them, otherwise). Library functions can only be called directly (i.e. without the use of DELEGATECALL)
if they do not modify the state (i.e. if they are view or pure functions), because libraries are assumed to be stateless.
In particular, it is not possible to destroy a library.

3.9. Contracts 119

Solidity Documentation, Release 0.7.5

Note: Until version 0.4.20, it was possible to destroy libraries by circumventing Solidity’s type system. Starting from
that version, libraries contain a mechanism that disallows state-modifying functions to be called directly (i.e. without
DELEGATECALL).

Libraries can be seen as implicit base contracts of the contracts that use them. They will not be explicitly visible
in the inheritance hierarchy, but calls to library functions look just like calls to functions of explicit base contracts
(using qualified access like L. £ ()). Of course, calls to internal functions use the internal calling convention, which
means that all internal types can be passed and types stored in memory will be passed by reference and not copied. To
realize this in the EVM, code of internal library functions and all functions called from therein will at compile time be
included in the calling contract, and a regular JUMP call will be used instead of a DELEGATECALL.

The following example illustrates how to use libraries (but using a manual method, be sure to check out using for for
a more advanced example to implement a set).

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

// We define a new struct datatype that will be used to
// hold its data in the calling contract.
struct Data {

mapping (uint => bool) flags;

library Set {

// Note that the first parameter 1is of type "storage
// reference" and thus only its storage address and not
// its contents 1is passed as part of the call. This is a
// special feature of library functions. It is idiomatic
// to call the first parameter ‘self’, if the function can
// be seen as a method of that object.
function insert (Data storage self, uint value)

public

returns (bool)

if (self.flags[value])

return false; // already there
self.flags[value] = true;
return true;

function remove (Data storage self, uint value)
public
returns (bool)

if (!self.flags[value])

return false; // not there
self.flags[value] = false;
return true;

function contains (Data storage self, uint value)
public
view
returns (bool)

(continues on next page)

120 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

return self.flags[value];

contract C {
Data knownValues;

function register (uint wvalue) public ({
// The library functions can be called without a
// specific instance of the library, since the
// "instance" will be the current contract.
require (Set.insert (knownValues, value));

}

// In this contract, we can also directly access knownValues.flags, if we want.

Of course, you do not have to follow this way to use libraries: they can also be used without defining struct data
types. Functions also work without any storage reference parameters, and they can have multiple storage reference
parameters and in any position.

The calls to Set.contains, Set.insert and Set.remove are all compiled as calls (DELEGATECALL) to
an external contract/library. If you use libraries, be aware that an actual external function call is performed. msg.
sender, msg.value and this will retain their values in this call, though (prior to Homestead, because of the use
of CALLCODE, msg.sender and msg.value changed, though).

The following example shows how to use rypes stored in memory and internal functions in libraries in order to imple-
ment custom types without the overhead of external function calls:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

struct bigint {
uint[] limbs;

library BigInt ({
function fromUint (uint x) internal pure returns (bigint memory r) ({
r.limbs = new uint[] (1);
r.limbs[0] = x;

function add(bigint memory _a, bigint memory _b) internal pure returns (bigint
—memory r) {
r.limbs = new uint[] (max(_a.limbs.length, _b.limbs.length));

uint carry = 0;
for (uint 1 = 0; i < r.limbs.length; ++1i) {
uint a = limb(_a, 1i);
uint b = limb(_b, 1i);
r.limbs[i] = a + b + carry;
if (a + b <a ||l (a+ == uint (-1) && carry > 0))
carry = 1;
else
carry = 0;

}
if (carry > 0) {
// too bad, we have to add a limb

(continues on next page)

3.9. Contracts 121

Solidity Documentation, Release 0.7.5

(continued from previous page)

uint[] memory newLimbs = new uint[] (r.limbs.length + 1);
uint i;
for (1 = 0; 1 < r.limbs.length; ++1i)
newLimbs[i] = r.limbs[i];
newLimbs[i] = carry;
r.limbs = newLimbs;

function limb (bigint memory _a, uint _limb) internal pure returns (uint) ({
return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;

}

function max (uint a, uint b) private pure returns (uint) {
return a > b ? a : b;

contract C {
using BigInt for bigint;

function f () public pure {
bigint memory x = BigInt.fromUint (7);
bigint memory y = BigInt.fromUint (uint(-1));
bigint memory z = x.add(y);
assert (z.limb (1) > 0);

It is possible to obtain the address of a library by converting the library type to the address type, i.e. using
address (LibraryName).

As the compiler cannot know where the library will be deployed at, these addresses have to be filled into the final
bytecode by a linker (see Using the Commandline Compiler for how to use the commandline compiler for linking). If
the addresses are not given as arguments to the compiler, the compiled hex code will contain placeholders of the form
__ Set (where Set is the name of the library). The address can be filled manually by replacing all those 40
symbols by the hex encoding of the address of the library contract.

Note: Manually linking libraries on the generated bytecode is discouraged, because in this way, the library name
is restricted to 36 characters. You should ask the compiler to link the libraries at the time a contract is compiled by
either using the ——1ibraries option of solc or the libraries key if you use the standard-JSON interface to
the compiler.

In comparison to contracts, libraries are restricted in the following ways:
* they cannot have state variables
¢ they cannot inherit nor be inherited
¢ they cannot receive Ether
* they cannot be destroyed

(These might be lifted at a later point.)

122 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Function Signatures and Selectors in Libraries

While external calls to public or external library functions are possible, the calling convention for such calls is con-
sidered to be internal to Solidity and not the same as specified for the regular contract ABI. External library functions
support more argument types than external contract functions, for example recursive structs and storage pointers. For
that reason, the function signatures used to compute the 4-byte selector are computed following an internal naming
schema and arguments of types not supported in the contract ABI use an internal encoding.

The following identifiers are used for the types in the signatures:
* Value types, non-storage st ring and non-storage bytes use the same identifiers as in the contract ABIL.

* Non-storage array types follow the same convention as in the contract ABI, i.e. <type>[] for dynamic arrays
and <type> [M] for fixed-size arrays of M elements.

» Non-storage structs are referred to by their fully qualified name, i.e. C. S for contract C { struct S {

oL

e Storage pointer mappings use mapping(<keyType> => <valueType>) storage where
<keyType> and <valueType> are the identifiers for the key and value types of the mapping, respectively.

» Other storage pointer types use the type identifier of their corresponding non-storage type, but append a single
space followed by storage to it.

The argument encoding is the same as for the regular contract ABI, except for storage pointers, which are encoded as
auint256 value referring to the storage slot to which they point.

Similarly to the contract ABI, the selector consists of the first four bytes of the Keccak256-hash of the signature. Its
value can be obtained from Solidity using the . selector member as follows:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.14 <0.8.0;

library L {
function f (uint256) external {}
}

contract C {
function g () public pure returns (bytes4) ({
return L.f.selector;

}

Call Protection For Libraries

As mentioned in the introduction, if a library’s code is executed using a CALL instead of a DELEGATECALL or
CALLCODE, it will revert unless a view or pure function is called.

The EVM does not provide a direct way for a contract to detect whether it was called using CALL or not, but a contract
can use the ADDRESS opcode to find out “where” it is currently running. The generated code compares this address
to the address used at construction time to determine the mode of calling.

More specifically, the runtime code of a library always starts with a push instruction, which is a zero of 20 bytes at
compilation time. When the deploy code runs, this constant is replaced in memory by the current address and this
modified code is stored in the contract. At runtime, this causes the deploy time address to be the first constant to be
pushed onto the stack and the dispatcher code compares the current address against this constant for any non-view and
non-pure function.

3.9. Contracts 123

Solidity Documentation, Release 0.7.5

This means that the actual code stored on chain for a library is different from the code reported by the compiler as
deployedBytecode.

3.9.11 Using For

The directive using A for B; can be used to attach library functions (from the library 2) to any type (B) in the
context of a contract. These functions will receive the object they are called on as their first parameter (like the self
variable in Python).

The effect of using A for «; is that the functions from the library A are attached to any type.

In both situations, all functions in the library are attached, even those where the type of the first parameter does not
match the type of the object. The type is checked at the point the function is called and function overload resolution is
performed.

The using A for B; directive is active only within the current contract, including within all of its functions, and
has no effect outside of the contract in which it is used. The directive may only be used inside a contract, not inside
any of its functions.

Let us rewrite the set example from the Libraries in this way:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

// This is the same code as before, just without comments
struct Data { mapping(uint => bool) flags; }

library Set {
function insert (Data storage self, uint value)
public
returns (bool)

if (self.flags[value])

return false; // already there
self.flags[value] = true;
return true;

function remove (Data storage self, uint value)
public
returns (bool)

if (!self.flags([value])

return false; // not there
self.flags[value] = false;
return true;

function contains (Data storage self, uint value)
public
view
returns (bool)

return self.flags([valuel;

(continues on next page)

124 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract C {
using Set for Data; // this is the crucial change
Data knownValues;

function register (uint wvalue) public {
// Here, all variables of type Data have
// corresponding member functions.
// The following function call is identical to
// “Set.insert (knownValues, value)’
require (knownValues.insert (value));

It is also possible to extend elementary types in that way:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

library Search {
function indexOf (uint[] storage self, uint value)
public
view
returns (uint)
for (uint i = 0; i < self.length; i++)
if (self[i] == value) return ij;
return uint (-1);

contract C {
using Search for uint[];
uint[] data;

function append(uint value) public ({
data.push (value);

function replace(uint _old, uint _new) public {
// This performs the library function call
uint index = data.indexOf (_old);

if (index == uint (-1))
data.push (_new) ;
else
data[index] = _new;

Note that all external library calls are actual EVM function calls. This means that if you pass memory or value types,
a copy will be performed, even of the self variable. The only situation where no copy will be performed is when

storage reference variables are used or when internal library functions are called.

3.9. Contracts

125

Solidity Documentation, Release 0.7.5

3.10 Inline Assembly

You can interleave Solidity statements with inline assembly in a language close to the one of the Ethereum virtual
machine. This gives you more fine-grained control, which is especially useful when you are enhancing the language
by writing libraries.

The language used for inline assembly in Solidity is called Yu/ and it is documented in its own section. This section
will only cover how the inline assembly code can interface with the surrounding Solidity code.

Warning: Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This bypasses several
important safety features and checks of Solidity. You should only use it for tasks that need it, and only if you are
confident with using it.

An inline assembly block is marked by assembly { ... }, where the code inside the curly braces is code in the
Yul language.

The inline assembly code can access local Solidity variables as explained below.

Different inline assembly blocks share no namespace, i.e. it is not possible to call a Yul function or access a Yul
variable defined in a different inline assembly block.

3.10.1 Example

The following example provides library code to access the code of another contract and load it into a byt es variable.
This is not possible with “plain Solidity” and the idea is that reusable assembly libraries can enhance the Solidity
language without a compiler change.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

library GetCode {
function at (address _addr) public view returns (bytes memory o_code) {

assembly {
// retrieve the size of the code, this needs assembly
let size := extcodesize (_addr)

// allocate output byte array — this could also be done without assembly
// by using o_code = new bytes(size)

o_code := mload(0x40)

// new "memory end" including padding

mstore (0x40, add(o_code, and(add(add(size, 0x20), O0x1f), not(0x1f))))

// store length in memory

mstore (o_code, size)

// actually retrieve the code, this needs assembly

extcodecopy (_addr, add(o_code, 0x20), 0, size)

Inline assembly is also beneficial in cases where the optimizer fails to produce efficient code, for example:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

(continues on next page)

126 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

library VectorSum {
// This function is less efficient because the optimizer currently fails to
// remove the bounds checks in array access.
function sumSolidity (uint[] memory _data) public pure returns (uint sum) {
for (uint i1 = 0; i < _data.length; ++1i)
sum += _datal[il;

// We know that we only access the array in bounds, so we can avoid the check.
// 0x20 needs to be added to an array because the first slot contains the

// array length.

function sumAsm(uint[] memory _data) public pure returns (uint sum) {

for (uint i1 = 0; i < _data.length; ++i) {
assembly {
sum := add(sum, mload (add(add(_data, 0x20), mul (i, 0x20))))

// Same as above, but accomplish the entire code within inline assembly.

function sumPureAsm(uint[] memory _data) public pure returns (uint sum) {
assembly {
// Load the length (first 32 bytes)
let len := mload(_data)

// Skip over the length field.

//

// Keep temporary variable so it can be incremented in place.
//

// NOTE: incrementing _data would result in an unusable

// _data variable after this assembly block

let data := add(_data, 0x20)

// Iterate until the bound is not met.

for
{ let end := add(data, mul (len, 0x20)) }
1t (data, end)
{ data := add(data, 0x20) }

sum := add(sum, mload(data))

3.10.2 Access to External Variables, Functions and Libraries

You can access Solidity variables and other identifiers by using their name.
Local variables of value type are directly usable in inline assembly.

Local variables that refer to memory or calldata evaluate to the address of the variable in memory, resp. calldata, not
the value itself.

For local storage variables or state variables, a single Yul identifier is not sufficient, since they do not necessarily
occupy a single full storage slot. Therefore, their “address” is composed of a slot and a byte-offset inside that slot. To

3.10. Inline Assembly 127

Solidity Documentation, Release 0.7.5

retrieve the slot pointed to by the variable x, you use x.slot, and to retrieve the byte-offset you use x.offset.
Using x itself will result in an error.

Local Solidity variables are available for assignments, for example:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract C {
uint b;
function f (uint x) public view returns (uint r) {
assembly {
// We ignore the storage slot offset, we know it is zero
// in this special case.
r := mul(x, sload(b[]slot))

Warning: If you access variables of a type that spans less than 256 bits (for example uint 64, address,
bytesl6 or byte), you cannot make any assumptions about bits not part of the encoding of the type. Es-
pecially, do not assume them to be zero. To be safe, always clear the data properly before you use it
in a context where this is important: uint32 x = f£(); assembly { x := and(x, Oxffffffff)
/+ now use x */ } To clean signed types, you can use the signextend opcode: assembly {
signextend (<num_bytes_of_x_minus_one>, x) }

Since Solidity 0.6.0 the name of a inline assembly variable may not shadow any declaration visible in the scope of the
inline assembly block (including variable, contract and function declarations).

Since Solidity 0.7.0, variables and functions declared inside the inline assembly block may not contain ., but using .
is valid to access Solidity variables from outside the inline assembly block.

Assignments are possible to assembly-local variables and to function-local variables. Take care that when you assign
to variables that point to memory or storage, you will only change the pointer and not the data.

You can assign to the .slot part of a local storage variable pointer. For these (structs, arrays or mappings), the
.of fset part is always zero. It is not possible to assign to the . s1lot or .offset part of a state variable, though.

3.10.3 Things to Avoid

Inline assembly might have a quite high-level look, but it actually is extremely low-level. Function calls, loops,
ifs and switches are converted by simple rewriting rules and after that, the only thing the assembler does for you is
re-arranging functional-style opcodes, counting stack height for variable access and removing stack slots for assembly-
local variables when the end of their block is reached.

3.10.4 Conventions in Solidity

In contrast to EVM assembly, Solidity has types which are narrower than 256 bits, e.g. uint24. For efficiency, most
arithmetic operations ignore the fact that types can be shorter than 256 bits, and the higher-order bits are cleaned when
necessary, i.e., shortly before they are written to memory or before comparisons are performed. This means that if you
access such a variable from within inline assembly, you might have to manually clean the higher-order bits first.

Solidity manages memory in the following way. There is a “free memory pointer” at position 0x40 in memory. If
you want to allocate memory, use the memory starting from where this pointer points at and update it. There is no

128 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

guarantee that the memory has not been used before and thus you cannot assume that its contents are zero bytes. There
is no built-in mechanism to release or free allocated memory. Here is an assembly snippet you can use for allocating
memory that follows the process outlined above:

function allocate(length) —-> pos {
pos := mload (0x40)
mstore (0x40, add(pos, length))

}

The first 64 bytes of memory can be used as “scratch space” for short-term allocation. The 32 bytes after the free
memory pointer (i.e., starting at 0x60) are meant to be zero permanently and is used as the initial value for empty
dynamic memory arrays. This means that the allocatable memory starts at 0x80, which is the initial value of the free
memory pointer.

Elements in memory arrays in Solidity always occupy multiples of 32 bytes (this is even true for byte [], but not for
bytes and string). Multi-dimensional memory arrays are pointers to memory arrays. The length of a dynamic
array is stored at the first slot of the array and followed by the array elements.

Warning: Statically-sized memory arrays do not have a length field, but it might be added later to allow better
convertibility between statically- and dynamically-sized arrays, so do not rely on this.

3.11 Cheatsheet

3.11.1 Order of Precedence of Operators

The following is the order of precedence for operators, listed in order of evaluation.

3.11. Cheatsheet 129

Solidity Documentation, Release 0.7.5

Precedence | Description Operator
1 Postfix increment and decrement ++, ——
New expression new <typename>
Array subscripting <array>[<index>]
Member access <object>.<member>
Function-like call <func> (<args...>)
Parentheses (<statement>)
2 Prefix increment and decrement ++, ——
Unary minus -
Unary operations delete
Logical NOT !
Bitwise NOT ~
3 Exponentiation * ok
4 Multiplication, division and modulo | *, /, %
5 Addition and subtraction +, —
6 Bitwise shift operators <<, >>
7 Bitwise AND &
8 Bitwise XOR ~
9 Bitwise OR |
10 Inequality operators <, >, <=, >=
11 Equality operators ==, 1=
12 Logical AND &&
13 Logical OR |
14 Ternary operator <conditional> ? <if-true> <if-false>
Assignment operators =, | =, "=, &=, <<=, >>=, +=, —=, %=, /=, %=
15 Comma operator ,
3.11.2 Global Variables
abi.decode (bytes memory encodedData, (...)) returns (...): ABI-decodes the pro-

vided data. The types are given in parentheses as second argument. Example: (uint a, uint[2] memory

b, bytes memory c) = abi.decode(data, (uint, uint[2], bytes))

abi.encode(...) returns (bytes memory): ABI-encodes the given arguments

abi.encodePacked(...) returns (bytes memory): Performs packed encoding of the given ar-
guments. Note that this encoding can be ambiguous!

abi.encodeWithSelector (bytes4 selector, .) returns (bytes memory): ABI-

encodes the given arguments starting from the second and prepends the given four-byte selector

abi.encodeWithSignature (string memory signature, ...) returns (bytes

memory) : Equivalentto abi .encodeWithSelector (bytes4 (keccak256 (bytes (signature)),
)

block.coinbase (address payable): current block miner’s address

block.difficulty (uint): current block difficulty

block.gaslimit (uint): current block gaslimit

block.number (uint): current block number

block.timestamp (uint): current block timestamp

gasleft () returns (uint256): remaining gas

130

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

* msg.data (bytes): complete calldata

* msg.sender (address payable): sender of the message (current call)

* msg.value (uint): number of wei sent with the message

* tx.gasprice (uint): gas price of the transaction

e tx.origin (address payable): sender of the transaction (full call chain)

* assert (bool condition): abort execution and revert state changes if condition is false (use for inter-
nal error)

* require (bool condition): abort execution and revert state changes if condition is false (use for
malformed input or error in external component)

* require (bool condition, string memory message): abort execution and revert state changes
if condition is false (use for malformed input or error in external component). Also provide error message.

e revert (): abort execution and revert state changes

* revert (string memory message): abort execution and revert state changes providing an explanatory
string

* blockhash (uint blockNumber) returns (bytes32): hash of the given block - only works for
256 most recent blocks

e keccak256 (bytes memory) returns (bytes32): compute the Keccak-256 hash of the input
* sha256 (bytes memory) returns (bytes32): compute the SHA-256 hash of the input
* ripemdl60 (bytes memory) returns (bytes20): compute the RIPEMD-160 hash of the input

e ecrecover (bytes32 hash, uint8 v, bytes32 r, bytes32 s) returns (address):
recover address associated with the public key from elliptic curve signature, return zero on error

e addmod (uint x, uint y, uint k) returns (uint):compute (x + y) % k where the addi-
tion is performed with arbitrary precision and does not wrap around at 2+ x256. Assert that k != 0 starting
from version 0.5.0.

e mulmod (uint x, uint y, uint k) returns (uint): compute (x = y) % k where the mul-
tiplication is performed with arbitrary precision and does not wrap around at 2xx256. Assert thatk != 0
starting from version 0.5.0.

e this (current contract’s type): the current contract, explicitly convertible to address or address
payable

* super: the contract one level higher in the inheritance hierarchy

* selfdestruct (address payable recipient): destroy the current contract, sending its funds to the
given address

e <address>.balance (uint256): balance of the Address in Wei

* <address payable>.send(uint256 amount) returns (bool): send given amount of Wei to
Address, returns false on failure

* <address payable>.transfer (uint256 amount): send given amount of Wei to Address, throws
on failure

e type (C) .name (string): the name of the contract

* type (C) .creationCode (bytes memory): creation bytecode of the given contract, see Type Informa-
tion.

e type (C) .runtimeCode (bytes memory): runtime bytecode of the given contract, see Type Information.

3.11. Cheatsheet 131

Solidity Documentation, Release 0.7.5

e type(I).interfaceId (bytesd4): value containing the EIP-165 interface identifier of the given interface,
see Type Information.

* type (T) .min (T): the minimum value representable by the integer type T, see Type Information.

e type (T) .max (T): the maximum value representable by the integer type T, see Type Information.

Note: Do notrely on block.timestamp or blockhash as a source of randomness, unless you know what you
are doing.

Both the timestamp and the block hash can be influenced by miners to some degree. Bad actors in the mining com-
munity can for example run a casino payout function on a chosen hash and just retry a different hash if they did not
receive any money.

The current block timestamp must be strictly larger than the timestamp of the last block, but the only guarantee is that
it will be somewhere between the timestamps of two consecutive blocks in the canonical chain.

Note: The block hashes are not available for all blocks for scalability reasons. You can only access the hashes of the
most recent 256 blocks, all other values will be zero.

Note: In version 0.5.0, the following aliases were removed: suicide as alias for selfdestruct, msg.gas as
alias for gasleft,block.blockhash as alias for blockhash and sha3 as alias for keccak256.

Note: In version 0.7.0, the alias now (for block .t imestamp) was removed.

3.11.3 Function Visibility Specifiers

function myFunction() <visibility specifier> returns (bool) {
return true;

}

* public: visible externally and internally (creates a getter function for storage/state variables)
* private: only visible in the current contract
* external: only visible externally (only for functions) - i.e. can only be message-called (via this. func)

* internal: only visible internally

3.11.4 Modifiers

¢ pure for functions: Disallows modification or access of state.

» view for functions: Disallows modification of state.

* payable for functions: Allows them to receive Ether together with a call.

* constant for state variables: Disallows assignment (except initialisation), does not occupy storage slot.

e immutable for state variables: Allows exactly one assignment at construction time and is constant afterwards.
Is stored in code.

132 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

* anonymous for events: Does not store event signature as topic.
* indexed for event parameters: Stores the parameter as topic.

* virtual for functions and modifiers: Allows the function’s or modifier’s behaviour to be changed in derived
contracts.

* override: States that this function, modifier or public state variable changes the behaviour of a function or
modifier in a base contract.

3.11.5 Reserved Keywords

These keywords are reserved in Solidity. They might become part of the syntax in the future:

after, alias, apply, auto, case, copyof, default, define, final, immutable, implements,
in, inline, let, macro, match, mutable, null, of, partial, promise, reference, relocatable,
sealed, sizeof, static, supports, switch, typedef, typeof, unchecked.

3.12 Layout of State Variables in Storage

Statically-sized variables (everything except mapping and dynamically-sized array types) are laid out contiguously
in storage starting from position 0. Multiple, contiguous items that need less than 32 bytes are packed into a single
storage slot if possible, according to the following rules:

* The first item in a storage slot is stored lower-order aligned.
* Elementary types use only as many bytes as are necessary to store them.
* If an elementary type does not fit the remaining part of a storage slot, it is moved to the next storage slot.

* Structs and array data always start a new slot and occupy whole slots (but items inside a struct or array are
packed tightly according to these rules).

For contracts that use inheritance, the ordering of state variables is determined by the C3-linearized order of contracts
starting with the most base-ward contract. If allowed by the above rules, state variables from different contracts do
share the same storage slot.

The elements of structs and arrays are stored after each other, just as if they were given explicitly.

Warning: When using elements that are smaller than 32 bytes, your contract’s gas usage may be higher. This is
because the EVM operates on 32 bytes at a time. Therefore, if the element is smaller than that, the EVM must use
more operations in order to reduce the size of the element from 32 bytes to the desired size.

It is only beneficial to use reduced-size arguments if you are dealing with storage values because the compiler will
pack multiple elements into one storage slot, and thus, combine multiple reads or writes into a single operation.
When dealing with function arguments or memory values, there is no inherent benefit because the compiler does
not pack these values.

Finally, in order to allow the EVM to optimize for this, ensure that you try to order your storage variables and
struct members such that they can be packed tightly. For example, declaring your storage variables in the order
of uint128, uintl28, uint256 instead of uint128, uint256, uint128, as the former will only
take up two slots of storage whereas the latter will take up three.

Note: The layout of state variables in storage is considered to be part of the external interface of Solidity due to the
fact that storage pointers can be passed to libraries. This means that any change to the rules outlined in this section is

3.12. Layout of State Variables in Storage 133

Solidity Documentation, Release 0.7.5

considered a breaking change of the language and due to its critical nature should be considered very carefully before
being executed.

3.12.1 Mappings and Dynamic Arrays

Due to their unpredictable size, mapping and dynamically-sized array types use a Keccak-256 hash computation to
find the starting position of the value or the array data. These starting positions are always full stack slots.

The mapping or the dynamic array itself occupies a slot in storage at some position p according to the above rule (or
by recursively applying this rule for mappings of mappings or arrays of arrays). For dynamic arrays, this slot stores
the number of elements in the array (byte arrays and strings are an exception, see below). For mappings, the slot is
unused (but it is needed so that two equal mappings after each other will use a different hash distribution). Array data
is located at keccak256 (p) and the value corresponding to a mapping key k is located at keccak256 (k . p)
where . is concatenation. If the value is again a non-elementary type, the positions are found by adding an offset of
keccak256(k . p).

So for the following contract snippet the position of data[4]1[9].b is at keccak256 (uint256 (9)
keccak256 (uint256(4) . uint256(1))) + 1:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract C {
struct S { uint a; uint b; }
uint x;
mapping (uint => mapping(uint => S)) data;

bytes and string

bytes and string are encoded identically. For short byte arrays, they store their data in the same slot where the
length is also stored. In particular: if the data is at most 31 bytes long, it is stored in the higher-order bytes (left
aligned) and the lowest-order byte stores length = 2. For byte arrays that store data which is 32 or more bytes
long, the main slot stores length » 2 + 1 and the data is stored as usual in keccak256 (slot). This means
that you can distinguish a short array from a long array by checking if the lowest bit is set: short (not set) and long
(set).

Note: Handling invalidly encoded slots is currently not supported but may be added in the future.

3.12.2 JSON Output

The storage layout of a contract can be requested via the standard JSON interface. The output is a JSON object
containing two keys, storage and types. The storage object is an array where each element has the following
form:

{

"astIid": 2,
"contract": "fileA:A",
"label": "X",

(continues on next page)

134 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"offset": O,
"Slot": "O",
"type": "t_uint256"

The example above is the storage layout of contract A { uint x; } from source unit f£ileA and
e astIdis the id of the AST node of the state variable’s declaration
e contract is the name of the contract including its path as prefix
* label is the name of the state variable
* of fset is the offset in bytes within the storage slot according to the encoding

* slot is the storage slot where the state variable resides or starts. This number may be very large and therefore
its JSON value is represented as a string.

* type is an identifier used as key to the variable’s type information (described in the following)

The given type, in this case t_uint256 represents an element in t ypes, which has the form:

{
"encoding": "inplace",
"label": "uint256",
"numberOfBytes": "32",

where
* encoding how the data is encoded in storage, where the possible values are:

— inplace: datais laid out contiguously in storage (see above).

mapping: Keccak-256 hash-based method (see above).

dynamic_array: Keccak-256 hash-based method (see above).
— bytes: single slot or Keccak-256 hash-based depending on the data size (see above).
* label is the canonical type name.

* numberOfBytes is the number of used bytes (as a decimal string). Note that if numberOfBytes > 32
this means that more than one slot is used.

Some types have extra information besides the four above. Mappings contain its key and value types (again ref-
erencing an entry in this mapping of types), arrays have its base type, and structs list their members in the same
format as the top-level storage (see above).

Note: The JSON output format of a contract’s storage layout is still considered experimental and is subject to change
in non-breaking releases of Solidity.

The following example shows a contract and its storage layout, containing value and reference types, types that are
encoded packed, and nested types.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;
contract A {
struct S {
uintl28 a;

(continues on next page)

3.12. Layout of State Variables in Storage 135

Solidity Documentation, Release 0.7.5

(continued from previous page)

uintl1l28 b;
uint [2] staticArray;
uint [] dynArray;

uint x;

uint y;

S s;

address addr;

mapping (uint => mapping (address => bool)) map;

uint [] array;

string sl;

bytes bl;

}
"storageLayout": {
"storage": [

{
"astId": 14,
"contract": "fileA:A",
"label": "x",
"offset": O,
"slot": "O",
"type": "t_uint256"

}I

{
"astId": 16,
"contract": "fileA:A",
"label": "y",
"offset": O,
"slot": "1",
"type": "t_uint256"

}I

{
"astId": 18,
"contract": "fileA:A",
"label": "gs"
"offset": O,
"slot": "2",
"type": "t_struct (S)12_storage"

}I

{
"astIid": 20,
"contract": "fileA:A",
"label": "addr",
"offset": O,
"slot": "6",
"type": "t_address"

}’

{
"astId": 26,
"contract": "fileA:A",
"label": "map",
"offset": O,
"slot": "7",
"type": "t_mapping(t_uint256,t_mapping (t_address,t_bool))"

(continues on next page)

136

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"astId": 29,

"contract": "fileA:A",

"label": "array",

"offset": O,

"SlOt"Z "8",

"type": "t_array (t_uint256)dyn_storage"

"astId": 31,

"contract": "fileA:A",
"label": "s1",

"offset": O,

"SlOt": "9",

"type": "t_string_storage"

"astId": 33,

"contract": "fileA:A",
"label": "b1",

"offset": O,

"slot": "10",

"type": "t_bytes_storage"

}

I
"types": {

"t_address": {
"encoding": "inplace",
"label": "address",
"numberOfBytes": "20"

by

"t_array (t_uint256)2_storage": {
"base": "t_uint256",
"encoding": "inplace",
"label": "uint256([2]",
"numberOfBytes": "64"

}y

"t_array (t_uint256)dyn_storage": {
"base": "t_uint256",
"encoding": "dynamic_array",
"label": "uint256[]1",
"numberOfBytes": "32"

}I

"t _bool": {
"encoding": "inplace",
"label": "bool",
"numberOfBytes": "1"

}I

"t_bytes_storage": {
"encoding": "bytes",
"label": "bytes",
"numberOfBytes": "32"

}I

"t_mapping (t_address,t_bool)": {
"encoding": "mapping",
"key": "t_address",

(continues on next page)

3.12. Layout of State Variables in Storage 137

Solidity Documentation, Release 0.7.5

(continued from previous page)

"label": "mapping (address => bool)",
"numberOfBytes": "32",
"value": "t_bool"

b

"t_mapping (t_uint256, t_mapping (t_address,t_bool))":
"encoding": "mapping",
"key": "t_uint256",

"label": "mapping (uint256 => mapping(address => bool))",

"numberOfBytes": "32",
"value": "t_mapping (t_address,t_bool)"
}I
"t_string_storage": {
"encoding": "bytes",
"label": "string",
"numberOfBytes": "32"
}I
"t_struct (S)1l2_storage": {

"encoding": "inplace",
"label": "struct A.S",
"members": [
{
"astId": 2,
"contract": "fileA:A",
"label": "a",
"offset": O,
"slot": "O",
"type": "t_uintl128"
}I
{
"astId": 4,
"contract": "fileA:A",
"label": "b",
"offset": 16,
"slot": "O",
"type": "t_uintl1l28"
}I
{
"astIid": 8,
"contract": "fileA:A",
"label": "staticArray",
"offset": O,
"slot": "1",
"type": "t_array (t_uint256)2_storage"

"astId": 11,

"contract": "fileA:A",
"label": "dynArray",
"offset": O,
llslotll: ll3ll,
"type": "t_array (t_uint256)dyn_storage"
}
1,
"numberOfBytes": "128"

b
"t_uint128": {
"encoding": "inplace",

{

(continues on next page)

138

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"label": "uintl128",
"numberOfBytes": "16"
}I
"t_uint256": {
"encoding": "inplace",
"label": "uint256",
"numberOfBytes": "32"

3.13 Layout in Memory

Solidity reserves four 32-byte slots, with specific byte ranges (inclusive of endpoints) being used as follows:
* 0x00 - 0x3f (64 bytes): scratch space for hashing methods
* 0x40 - 0x5f (32 bytes): currently allocated memory size (aka. free memory pointer)
* 0x60 - 0x7f (32 bytes): zero slot

Scratch space can be used between statements (i.e. within inline assembly). The zero slot is used as initial value for
dynamic memory arrays and should never be written to (the free memory pointer points to 0x80 initially).

Solidity always places new objects at the free memory pointer and memory is never freed (this might change in the
future).

Elements in memory arrays in Solidity always occupy multiples of 32 bytes (this is even true for byte [], but not for
bytes and string). Multi-dimensional memory arrays are pointers to memory arrays. The length of a dynamic
array is stored at the first slot of the array and followed by the array elements.

Warning: There are some operations in Solidity that need a temporary memory area larger than 64 bytes and
therefore will not fit into the scratch space. They will be placed where the free memory points to, but given their
short lifetime, the pointer is not updated. The memory may or may not be zeroed out. Because of this, one should
not expect the free memory to point to zeroed out memory.

While it may seem like a good idea to use msize to arrive at a definitely zeroed out memory area, using such a
pointer non-temporarily without updating the free memory pointer can have unexpected results.

3.14 Layout of Call Data

The input data for a function call is assumed to be in the format defined by the ABI specification. Among others, the
ABI specification requires arguments to be padded to multiples of 32 bytes. The internal function calls use a different
convention.

Arguments for the constructor of a contract are directly appended at the end of the contract’s code, also in ABI
encoding. The constructor will access them through a hard-coded offset, and not by using the codesize opcode,
since this of course changes when appending data to the code.

3.13. Layout in Memory 139

Solidity Documentation, Release 0.7.5

3.15 Cleaning Up Variables

When a value is shorter than 256 bit, in some cases the remaining bits must be cleaned. The Solidity compiler is
designed to clean such remaining bits before any operations that might be adversely affected by the potential garbage
in the remaining bits. For example, before writing a value to memory, the remaining bits need to be cleared because
the memory contents can be used for computing hashes or sent as the data of a message call. Similarly, before storing
a value in the storage, the remaining bits need to be cleaned because otherwise the garbled value can be observed.

On the other hand, we do not clean the bits if the immediately following operation is not affected. For instance, since
any non-zero value is considered t rue by JUMPTI instruction, we do not clean the boolean values before they are
used as the condition for JUMPI.

In addition to the design principle above, the Solidity compiler cleans input data when it is loaded onto the stack.

Different types have different rules for cleaning up invalid values:

Type Valid Values Invalid Values Mean

enum of n members | Ountiln - 1 exception

bool Oorl 1

signed integers sign-extended word | currently silently wraps; in the future exceptions will be thrown
unsigned integers higher bits zeroed currently silently wraps; in the future exceptions will be thrown

3.16 Source Mappings

As part of the AST output, the compiler provides the range of the source code that is represented by the respective
node in the AST. This can be used for various purposes ranging from static analysis tools that report errors based on
the AST and debugging tools that highlight local variables and their uses.

Furthermore, the compiler can also generate a mapping from the bytecode to the range in the source code that generated
the instruction. This is again important for static analysis tools that operate on bytecode level and for displaying the
current position in the source code inside a debugger or for breakpoint handling. This mapping also contains other
information, like the jump type and the modifier depth (see below).

Both kinds of source mappings use integer identifiers to refer to source files. The identifier of a
source file is stored in output['sources'] [sourceName]['id'] where output is the out-
put of the standard-json compiler interface parsed as JSON. For some utility routines, the com-
piler generates “internal” source files that are not part of the original input but are referenced
from the source mappings. These source files together with their identifiers can be obtained via
output ['contracts'] [sourceName] [contractName] ['evm'] ['bytecode'] ['generatedSources'].

Note: In the case of instructions that are not associated with any particular source file, the source mapping assigns an
integer identifier of —1. This may happen for bytecode sections stemming from compiler-generated inline assembly
statements.

The source mappings inside the AST use the following notation:
s:1:f

Where s is the byte-offset to the start of the range in the source file, 1 is the length of the source range in bytes and £
is the source index mentioned above.

The encoding in the source mapping for the bytecode is more complicated: Itis alistof s:1:f: j:m separated by ;.
Each of these elements corresponds to an instruction, i.e. you cannot use the byte offset but have to use the instruction

140 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

offset (push instructions are longer than a single byte). The fields s, 1 and £ are as above. j can be either i, o or
- signifying whether a jump instruction goes into a function, returns from a function or is a regular jump as part of
e.g. aloop. The last field, m, is an integer that denotes the “modifier depth”. This depth is increased whenever the
placeholder statement (_) is entered in a modifier and decreased when it is left again. This allows debuggers to track
tricky cases like the same modifier being used twice or multiple placeholder statements being used in a single modifier.

In order to compress these source mappings especially for bytecode, the following rules are used:
* If a field is empty, the value of the preceding element is used.
e If a : is missing, all following fields are considered empty.
This means the following source mappings represent the same information:
1:2:1;1:9:1;2:1:2;2:1:2;2:1:2
1:2:1;:9;2:1:2;;

3.17 The Optimiser

This section discusses the optimiser that was first added to Solidity, which operates on opcode streams. For information
on the new Yul-based optimiser, please see the readme on github.

The Solidity optimiser operates on assembly. It splits the sequence of instructions into basic blocks at JUMPs and
JUMPDESTSs. Inside these blocks, the optimiser analyses the instructions and records every modification to the stack,
memory, or storage as an expression which consists of an instruction and a list of arguments which are pointers to other
expressions. The optimiser uses a component called “CommonSubexpressionEliminator” that amongst other tasks,
finds expressions that are always equal (on every input) and combines them into an expression class. The optimiser
first tries to find each new expression in a list of already known expressions. If this does not work, it simplifies the
expression according to rules like constant + constant = sum_of_constants or X * 1 = X. Since
this is a recursive process, we can also apply the latter rule if the second factor is a more complex expression where we
know that it always evaluates to one. Modifications to storage and memory locations have to erase knowledge about
storage and memory locations which are not known to be different. If we first write to location x and then to location
y and both are input variables, the second could overwrite the first, so we do not know what is stored at x after we
wrote to y. If simplification of the expression x - y evaluates to a non-zero constant, we know that we can keep our
knowledge about what is stored at x.

After this process, we know which expressions have to be on the stack at the end, and have a list of modifications to
memory and storage. This information is stored together with the basic blocks and is used to link them. Furthermore,
knowledge about the stack, storage and memory configuration is forwarded to the next block(s). If we know the targets
of all JUMP and JUMPT instructions, we can build a complete control flow graph of the program. If there is only one
target we do not know (this can happen as in principle, jump targets can be computed from inputs), we have to erase
all knowledge about the input state of a block as it can be the target of the unknown JUMP. If the optimiser finds a
JUMP I whose condition evaluates to a constant, it transforms it to an unconditional jump.

As the last step, the code in each block is re-generated. The optimiser creates a dependency graph from the expressions
on the stack at the end of the block, and it drops every operation that is not part of this graph. It generates code
that applies the modifications to memory and storage in the order they were made in the original code (dropping
modifications which were found not to be needed). Finally, it generates all values that are required to be on the stack
in the correct place.

These steps are applied to each basic block and the newly generated code is used as replacement if it is smaller. If a
basic block is split at a JUMP I and during the analysis, the condition evaluates to a constant, the JUMPT is replaced
depending on the value of the constant. Thus code like

uint x = 7;
datal[7] = 9;

(continues on next page)

3.17. The Optimiser 141

https://github.com/ethereum/solidity/blob/develop/libyul/optimiser/README.md

Solidity Documentation, Release 0.7.5

(continued from previous page)

if (data[x] !'= x + 2)
return 2;

else
return 1;

still simplifies to code which you can compile even though the instructions contained a jump in the beginning of the
process:

datal[7] = 9;
return 1;

3.18 Contract Metadata

The Solidity compiler automatically generates a JSON file, the contract metadata, that contains information about
the compiled contract. You can use this file to query the compiler version, the sources used, the ABI and NatSpec
documentation to more safely interact with the contract and verify its source code.

The compiler appends by default the IPFS hash of the metadata file to the end of the bytecode (for details, see below)
of each contract, so that you can retrieve the file in an authenticated way without having to resort to a centralized data
provider. The other available options are the Swarm hash and not appending the metadata hash to the bytecode. These
can be configured via the Standard JSON Interface.

You have to publish the metadata file to IPFS, Swarm, or another service so that others can access it. You create the file
by using the solc —-metadata command that generates a file called Cont ractName_meta. json. It contains
IPFS and Swarm references to the source code, so you have to upload all source files and the metadata file.

The metadata file has the following format. The example below is presented in a human-readable way. Properly
formatted metadata should use quotes correctly, reduce whitespace to a minimum and sort the keys of all objects to
arrive at a unique formatting. Comments are not permitted and used here only for explanatory purposes.

{
// Required: The version of the metadata format
version: "1",
// Required: Source code language, basically selects a "sub-version"
// of the specification
language: "Solidity",
// Required: Details about the compiler, contents are specific
// to the language.
compiler: {
// Required for Solidity: Version of the compiler
version: "0.4.6+commit.2dabbdf0.Emscripten.clang",
// Optional: Hash of the compiler binary which produced this output
keccak256: "0x123..."
}I
// Required: Compilation source files/source units, keys are file names
sources:
{
"myFile.sol": {
// Required: keccak256 hash of the source file
"keccak256": "0x123...",
// Required (unless "content" is used, see below): Sorted URL(s)
// to the source file, protocol is more or less arbitrary, but a
// Swarm URL is recommended
"urls": ["bzzr://56ab..." 1,

(continues on next page)

142 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

// Optional: SPDX license identifier as given in the source file
"license": "MIT"

}I

"destructible": {
// Required: keccak256 hash of the source file

"keccak256": "0x234...",

// Required (unless "url" is used): literal contents of the source file

"content": "contract destructible is owned { function destroy() { if (msg.
—»sender == owner) selfdestruct (owner); } }"

}

by
// Required: Compiler settings

settings:
{
// Required for Solidity: Sorted list of remappings
remappings: [":g=/dir" 1,
// Optional: Optimizer settings. The fields "enabled" and "runs" are deprecated
// and are only given for backwards-compatibility.
optimizer: {
enabled: true,
runs: 500,
details: {
// peephole defaults to "true"
peephole: true,
// JjumpdestRemover defaults to "true"
jumpdestRemover: true,
orderLiterals: false,
deduplicate: false,
cse: false,
constantOptimizer: false,
yul: true,
// Optional: Only present if "yul" is "true"
yulDetails: {
stackAllocation: false,
optimizerSteps: "dhfoDgvulfnTUtnIf..."

}

}o

metadata: {
// Reflects the setting used in the input json, defaults to false
uselLiteralContent: true,
// Reflects the setting used in the input json, defaults to "ipfs"
bytecodeHash: "ipfs"

}

// Required for Solidity: File and name of the contract or library this
// metadata is created for.
compilationTarget: {

"myFile.sol": "MyContract"

by
// Required for Solidity: Addresses for libraries used

libraries: {
"MyLib": "0x123123..."
}

by
// Required: Generated information about the contract.

output:
{

(continues on next page)

3.18. Contract Metadata 143

Solidity Documentation, Release 0.7.5

(continued from previous page)

// Required: ABI definition of the contract

abi: [... 1,

// Required: NatSpec user documentation of the contract
userdoc: [...],

// Required: NatSpec developer documentation of the contract
devdoc: [... 1,

Warning: Since the bytecode of the resulting contract contains the metadata hash by default, any change to the
metadata might result in a change of the bytecode. This includes changes to a filename or path, and since the
metadata includes a hash of all the sources used, a single whitespace change results in different metadata, and
different bytecode.

Note: The ABI definition above has no fixed order. It can change with compiler versions. Starting from Solidity
version 0.5.12, though, the array maintains a certain order.

3.18.1 Encoding of the Metadata Hash in the Bytecode

Because we might support other ways to retrieve the metadata file in the future, the mapping {"ipfs": <IPFS
hash>, "solc": <compiler version>} isstored CBOR-encoded. Since the mapping might contain more
keys (see below) and the beginning of that encoding is not easy to find, its length is added in a two-byte big-endian
encoding. The current version of the Solidity compiler usually adds the following to the end of the deployed bytecode:

Oxa?2

Ox64 'i' 'p' '"f' 's' 0x58 0x22 <34 bytes IPFS hash>
Ox64 's' 'o'" 'l' 'c' 0x43 <3 byte version encoding>
0x00 0x33

So in order to retrieve the data, the end of the deployed bytecode can be checked to match that pattern and use the
IPFES hash to retrieve the file.

Whereas release builds of solc use a 3 byte encoding of the version as shown above (one byte each for major, minor
and patch version number), prerelease builds will instead use a complete version string including commit hash and
build date.

Note: The CBOR mapping can also contain other keys, so it is better to fully decode the data instead of relying on
it starting with Oxa264. For example, if any experimental features that affect code generation are used, the mapping
will also contain "experimental": true.

Note: The compiler currently uses the IPFS hash of the metadata by default, but it may also use the bzzrl hash or
some other hash in the future, so do not rely on this sequence to start with 0xa2 0x64 'i' 'p' 'f' 's'. We
might also add additional data to this CBOR structure, so the best option is to use a proper CBOR parser.

144 Chapter 3. Contents

https://tools.ietf.org/html/rfc7049

Solidity Documentation, Release 0.7.5

3.18.2 Usage for Automatic Interface Generation and NatSpec

The metadata is used in the following way: A component that wants to interact with a contract (e.g. Mist or any
wallet) retrieves the code of the contract, from that the IPFS/Swarm hash of a file which is then retrieved. That file is
JSON-decoded into a structure like above.

The component can then use the ABI to automatically generate a rudimentary user interface for the contract.

Furthermore, the wallet can use the NatSpec user documentation to display a confirmation message to the user when-
ever they interact with the contract, together with requesting authorization for the transaction signature.

For additional information, read Ethereum Natural Language Specification (NatSpec) format.

3.18.3 Usage for Source Code Verification

In order to verify the compilation, sources can be retrieved from IPFS/Swarm via the link in the metadata file. The
compiler of the correct version (which is checked to be part of the “official” compilers) is invoked on that input with
the specified settings. The resulting bytecode is compared to the data of the creation transaction or CREATE opcode
data. This automatically verifies the metadata since its hash is part of the bytecode. Excess data corresponds to the
constructor input data, which should be decoded according to the interface and presented to the user.

In the repository sourcify (npm package) you can see example code that shows how to use this feature.

3.19 Contract ABI Specification

3.19.1 Basic Design

The Contract Application Binary Interface (ABI) is the standard way to interact with contracts in the Ethereum ecosys-
tem, both from outside the blockchain and for contract-to-contract interaction. Data is encoded according to its type,
as described in this specification. The encoding is not self describing and thus requires a schema in order to decode.

We assume the interface functions of a contract are strongly typed, known at compilation time and static. We assume
that all contracts will have the interface definitions of any contracts they call available at compile-time.

This specification does not address contracts whose interface is dynamic or otherwise known only at run-time.

3.19.2 Function Selector

The first four bytes of the call data for a function call specifies the function to be called. It is the first (left, high-order in
big-endian) four bytes of the Keccak-256 hash of the signature of the function. The signature is defined as the canonical
expression of the basic prototype without data location specifier, i.e. the function name with the parenthesised list of
parameter types. Parameter types are split by a single comma - no spaces are used.

Note: The return type of a function is not part of this signature. In Solidity’s function overloading return types are
not considered. The reason is to keep function call resolution context-independent. The JSON description of the ABI
however contains both inputs and outputs.

3.19.3 Argument Encoding

Starting from the fifth byte, the encoded arguments follow. This encoding is also used in other places, e.g. the return
values and also event arguments are encoded in the same way, without the four bytes specifying the function.

3.19. Contract ABI Specification 145

https://github.com/ethereum/sourcify
https://www.npmjs.com/package/source-verify

Solidity Documentation, Release 0.7.5

3.19.4 Types

The following elementary types exist:

e uint<M>: unsigned integer type of M bits, 0 < M <= 256, M % 8 == 0. e.g. uint32, uints,
uint256.

* int<M>: two’s complement signed integer type of M bits, 0 < M <= 256,M % 8 ==

* address: equivalent to uint 160, except for the assumed interpretation and language typing. For computing
the function selector, address is used.

e uint, int: synonyms for uint 256, int 256 respectively. For computing the function selector, uint256
and int 256 have to be used.

* bool: equivalent to uint 8 restricted to the values 0 and 1. For computing the function selector, bool is used.

» fixed<M>x<N>: signed fixed-point decimal number of M bits, 8 <= M <= 256,M % == 0,and 0 <
N <= 80, which denotes the value vasv / (10 xx N).

e ufixed<M>x<N>: unsigned variant of £ixed<M>x<N>.

* fixed, ufixed: synonyms for fixed128x18, ufixed128x18 respectively. For computing the function
selector, fixed128x18 and ufixedl128x18 have to be used.

* bytes<M>: binary type of Mbytes, 0 < M <= 32.
e function: an address (20 bytes) followed by a function selector (4 bytes). Encoded identical to bytes24.
The following (fixed-size) array type exists:

* <type>[M]: a fixed-length array of M elements, M >= 0, of the given type.

Note: While this ABI specification can express fixed-length arrays with zero elements, they’re not
supported by the compiler.

The following non-fixed-size types exist:
* bytes: dynamic sized byte sequence.
* string: dynamic sized unicode string assumed to be UTF-8 encoded.
e <type>[]: avariable-length array of elements of the given type.
Types can be combined to a tuple by enclosing them inside parentheses, separated by commas:
e (T1,T2,...,Tn): tuple consisting of the types T1, ..., Tn,n >= 0

It is possible to form tuples of tuples, arrays of tuples and so on. It is also possible to form zero-tuples (where n ==
0).

Mapping Solidity to ABI types

Solidity supports all the types presented above with the same names with the exception of tuples. On the other hand,
some Solidity types are not supported by the ABI. The following table shows on the left column Solidity types that are
not part of the ABI, and on the right column the ABI types that represent them.

146 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Solidity ABI

address address

payable

contract address

enum smallest uint type that is large enough to hold all values
For example, an enum of 256 values or less is mapped to uint 8 and an enum of 256 values is mapped
touintlé.

struct tuple

3.19.5 Design Criteria for the Encoding
The encoding is designed to have the following properties, which are especially useful if some arguments are nested
arrays:

1. The number of reads necessary to access a value is at most the depth of the value inside the argument
array structure, i.e. four reads are needed to retrieve a_i [k] [1] [r]. In a previous version of the ABI,
the number of reads scaled linearly with the total number of dynamic parameters in the worst case.

2. The data of a variable or array element is not interleaved with other data and it is relocatable, i.e. it
only uses relative “addresses”.

3.19.6 Formal Specification of the Encoding
We distinguish static and dynamic types. Static types are encoded in-place and dynamic types are encoded at a
separately allocated location after the current block.
Definition: The following types are called “dynamic”:
* bytes
* string
e T[] forany T
e T[k] for any dynamic T and any k >= 0
e (T1,...,Tk) if Ti is dynamic forsome 1 <= i <= k
All other types are called “static”.
Definition: 1en (a) is the number of bytes in a binary string a. The type of 1en (a) is assumed to be uint256.

We define enc, the actual encoding, as a mapping of values of the ABI types to binary strings such that
len (enc (X)) depends on the value of X if and only if the type of X is dynamic.

Definition: For any ABI value X, we recursively define enc (X), depending on the type of X being
e (T1l,...,Tk) fork >= 0 andany types T1,..., Tk
enc (X) = head(X (1)) ... head(X(k)) tail(X(1)) ... tail((X(k))
where X = (X(1), ..., X(k)) and headand tail are defined for Ti as follows:
if T1i is static:
head (X (1)) = enc(X(i)) andtail (X (i)) = "" (the empty string)
otherwise, i.e. if T1i is dynamic:

head (X (1)) = enc(len(head(X(1l)) ... head(X(k)) tail(X(1l))
tail (X(i-1)))) tail(X(1i)) = enc(X(i))

3.19. Contract ABI Specification 147

Solidity Documentation, Release 0.7.5

Note that in the dynamic case, head (X (1)) is well-defined since the lengths of the head parts only depend
on the types and not the values. The value of head (X (1)) is the offset of the beginning of tail (X (1))
relative to the start of enc (X) .

T [k] forany T and k:

enc(X) = enc((X[0], ..., X[k=-11))

i.e. it is encoded as if it were a tuple with k elements of the same type.

T [] where X has k elements (k is assumed to be of type uint256):

enc (X) = enc(k) enc([X[0], ..., X[k-1]1)

i.e. it is encoded as if it were an array of static size k, prefixed with the number of elements.
bytes, of length k (which is assumed to be of type uint256):

enc (X) = enc(k) pad_right (X), i.e. the number of bytes is encoded as a uint 256 followed by the
actual value of X as a byte sequence, followed by the minimum number of zero-bytes such that 1en (enc (X))
is a multiple of 32.

string:

enc (X) = enc(enc_utf8 (X)), ie. Xis utf-8 encoded and this value is interpreted as of bytes type
and encoded further. Note that the length used in this subsequent encoding is the number of bytes of the utf-8
encoded string, not its number of characters.

uint<M>: enc (X) is the big-endian encoding of X, padded on the higher-order (left) side with zero-bytes
such that the length is 32 bytes.

address: asinthe uint 160 case

int<M>: enc (X) is the big-endian two’s complement encoding of X, padded on the higher-order (left) side
with 0x £ f bytes for negative X and with zero-bytes for non-negative X such that the length is 32 bytes.

bool: asin the uint 8 case, where 1 is used for t rue and 0 for false

fixed<M>x<N>: enc (X) isenc (X * 10x*N) where X x 10x*Nis interpreted as a int256.
fixed: asinthe fixed128x18 case

ufixed<M>x<N>: enc (X) isenc (X % 10x%N) where X % 10*«*N isinterpreted asauint256.
ufixed: asinthe ufixed128x18 case

bytes<M>: enc (X) is the sequence of bytes in X padded with trailing zero-bytes to a length of 32 bytes.

Note that for any X, len (enc (X)) is a multiple of 32.

3.19.7 Function Selector and Argument Encoding

All in all, a call to the function £ with parameters a_1, ..., a_nisencoded as
function_selector (f) enc((a_l, ..., a_n))

and the return values v_1, ..., v_k of £ are encoded as
enc((v_1l, ..., v_k))

i.e. the values are combined into a tuple and encoded.

148

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

3.19.8 Examples

Given the contract:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract Foo {
function bar (bytes3[2] memory) public pure {}
function baz (uint32 x, bool y) public pure returns (bool r) { r = x > 32 || y; }
function sam(bytes memory, bool, uint[] memory) public pure {}

Thus for our Foo example if we wanted to call baz with the parameters 69 and t rue, we would pass 68 bytes total,
which can be broken down into:

e Oxcdcd77c0: the Method ID. This is derived as the first 4 bytes of the Keccak hash of the ASCII form of the
signature baz (uint32, bool).

* 0x0045: the first
parameter, a uint32 value 69 padded to 32 bytes

* 0x0001: the second
parameter - boolean t rue, padded to 32 bytes

In total:

Oxcdcd77c0000OO045000OOOOOOOOOO#OOOOOOOOOOOM

It returns a single bool. If, for example, it were to return false, its output would be the single byte array
0x00, a single bool.

If we wanted to call bar with the argument ["abc", "def"], we would pass 68 bytes total, broken down into:
* 0xfce353f6: the Method ID. This is derived from the signature bar (bytes3[2]).

* 0x61626300: the first
part of the first parameter, a bytes3 value "abc" (left-aligned).

* 0x64656600: the second
part of the first parameter, a bytes3 value "def" (left-aligned).

In total:

Oxfce353f6616263000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO000000000000000000000064656600000OO#&OOOOOOOOOOOO(

If we wanted to call sam with the arguments "dave", true and [1, 2, 3], we would pass 292 bytes total, broken
down into:

* 0xa5643bf2: the Method ID. This is derived from the signature sam (bytes,bool, uint256[]). Note
that uint is replaced with its canonical representation uint256.

* 0x0060: the loca-
tion of the data part of the first parameter (dynamic type), measured in bytes from the start of the arguments
block. In this case, 0x60.

* 0x0001: the second
parameter: boolean true.

* 0x00a0: the loca-
tion of the data part of the third parameter (dynamic type), measured in bytes. In this case, 0xa0.

3.19. Contract ABI Specification 149

Solidity Documentation, Release 0.7.5

* 0x0004: the data
part of the first argument, it starts with the length of the byte array in elements, in this case, 4.

* 0x6461766500: the con-
tents of the first argument: the UTF-8 (equal to ASCII in this case) encoding of "dave", padded on the right
to 32 bytes.

* 0x0003: the data
part of the third argument, it starts with the length of the array in elements, in this case, 3.

* 0x0001: the first
entry of the third parameter.

* 0x0002: the second
entry of the third parameter.

* 0x0003: the third
entry of the third parameter.

In total:

Oxa5643bf2000OOO6000OOOOOOOOOOO#XOOOOOOOOOOOO(

3.19.9 Use of Dynamic Types

A call to a function with the signature £ (uint, uint32[], bytesl0, bytes) with values (0x123, [0x456,
0x789], "1234567890", "Hello, world!") isencoded in the following way:

We take the first four bytes of sha3 ("f (uint256,uint32[],bytesl0,bytes)"),ie. 0x8be65246. Then
we encode the head parts of all four arguments. For the static types uint256 and bytes10, these are directly the
values we want to pass, whereas for the dynamic types uint 32 [] and bytes, we use the offset in bytes to the start
of their data area, measured from the start of the value encoding (i.e. not counting the first four bytes containing the
hash of the function signature). These are:

* 0x000123 (0x123
padded to 32 bytes)

* 0x0080 (offset to
start of data part of second parameter, 4*32 bytes, exactly the size of the head part)

* 0x3132333435363738393000
("1234567890" padded to 32 bytes on the right)

* 0x00e0 (offset to
start of data part of fourth parameter = offset to start of data part of first dynamic parameter + size of data
part of first dynamic parameter = 4*32 + 3*32 (see below))

After this, the data part of the first dynamic argument, [0x456, 0x789] follows:

* 0x0002 (number of
elements of the array, 2)

* 0x000456 (first ele-
ment)

¢ 0x000789 (second el-
ement)

Finally, we encode the data part of the second dynamic argument, "Hello, world!":

150 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

¢ 0x000d (number of
elements (bytes in this case): 13)

* 0x48656c6c6£2c20776£726c642100000000000000000000000000000000000000 ("Hello,
world!" padded to 32 bytes on the right)

All together, the encoding is (newline after function selector and each 32-bytes for clarity):

0x8be65246
000123
0080
3132333435363738393000
00€0
0002
000456
000789
000d
48656c6c6£2c20776£726c642100000000000000000000000000000000000000

Let us apply the same principle to encode the data for a function with a signature g (uint [][],stringl[])
with values ([[1, 2], [3]], ["one", "two", "three"]) but start from the most atomic parts of the
encoding:

First we encode the length and data of the first embedded dynamic array [1, 2] of the first root array [[1, 21,
[311:
¢ 0x0002 (number of
elements in the first array, 2; the elements themselves are 1 and 2)

* 0x0001 (first ele-
ment)

¢ 0x0002 (second el-
ement)

Then we encode the length and data of the second embedded dynamic array [3] of the first root array [[1, 21,
[311:
¢ 0x0001 (number of
elements in the second array, 1; the element is 3)

* 0x0003 (first ele-
ment)

Then we need to find the offsets a and b for their respective dynamic arrays [1, 2] and [3]. To calculate the
offsets we can take a look at the encoded data of the first root array [[1, 2], [3]] enumerating each line in the
encoding:

0 - a — offset of [1
21

1 -Db - offset of [3]
2 — 0002 — count for [1
2]

- 0001 - encoding of 1
- 0002 - encoding of 2
- 0001 - count for [3]
- 0003 - encoding of 3

[

[

o U1 W

Offset a points to the start of the content of the array [1, 2] which is line 2 (64 bytes); thus a =
0x0040.

3.19. Contract ABI Specification 151

Solidity Documentation, Release 0.7.5

Offset b points to the start of the content of the array [3] which is line 5 (160 bytes); thus b =
0x004a0.

Then we encode the embedded strings of the second root array:

¢ 0x0003 (number of
characters in word "one")

* 0x6f6€6500 (utf8 repre-
sentation of word "one")

¢ 0x0003 (number of
characters in word "two")

* 0x74776£00 (utf8 repre-
sentation of word "two")

¢ 0x0005 (number of
characters in word "three™")

* 0x746872656500 (utf8 repre-
sentation of word "three")

In parallel to the first root array, since strings are dynamic elements we need to find their offsets ¢, d and e:

0 - c - offset for "one
"

1 -d — offset for "two
s mw

2 — e - offset for
—"three"

3 - 0003 - count for "one"
4 - 6£6e6500 - encoding of
<—>"Ol’1€ n

5 - 0003 - count for "two"
6 — 74776£00 - encoding of
;}"two n

7 - 0005 — count for
—"three"

8 — 746872656500 - encoding of
—"three"

Offset ¢ points to the start of the content of the string "one" which is line 3 (96 bytes); thus c =
0x0060.

Offset d points to the start of the content of the string "two" which is line 5 (160 bytes); thus d =
0x00a0.

Offset e points to the start of the content of the string "three" which is line 7 (224 bytes); thus e =
0x00€0.

Note that the encodings of the embedded elements of the root arrays are not dependent on each other and have the
same encodings for a function with a signature g (string[],uint [][]).

Then we encode the length of the first root array:

¢ 0x0002 (number of
elements in the first root array, 2; the elements themselves are [1, 2] and [3])

Then we encode the length of the second root array:

¢ 0x0003 (number of
strings in the second root array, 3; the strings themselves are "one", "two" and "three")

152 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Finally we find the offsets £ and g for their respective root dynamic arrays [[1, 2],
"two", "three"], and assemble parts in the correct order:

[3]1] and ["one",

0x2289b18c

—signature

0 - £

— 21, [31]

l1-g

—"one", "two", "three"]

2 - 0002
— 21, [31]

3 - 0040
2]

4 - 00a0
5 - 0002

6 - 0001
7 - 0002
8 — 0001
9 - 0003
10 - 0003
—"one", "two", "three"]
11 - 0060
—"one"
12 - 00a0
—"two"
13 - 00€0
—"three"
14 - 0003

n
—

15 - 6£6e6500
s "Ol’le n
16 - 0003

n
—

17 - 74776£00
s "two n

18 - 0005
—"three"

19 - 746872656500
—"three"

function,
offset of [[1,
offset of [

count for [[1,
offset of [1

offset of [3]
count for [1

encoding of 1
encoding of 2
count for [3]
encoding of 3
count for [
offset for
offset for
offset for
count for "one
encoding of
count for "two
encoding of

count for

encoding of

Offset £ points to the start of the content of the array [[1, 2],

[3]11 which is line 2 (64 bytes); thus £ =

0x0040.

Offset g points to the start of the content of the array ["one", "two",

"three"] which is line 10 (320 bytes);

thusg = 0x000140.

3.19.10 Events

Events are an abstraction of the Ethereum logging/event-watching protocol. Log entries provide the contract’s address,
a series of up to four topics and some arbitrary length binary data. Events leverage the existing function ABI in order
to interpret this (together with an interface spec) as a properly typed structure.

Given an event name and series of event parameters, we split them into two sub-series: those which are indexed and
those which are not. Those which are indexed, which may number up to 3, are used alongside the Keccak hash of the
event signature to form the topics of the log entry. Those which are not indexed form the byte array of the event.

In effect, a log entry using this ABI is described as:

3.19. Contract ABI Specification 153

Solidity Documentation, Release 0.7.5

* address: the address of the contract (intrinsically provided by Ethereum);

e topics[0]: keccak (EVENT_NAME+" ("+EVENT_ARGS.map (canonical_type_of) .join (",
")+")") (canonical_type_of is a function that simply returns the canonical type of a given argument,
e.g. for uint indexed foo, it would return uint256). If the event is declared as anonymous the
topics[0] is not generated;

e topics[n]: abi_encode (EVENT_INDEXED_ARGS[n - 1]) (EVENT_INDEXED_ARGS is the series
of EVENT_ARGS that are indexed);

* data: ABI encoding of EVENT_NON_INDEXED_ARGS (EVENT_NON_INDEXED_ARGS is the series of
EVENT_ARGS that are not indexed, abi_encode is the ABI encoding function used for returning a series
of typed values from a function, as described above).

For all types of length at most 32 bytes, the EVENT__INDEXED_ARGS array contains the value directly, padded or
sign-extended (for signed integers) to 32 bytes, just as for regular ABI encoding. However, for all “complex” types or
types of dynamic length, including all arrays, string, bytes and structs, EVENT_INDEXED_ARGS will contain
the Keccak hash of a special in-place encoded value (see Encoding of Indexed Event Parameters), rather than the
encoded value directly. This allows applications to efficiently query for values of dynamic-length types (by setting the
hash of the encoded value as the topic), but leaves applications unable to decode indexed values they have not queried
for. For dynamic-length types, application developers face a trade-off between fast search for predetermined values
(if the argument is indexed) and legibility of arbitrary values (which requires that the arguments not be indexed).
Developers may overcome this tradeoff and achieve both efficient search and arbitrary legibility by defining events
with two arguments — one indexed, one not — intended to hold the same value.

3.19.11 JSON
The JSON format for a contract’s interface is given by an array of function and/or event descriptions. A function
description is a JSON object with the fields:

e type: "function", "constructor", "receive" (the “receive Ether” function) or "fallback" (the
“default” function);

¢ name: the name of the function;

* inputs: an array of objects, each of which contains:
— name: the name of the parameter.
— type: the canonical type of the parameter (more below).
— components: used for tuple types (more below).

* outputs: an array of objects similar to inputs.

e stateMutability: astring with one of the following values: pure (specified to not read blockchain state),
view (specified to not modify the blockchain state), nonpayable (function does not accept Ether - the default)
and payable (function accepts Ether).

Constructor and fallback function never have name or output s. Fallback function doesn’t have inputs either.

Note: Sending non-zero Ether to non-payable function will revert the transaction.

Note: The state mutability nonpayable is reflected in Solidity by not specifying a state mutability modifier at all.

An event description is a JSON object with fairly similar fields:

* type: always "event"

154 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

¢ name: the name of the event.

e inputs: an array of objects, each of which contains:

name: the name of the parameter.

type: the canonical type of the parameter (more below).

— components: used for tuple types (more below).

— indexed: true if the field is part of the log’s topics, false if it one of the log’s data segment.
e anonymous: true if the event was declared as anonymous.

For example,

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

contract Test {
constructor () { b = hex"12345678901234567890123456789012"; }
event Event (uint indexed a, bytes32 b);
event Event2 (uint indexed a, bytes32 b);
function foo (uint a) public { emit Event(a, b); }
bytes32 b;

would result in the JSON:

[{

"type":"event",

"inputs": [{"name":"a","type":"uint256", "indexed":true}, {"name":"b", "type":"bytes32",
—"indexed":false}],

"name" :"Event"

b A

"type":"event",

"inputs": [{"name":"a","type":"uint256", "indexed":true}, {"name":"b", "type":"bytes32",
—"indexed":false}],

"name": "Event2"

oo Ao

"type":"function",

"inputs": [{"name":"a","type":"uint256"}],

"name":"foo",

"outputs": []

}]

Handling tuple types

Despite that names are intentionally not part of the ABI encoding they do make a lot of sense to be included in the
JSON to enable displaying it to the end user. The structure is nested in the following way:

An object with members name, type and potentially component s describes a typed variable. The canonical type
is determined until a tuple type is reached and the string description up to that point is stored in t ype prefix with the
word tuple, i.e. it will be tuple followed by a sequence of [] and [k] with integers k. The components of the
tuple are then stored in the member component s, which is of array type and has the same structure as the top-level
object except that indexed is not allowed there.

As an example, the code

3.19. Contract ABI Specification 155

Solidity Documentation, Release 0.7.5

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >0.7.4;
pragma abicoder v2;
contract Test
struct S { uint a; wuint[] b; T[] c; }

struct T { uint x; uint y; }
function f (S memory, T memory, uint)
function g () public pure returns

public pure {}
(S memory, T memory,

uint)

{}

would result in the JSON:
[
{
"name": "f",
"type": "function",
"inputs": |
{
"name": "s",
"type": "tuple",
"components": [
{
"name": "a'",
"type": "uint256"
} 14
{
"name": "b",
"type": "uint256[]"
} 4
{
"name": "c",
"type": "tuplel[]",
"components": |
{
"name": "x",
"type": "uint256"
} 14
{
"name": "y",
"type": "uint256"
}
1
}
1
} 14
{
"name": "t",
"type": "tuple",
"components": [
{
"name": "x",
"type": "uint256"
} r
{
"name": "vy"
"type": "uint256"

(continues on next page)

156

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

]
by
{

"name": "a",
"type": "uint256"
}
]I
"outputs": []

3.19.12 Strict Encoding Mode

Strict encoding mode is the mode that leads to exactly the same encoding as defined in the formal specification above.
This means offsets have to be as small as possible while still not creating overlaps in the data areas and thus no gaps
are allowed.

Usually, ABI decoders are written in a straightforward way just following offset pointers, but some decoders might
enforce strict mode. The Solidity ABI decoder currently does not enforce strict mode, but the encoder always creates
data in strict mode.

3.19.13 Non-standard Packed Mode

Through abi.encodePacked (), Solidity supports a non-standard packed mode where:
* types shorter than 32 bytes are neither zero padded nor sign extended and
* dynamic types are encoded in-place and without the length.
e array elements are padded, but still encoded in-place

Furthermore, structs as well as nested arrays are not supported.

As an example, the encoding of intl6(-1), bytesl(0x42), uintl6(0x03), string("Hello,
world!"™) results in:

0xfff£f42000348656c6c6£2c20776£726c6421

nnnn intl6(-1)
~n bytesl (0x42)
Anan uint16 (0x03)
NANNANNNNNNNNANNNNANNNANNN gt ring ("Hello, world!") without a length field
More specifically:

* During the encoding, everything is encoded in-place. This means that there is no distinction between head
and tail, as in the ABI encoding, and the length of an array is not encoded.

* The direct arguments of abi.encodePacked are encoded without padding, as long as they are not
arrays (or string or bytes).

* The encoding of an array is the concatenation of the encoding of its elements with padding.
* Dynamically-sized types like st ring, bytes or uint [] are encoded without their length field.

* The encoding of st ring or bytes does not apply padding at the end unless it is part of an array or struct
(then it is padded to a multiple of 32 bytes).

3.19. Contract ABI Specification 157

Solidity Documentation, Release 0.7.5

In general, the encoding is ambiguous as soon as there are two dynamically-sized elements, because of the missing
length field.

If padding is needed, explicit type conversions can be used: abi.encodePacked(uintl6(0x12)) ==
hex"0012".

Since packed encoding is not used when calling functions, there is no special support for prepending a function
selector. Since the encoding is ambiguous, there is no decoding function.

Warning: If you use keccak256 (abi.encodePacked(a, b)) and both a and b are dynamic types,
it is easy to craft collisions in the hash value by moving parts of a into b and vice-versa. More specifi-
cally, abi.encodePacked("a", "bc") == abi.encodePacked("ab", "c"). If you use abi.
encodePacked for signatures, authentication or data integrity, make sure to always use the same types and
check that at most one of them is dynamic. Unless there is a compelling reason, abi .encode should be pre-
ferred.

3.19.14 Encoding of Indexed Event Parameters
Indexed event parameters that are not value types, i.e. arrays and structs are not stored directly but instead a keccak256-
hash of an encoding is stored. This encoding is defined as follows:

* the encoding of a bytes and st ring value is just the string contents without any padding or length prefix.

* the encoding of a struct is the concatenation of the encoding of its members, always padded to a multiple of 32
bytes (even bytes and string).

¢ the encoding of an array (both dynamically- and statically-sized) is the concatenation of the encoding of its
elements, always padded to a multiple of 32 bytes (even bytes and st ring) and without any length prefix

In the above, as usual, a negative number is padded by sign extension and not zero padded. byt esNN types are padded
on the right while uint NN/ intNN are padded on the left.

Warning: The encoding of a struct is ambiguous if it contains more than one dynamically-sized array. Because
of that, always re-check the event data and do not rely on the search result based on the indexed parameters alone.

3.20 Solidity v0.5.0 Breaking Changes

This section highlights the main breaking changes introduced in Solidity version 0.5.0, along with the reasoning behind
the changes and how to update affected code. For the full list check the release changelog.

Note: Contracts compiled with Solidity v0.5.0 can still interface with contracts and even libraries compiled with older
versions without recompiling or redeploying them. Changing the interfaces to include data locations and visibility and
mutability specifiers suffices. See the Interoperability With Older Contracts section below.

3.20.1 Semantic Only Changes

This section lists the changes that are semantic-only, thus potentially hiding new and different behavior in existing
code.

158 Chapter 3. Contents

https://github.com/ethereum/solidity/releases/tag/v0.5.0

Solidity Documentation, Release 0.7.5

* Signed right shift now uses proper arithmetic shift, i.e. rounding towards negative infinity, instead of rounding
towards zero. Signed and unsigned shift will have dedicated opcodes in Constantinople, and are emulated by
Solidity for the moment.

e The continue statementin a do. . .while loop now jumps to the condition, which is the common behavior
in such cases. It used to jump to the loop body. Thus, if the condition is false, the loop terminates.

e The functions .call (), .delegatecall () and .staticcall () do not pad anymore when given a
single bytes parameter.

* Pure and view functions are now called using the opcode STATICCALL instead of CALL if the EVM version is
Byzantium or later. This disallows state changes on the EVM level.

* The ABI encoder now properly pads byte arrays and strings from calldata (msg.data and external function
parameters) when used in external function calls and in abi.encode. For unpadded encoding, use abi.
encodePacked.

* The ABI decoder reverts in the beginning of functions and in abi . decode () if passed calldata is too short or
points out of bounds. Note that dirty higher order bits are still simply ignored.

» Forward all available gas with external function calls starting from Tangerine Whistle.

3.20.2 Semantic and Syntactic Changes

This section highlights changes that affect syntax and semantics.

e The functions .call(), .delegatecall(), staticcall(), keccak256(), sha256() and
ripemd160 () now accept only a single bytes argument. Moreover, the argument is not
padded. This was changed to make more explicit and clear how the arguments are concate-
nated. = Change every .call() (and family) to a .call("") and every .call (signature,
a, b, c) to use .call (abi.encodeWithSignature (signature, a, b, c)) (the last one
only works for value types). Change every keccak256(a, b, c) to keccak256 (abi.
encodePacked(a, b, c)). Even though it is not a breaking change, it is suggested that
developers change x.call (bytesd (keccak256("f (uint256)")), a, b) to x.call (abi.
encodeWithSignature ("f (uint256)", a, b)).

e Functions .call (), .delegatecall () and .staticcall () now return (bool, bytes memory)
to provide access to the return data. Change bool success = otherContract.call("f") to (bool
success, bytes memory data) = otherContract.call("f").

* Solidity now implements C99-style scoping rules for function local variables, that is, variables can only be used
after they have been declared and only in the same or nested scopes. Variables declared in the initialization
block of a for loop are valid at any point inside the loop.

3.20.3 Explicitness Requirements

This section lists changes where the code now needs to be more explicit. For most of the topics the compiler will
provide suggestions.

» Explicit function visibility is now mandatory. Add public to every function and constructor, and external
to every fallback or interface function that does not specify its visibility already.

 Explicit data location for all variables of struct, array or mapping types is now mandatory. This is also applied to
function parameters and return variables. For example, change uint [] x = m_xtouint[] storage x
= m_x, and function f(uint[][] x) to function f(uint[][] memory x) where memory
is the data location and might be replaced by storage or calldata accordingly. Note that external
functions require parameters with a data location of calldata.

3.20. Solidity v0.5.0 Breaking Changes 159

Solidity Documentation, Release 0.7.5

Contract types do not include address members anymore in order to separate the namespaces. Therefore,
it is now necessary to explicitly convert values of contract type to addresses before using an address mem-
ber. Example: if c is a contract, change c.transfer(...) to address (c) .transfer(...), and
c.balance to address (c) .balance.

Explicit conversions between unrelated contract types are now disallowed. You can only convert from a contract
type to one of its base or ancestor types. If you are sure that a contract is compatible with the contract type you
want to convert to, although it does not inherit from it, you can work around this by converting to address
first. Example: if A and B are contract types, B does not inherit from A and b is a contract of type B, you can
still convert b to type A using A (address (b)). Note that you still need to watch out for matching payable
fallback functions, as explained below.

The address type was split into address and address payable, where only address payable
provides the transfer function. An address payable can be directly converted to an address, but
the other way around is not allowed. Converting address to address payable is possible via conversion
through uint160. If c is a contract, address (c) results in address payable only if ¢ has a payable
fallback function. If you use the withdraw pattern, you most likely do not have to change your code because
transfer is only used on msg.sender instead of stored addresses and msg. sender is an address
payable.

Conversions between bytesX and uintY of different size are now disallowed due to bytesX padding on the
right and uintY padding on the left which may cause unexpected conversion results. The size must now be
adjusted within the type before the conversion. For example, you can convert a bytes4 (4 bytes) toauint 64
(8 bytes) by first converting the bytes4 variable to bytes8 and then to uint64. You get the opposite
padding when converting through uint 32.

Using msg . value in non-payable functions (or introducing it via a modifier) is disallowed as a security feature.
Turn the function into payable or create a new internal function for the program logic that uses msg. value.

For clarity reasons, the command line interface now requires - if the standard input is used as source.

3.20.4 Deprecated Elements

This section lists changes that deprecate prior features or syntax. Note that many of these changes were already
enabled in the experimental mode v0.5. 0.

Command Line and JSON Interfaces

The command line option ——formal (used to generate Why3 output for further formal verification) was dep-
recated and is now removed. A new formal verification module, the SMTChecker, is enabled via pragma
experimental SMTChecker;.

The command line option ——julia was renamed to ——yul due to the renaming of the intermediate language
Juliato Yul.

The ——clone-bin and ——combined-json clone-bin command line options were removed.
Remappings with empty prefix are disallowed.

The JSON AST fields constant and payable were removed. The information is now present in the
stateMutability field.

The JSON AST field isConstructor of the FunctionDefinition node was replaced by a field called
kind which can have the value "constructor™", "fallback" or "function".

In unlinked binary hex files, library address placeholders are now the first 36 hex characters of the keccak256
hash of the fully qualified library name, surrounded by $. . . $. Previously, just the fully qualified library name

160

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

was used. This reduces the chances of collisions, especially when long paths are used. Binary files now also
contain a list of mappings from these placeholders to the fully qualified names.

Constructors

* Constructors must now be defined using the constructor keyword.
* Calling base constructors without parentheses is now disallowed.
* Specifying base constructor arguments multiple times in the same inheritance hierarchy is now disallowed.

¢ Calling a constructor with arguments but with wrong argument count is now disallowed. If you only want to
specify an inheritance relation without giving arguments, do not provide parentheses at all.

Functions
* Function callcode is now disallowed (in favor of delegatecall). It is still possible to use it via inline
assembly.
¢ suicide is now disallowed (in favor of selfdestruct).
¢ sha3 is now disallowed (in favor of keccak256).

e throw is now disallowed (in favor of revert, require and assert).

Conversions

» Explicit and implicit conversions from decimal literals to bytesXX types is now disallowed.

» Explicit and implicit conversions from hex literals to byt esXX types of different size is now disallowed.

Literals and Suffixes

* The unit denomination years is now disallowed due to complications and confusions about leap years.
* Trailing dots that are not followed by a number are now disallowed.
* Combining hex numbers with unit denominations (e.g. Oxle wei) is now disallowed.

* The prefix 0X for hex numbers is disallowed, only 0x is possible.

Variables

* Declaring empty structs is now disallowed for clarity.

* The var keyword is now disallowed to favor explicitness.

* Assignments between tuples with different number of components is now disallowed.
* Values for constants that are not compile-time constants are disallowed.

* Multi-variable declarations with mismatching number of values are now disallowed.
 Uninitialized storage variables are now disallowed.

* Empty tuple components are now disallowed.

* Detecting cyclic dependencies in variables and structs is limited in recursion to 256.

* Fixed-size arrays with a length of zero are now disallowed.

3.20. Solidity v0.5.0 Breaking Changes 161

Solidity Documentation, Release 0.7.5

Syntax

» Using constant as function state mutability modifier is now disallowed.

* Boolean expressions cannot use arithmetic operations.

* The unary + operator is now disallowed.

* Literals cannot anymore be used with abi . encodePacked without prior conversion to an explicit type.
* Empty return statements for functions with one or more return values are now disallowed.

* The “loose assembly” syntax is now disallowed entirely, that is, jump labels, jumps and non-functional instruc-
tions cannot be used anymore. Use the new while, switch and if constructs instead.

* Functions without implementation cannot use modifiers anymore.

* Function types with named return values are now disallowed.

* Single statement variable declarations inside if/while/for bodies that are not blocks are now disallowed.
e New keywords: calldata and constructor.

* New reserved keywords: alias, apply, auto, copyof, define, immutable, implements, macro,
mutable, override,partial, promise, reference, sealed, sizeof, supports, typedef and
unchecked.

3.20.5 Interoperability With Older Contracts

It is still possible to interface with contracts written for Solidity versions prior to v0.5.0 (or the other way around) by
defining interfaces for them. Consider you have the following pre-0.5.0 contract already deployed:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.4.25;
// This will report a warning until version 0.4.25 of the compiler
// This will not compile after 0.5.0
contract OldContract {
function someOldFunction (uint8 a) {
Y
}
function anotherOldFunction() constant returns (bool) {
Y
}
//

This will no longer compile with Solidity v0.5.0. However, you can define a compatible interface for it:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;
interface OldContract {
function someOldFunction (uint8 a) external;
function anotherOldFunction () external returns (bool);

Note that we did not declare anotherOldFunction to be view, despite it being declared constant in the
original contract. This is due to the fact that starting with Solidity v0.5.0 staticcall is used to call view func-
tions. Prior to v0.5.0 the constant keyword was not enforced, so calling a function declared constant with
staticcall may still revert, since the constant function may still attempt to modify storage. Consequently,

162 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

when defining an interface for older contracts, you should only use view in place of constant in case you are
absolutely sure that the function will work with staticcall.

Given the interface defined above, you can now easily use the already deployed pre-0.5.0 contract:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.8.0;

interface OldContract {
function someOldFunction (uint8 a) external;
function anotherOldFunction() external returns (bool);

contract NewContract {
function doSomething (OldContract a) public returns (bool) {
a.someOldFunction (0x42);
return a.anotherOldFunction () ;

Similarly, pre-0.5.0 libraries can be used by defining the functions of the library without implementation and sup-
plying the address of the pre-0.5.0 library during linking (see Using the Commandline Compiler for how to use the
commandline compiler for linking):

// This will not compile after 0.6.0
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.5.99;

library OldLibrary {
function someFunction (uint8 a) public returns (bool);

contract NewContract
function f (uint8 a) public returns (bool) ({
return OldLibrary.someFunction(a);

3.20.6 Example

The following example shows a contract and its updated version for Solidity v0.5.0 with some of the changes listed in
this section.

Old version:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.4.25;
// This will not compile after 0.5.0

contract OtherContract {
uint x;
function f (uint y) external {
X = Vi
}
function () payable external {}

(continues on next page)

3.20. Solidity v0.5.0 Breaking Changes 163

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract 0ld {
OtherContract other;
uint myNumber;

// Function mutability not provided, not an error.
function somelInteger () internal returns (uint) { return 2; }

// Function visibility not provided, not an error.
// Function mutability not provided, not an error.
function f (uint x) returns (bytes) {

// Var 1is fine in this version.

var z = somelnteger();

X += z;

// Throw 1is fine in this version.

if (x > 100)

throw;
bytes memory b = new bytes (x);
y = -3 > 1;
// y == -1 (wrong, should be -2)
do {
x += 1;

if (x > 10) continue;
// 'Continue' causes an infinite loop.
} while (x < 11);
// Call returns only a Bool.
bool success = address (other).call("f");
if (!success)
revert () ;
else {
// Local variables could be declared after their use.
int y;
}

return b;

// No need for an explicit data location for 'arr'
function g(uint[] arr, bytes8 x, OtherContract otherContract) public {
otherContract.transfer (1 ether);

// Since uint32 (4 bytes) is smaller than bytes8 (8 bytes),
// the first 4 bytes of x will be lost. This might lead to
// unexpected behavior since bytesX are right padded.
uint32 y = uint32 (x);

myNumber += y + msg.value;

New version:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.0 <0.5.99;
// This will not compile after 0.6.0

contract OtherContract {
uint x;
function f (uint y) external {
X = Vi

(continues on next page)

164 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

}
function () payable external {}

contract New {
OtherContract other;
uint myNumber;

// Function mutability must be specified.

function someInteger () internal pure returns (uint) { return 2; }

// Function visibility must be specified.

// Function mutability must be specified.
function f (uint x) public returns (bytes memory) ({
// The type must now be explicitly given.

uint z = somelnteger();

X += z;

// Throw is now disallowed.
require(x <= 100);

int y = -3 > 1;
require(y == -2);
do {

x +=1;

if (x > 10) continue;
// 'Continue' jumps to the condition below.
} while (x < 11);

// Call returns (bool, bytes).
// Data location must be specified.
(bool success, bytes memory data) = address (other).call("f");
if (!success)
revert ();
return data;

using address_make_payable for address;
// Data location for 'arr' must be specified

function g (uint[] memory /x arr =/, bytes8 x, OtherContract otherContract,

—address unknownContract) public payable {
// 'otherContract.transfer' is not provided.

// Since the code of 'OtherContract' is known and has the fallback
// function, address(otherContract) has type 'address payable'.

address (otherContract) .transfer (1 ether);

// 'unknownContract.transfer' is not provided.
// 'address (unknownContract) .transfer' is not provided

// since 'address (unknownContract)' is not 'address payable'.
// If the function takes an 'address' which you want to send
// funds to, you can convert it to 'address payable' via 'uintl60'.

// Note: This is not recommended and the explicit type
// 'address payable' should be used whenever possible.
// To increase clarity, we suggest the use of a library for

// the conversion (provided after the contract in this example).

address payable addr = unknownContract.make_payable();
require (addr.send (1l ether));

// Since uint32 (4 bytes) is smaller than bytes8 (8 bytes),

(continues on next page)

3.20. Solidity v0.5.0 Breaking Changes

165

Solidity Documentation, Release 0.7.5

(continued from previous page)

// the conversion is not allowed.

// We need to convert to a common size first:

bytes4 x4 = bytesd (x); // Padding happens on the right
uint32 y = uint32(x4); // Conversion is consistent

// 'msg.value' cannot be used in a 'non-payable' function.
// We need to make the function payable

myNumber += y + msg.value;

// We can define a library for explicitly converting ' “address
// to '‘address payable'' as a workaround.
library address_make_payable {
function make_payable (address x) internal pure returns (address payable) {
return address (uintl1l60 (x));

}

3.21 Solidity v0.6.0 Breaking Changes

This section highlights the main breaking changes introduced in Solidity version 0.6.0, along with the reasoning behind
the changes and how to update affected code. For the full list check the release changelog.

3.21.1 Changes the Compiler Might not Warn About

This section lists changes where the behaviour of your code might change without the compiler telling you about it.

» The resulting type of an exponentiation is the type of the base. It used to be the smallest type that can hold both
the type of the base and the type of the exponent, as with symmetric operations. Additionally, signed types are
allowed for the base of the exponentiation.

3.21.2 Explicitness Requirements

This section lists changes where the code now needs to be more explicit, but the semantics do not change. For most of
the topics the compiler will provide suggestions.

 Functions can now only be overridden when they are either marked with the virtual keyword or defined
in an interface. Functions without implementation outside an interface have to be marked virtual. When
overriding a function or modifier, the new keyword override must be used. When overriding a function or
modifier defined in multiple parallel bases, all bases must be listed in parentheses after the keyword like so:
override (Basel, Base2).

¢ Member-access to length of arrays is now always read-only, even for storage arrays. It is no longer possible
to resize storage arrays by assigning a new value to their length. Use push (), push (value) or pop ()
instead, or assign a full array, which will of course overwrite the existing content. The reason behind this is to
prevent storage collisions of gigantic storage arrays.

* The new keyword abstract can be used to mark contracts as abstract. It has to be used if a contract does not
implement all its functions. Abstract contracts cannot be created using the new operator, and it is not possible
to generate bytecode for them during compilation.

e Libraries have to implement all their functions, not only the internal ones.

166 Chapter 3. Contents

https://github.com/ethereum/solidity/releases/tag/v0.6.0

Solidity Documentation, Release 0.7.5

The names of variables declared in inline assembly may no longer end in _slot or _offset.

Variable declarations in inline assembly may no longer shadow any declaration outside the inline assembly
block. If the name contains a dot, its prefix up to the dot may not conflict with any declaration outside the inline
assembly block.

State variable shadowing is now disallowed. A derived contract can only declare a state variable x, if there is no
visible state variable with the same name in any of its bases.

3.21.3 Semantic and Syntactic Changes

This section lists changes where you have to modify your code and it does something else afterwards.

Conversions from external function types to address are now disallowed. Instead external function types have
a member called address, similar to the existing selector member.

The function push (value) for dynamic storage arrays does not return the new length anymore (it returns
nothing).

The unnamed function commonly referred to as “fallback function” was split up into a new fallback function
that is defined using the fallback keyword and a receive ether function defined using the receive keyword.

— If present, the receive ether function is called whenever the call data is empty (whether or not ether is
received). This function is implicitly payable.

— The new fallback function is called when no other function matches (if the receive ether function does not
exist then this includes calls with empty call data). You can make this function payable or not. If it is
not payable then transactions not matching any other function which send value will revert. You should
only need to implement the new fallback function if you are following an upgrade or proxy pattern.

3.21.4 New Features

This section lists things that were not possible prior to Solidity 0.6.0 or were more difficult to achieve.

The try/catch statement allows you to react on failed external calls.
struct and enum types can be declared at file level.

Array slices can be used for calldata arrays, for example abi.decode (msg.data[4:], (uint,
uint)) is a low-level way to decode the function call payload.

Natspec supports multiple return parameters in developer documentation, enforcing the same naming check as
@param.

Yul and Inline Assembly have a new statement called 1eave that exits the current function.

Conversions from address to address payable are now possible via payable (x), where x must be of
type address.

3.21.5 Interface Changes

This section lists changes that are unrelated to the language itself, but that have an effect on the interfaces of the
compiler. These may change the way how you use the compiler on the command line, how you use its programmable
interface, or how you analyze the output produced by it.

3.21.

Solidity v0.6.0 Breaking Changes 167

Solidity Documentation, Release 0.7.5

New Error Reporter

A new error reporter was introduced, which aims at producing more accessible error messages on the command line.
It is enabled by default, but passing ——old-reporter falls back to the the deprecated old error reporter.

Metadata Hash Options

The compiler now appends the IPES hash of the metadata file to the end of the bytecode by default (for details, see
documentation on contract metadata). Before 0.6.0, the compiler appended the Swarm hash by default, and in order
to still support this behaviour, the new command line option ——metadata-hash was introduced. It allows you to
select the hash to be produced and appended, by passing either ipfs or swarm as value to the ——metadata-hash
command line option. Passing the value none completely removes the hash.

These changes can also be used via the Standard JSON Interface and effect the metadata JSON generated by the
compiler.

The recommended way to read the metadata is to read the last two bytes to determine the length of the CBOR encoding
and perform a proper decoding on that data block as explained in the metadata section.

Yul Optimizer

Together with the legacy bytecode optimizer, the Yu/ optimizer is now enabled by default when you call the compiler
with ——optimize. It can be disabled by calling the compiler with ——no-optimize—-yul. This mostly affects
code that uses ABI coder v2.

C API Changes

The client code that uses the C API of 1ibsolc is now in control of the memory used by the compiler. To make
this change consistent, solidity_free was renamed to solidity_reset, the functions solidity_alloc
and solidity_free were added and solidity_compile now returns a string that must be explicitly freed via
solidity_free().

3.21.6 How to update your code

This section gives detailed instructions on how to update prior code for every breaking change.
* Change address (f) to £.address for £ being of external function type.

e Replace function () external [payable] { ... } by either receive() external
payable { ... }, fallback() external [payable] { ... } or both. Prefer using a
receive function only, whenever possible.

e Change uint length = array.push(value) to array.push (value);. The new length can be
accessed via array.length.

* Change array.length++ to array.push () to increase, and use pop () to decrease the length of a stor-
age array.

* For every named return parameter in a function’s @dev documentation define a @return entry which contains
the parameter’s name as the first word. E.g. if you have function f () defined like function f () public
returns (uint value) and a @dev annotating it, document its return parameters like so: @return
value The return value.. You can mix named and un-named return parameters documentation so
long as the notices are in the order they appear in the tuple return type.

168 Chapter 3. Contents

https://ipfs.io/
https://ethersphere.github.io/swarm-home/

Solidity Documentation, Release 0.7.5

* Choose unique identifiers for variable declarations in inline assembly that do not conflict with declarations
outside the inline assembly block.

* Add virtual to every non-interface function you intend to override. Add virtual to all functions without
implementation outside interfaces. For single inheritance, add override to every overriding function. For
multiple inheritance, add override (A, B, ..), where you list all contracts that define the overridden
function in the parentheses. When multiple bases define the same function, the inheriting contract must override
all conflicting functions.

3.22 Solidity v0.7.0 Breaking Changes

This section highlights the main breaking changes introduced in Solidity version 0.7.0, along with the reasoning behind
the changes and how to update affected code. For the full list check the release changelog.

3.22.1 Silent Changes of the Semantics

» Exponentiation and shifts of literals by non-literals (e.g. 1 << xor 2 =x* x) will always use either the type
uint256 (for non-negative literals) or int 256 (for negative literals) to perform the operation. Previously, the
operation was performed in the type of the shift amount / the exponent which can be misleading.

3.22.2 Changes to the Syntax

* In external function and contract creation calls, Ether and gas is now specified using a new syntax: x.
f{gas: 10000, value: 2 ether} (argl, arg2). The old syntax — x.f.gas (10000) .
value (2 ether) (argl, arg2) — will cause an error.

* The global variable now is deprecated, block . t imestamp should be used instead. The single identifier now
is too generic for a global variable and could give the impression that it changes during transaction processing,
whereas block . timestamp correctly reflects the fact that it is just a property of the block.

» NatSpec comments on variables are only allowed for public state variables and not for local or internal variables.

* The token gwei is a keyword now (used to specify, e.g. 2 gwei as a number) and cannot be used as an
identifier.

e String literals now can only contain printable ASCII characters and this also includes a variety of escape se-
quences, such as hexadecimal (\x f £) and unicode escapes (\u20ac).

» Unicode string literals are supported now to accommodate valid UTF-8 sequences. They are identified with the
unicode prefix: unicode"Hello ".

¢ State Mutability: The state mutability of functions can now be restricted during inheritance: Functions with
default state mutability can be overridden by pure and view functions while view functions can be overridden
by pure functions. At the same time, public state variables are considered view and even pure if they are
constants.

Inline Assembly
¢ Disallow . in user-defined function and variable names in inline assembly. It is still valid if you use Solidity in
Yul-only mode.

* Slot and offset of storage pointer variable x are accessed via x.slot and x.offset instead of x_slot and
x_offset.

3.22. Solidity v0.7.0 Breaking Changes 169

https://github.com/ethereum/solidity/releases/tag/v0.7.0

Solidity Documentation, Release 0.7.5

3.22.3 Removal of Unused or Unsafe Features

Mappings outside Storage
 If a struct or array contains a mapping, it can only be used in storage. Previously, mapping members were
silently skipped in memory, which is confusing and error-prone.

* Assignments to structs or arrays in storage does not work if they contain mappings. Previously, mappings were
silently skipped during the copy operation, which is misleading and error-prone.

Functions and Events
* Visibility (public / external) is not needed for constructors anymore: To prevent a contract from being
created, it can be marked abstract. This makes the visibility concept for constructors obsolete.

* Type Checker: Disallow virtual for library functions: Since libraries cannot be inherited from, library func-
tions should not be virtual.

* Multiple events with the same name and parameter types in the same inheritance hierarchy are disallowed.

* using A for B only affects the contract it is mentioned in. Previously, the effect was inherited. Now, you
have to repeat the using statement in all derived contracts that make use of the feature.

Expressions
« Shifts by signed types are disallowed. Previously, shifts by negative amounts were allowed, but reverted at
runtime.

e The finney and szabo denominations are removed. They are rarely used and do not make the actual amount
readily visible. Instead, explicit values like 120 or the very common gwe1i can be used.

Declarations

* The keyword var cannot be used anymore. Previously, this keyword would parse but result in a type error and
a suggestion about which type to use. Now, it results in a parser error.

3.22.4 Interface Changes

* JSON AST: Mark hex string literals with kind: "hexString".
* JSON AST: Members with value null are removed from JSON output.

» NatSpec: Constructors and functions have consistent userdoc output.

3.22.5 How to update your code

This section gives detailed instructions on how to update prior code for every breaking change.

e Change x.f.value(...) () tox.f{value: ...} (). Similarly (new C).value(...) () tonew
C{value: ...} () and x.f.gas(...).value(...) () to x.f{gas: ..., value:
}O.

* Change now to block.timestamp.

170 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

» Change types of right operand in shift operators to unsigned types. For example change x >> (256 - y) to
x >> uint (256 - y).

* Repeat the using A for B statements in all derived contracts if needed.
¢ Remove the public keyword from every constructor.

* Remove the internal keyword from every constructor and add abstract to the contract (if not already
present).

* Change _slot and _offset suffixes in inline assembly to . s1lot and .offset, respectively.

3.23 NatSpec Format

Solidity contracts can use a special form of comments to provide rich documentation for functions, return variables
and more. This special form is named the Ethereum Natural Language Specification Format (NatSpec).

This documentation is segmented into developer-focused messages and end-user-facing messages. These messages
may be shown to the end user (the human) at the time that they will interact with the contract (i.e. sign a transaction).

It is recommended that Solidity contracts are fully annotated using NatSpec for all public interfaces (everything in the
ABI).

NatSpec includes the formatting for comments that the smart contract author will use, and which are understood by
the Solidity compiler. Also detailed below is output of the Solidity compiler, which extracts these comments into a
machine-readable format.

3.23.1 Documentation Example

Documentation is inserted above each class, interface and function using the doxygen notation format.
Note: a public state variable is equivalent to a function for the purposes of NatSpec.

* For Solidity you may choose /// for single or multi-line comments, or /% and ending with = /.

» For Vyper, use """ indented to the inner contents with bare comments. See Vyper documentation.

The following example shows a contract and a function using all available tags.

Note: The Solidity compiler only interprets tags if they are external or public. You are welcome to use similar
comments for your internal and private functions, but those will not be parsed.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >0.6.10 <0.8.0;

/// @title A simulator for trees
/// @author Larry A. Gardner
/// @notice You can use this contract for only the most basic simulation
/// @dev All function calls are currently implemented without side effects
contract Tree {
/// @notice Calculate tree age in years, rounded up, for live trees
/// @dev The Alexandr N. Tetearing algorithm could increase precision
/// @param rings The number of rings from dendrochronological sample
/// @return age in years, rounded up for partial years
function age (uint256 rings) external virtual pure returns (uint256) ({
return rings + 1;

(continues on next page)

3.23. NatSpec Format 171

https://vyper.readthedocs.io/en/latest/natspec.html

Solidity Documentation, Release 0.7.5

(continued from previous page)

/// @notice Returns the amount of leaves the tree has.

/// @dev Returns only a fixed number.

function leaves () external virtual pure returns (uint256)
return 2;

contract Plant {
function leaves () external virtual pure returns (uint256)

return 3;

contract KumquatTree is Tree, Plant {
function age (uint256 rings) external override pure returns (uint256) {

return rings + 2;

/// Return the amount of leaves that this specific kind of tree has

/// @inheritdoc Tree
function leaves () external override (Tree, Plant) pure returns (uint256)

return 3;

3.23.2 Tags

All tags are optional. The following table explains the purpose of each NatSpec tag and where it may be used. As a
special case, if no tags are used then the Solidity compiler will interpreta /// or /= comment in the same way as if

it were tagged with @notice.

Tag Context

@title A title that should describe the contract/interface contract, interface

@author | The name of the author contract, interface

@notice | Explain to an end user what this does contract, interface, function, public
state variable, event

@dev Explain to a developer any extra details contract, interface, function, state
variable, event

@param Documents a parameter just like in doxygen (must be fol- | function, event

lowed by parameter name)
@return | Documents the return variables of a contract’s function function, public state variable

@inheritq

dcopies all missing tags from the base function (must be fol- | function, public state variable
lowed by the contract name)

If your function returns multiple values, like (int quotient, int remainder) then use multiple @return
statements in the same format as the @param statements.

172

Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Dynamic expressions

The Solidity compiler will pass through NatSpec documentation from your Solidity source code to the JSON output
as described in this guide. The consumer of this JSON output, for example the end-user client software, may present
this to the end-user directly or it may apply some pre-processing.

For example, some client software will render:

’/// @notice This function will multiply ‘a’ by 7 ‘

to the end-user as:

’This function will multiply 10 by 7 ‘

if a function is being called and the input a is assigned a value of 10.

Specifying these dynamic expressions is outside the scope of the Solidity documentation and you may read more at
the radspec project.

Inheritance Notes

Functions without NatSpec will automatically inherit the documentation of their base function. Exceptions to this are:
* When the parameter names are different.
* When there is more than one base function.

e When there is an explicit @inheritdoc tag which specifies which contract should be used to inherit.

3.23.3 Documentation Output

When parsed by the compiler, documentation such as the one from the above example will produce two different JSON
files. One is meant to be consumed by the end user as a notice when a function is executed and the other to be used by
the developer.

If the above contract is saved as ex1 . sol then you can generate the documentation using:

solc —-userdoc —--devdoc exl.sol

And the output is below.

User Documentation

The above documentation will produce the following user documentation JSON file as output:

{

"methods™"
{
"age (uint256)"
{
"notice" : "Calculate tree age in years, rounded up, for live trees"
}

b
"notice" : "You can use this contract for only the most basic simulation"

3.23. NatSpec Format 173

https://github.com/aragon/radspec

Solidity Documentation, Release 0.7.5

Note that the key by which to find the methods is the function’s canonical signature as defined in the Contract ABI and
not simply the function’s name.

Developer Documentation

Apart from the user documentation file, a developer documentation JSON file should also be produced and should
look like this:

{

"author" : "Larry A. Gardner",
"details" : "All function calls are currently implemented without side effects",
"methods"

{
"age (uint256)"
{

"details" : "The Alexandr N. Tetearing algorithm could increase precision",
"params"
{
"rings" : "The number of rings from dendrochronological sample"
}y
"return" : "age in years, rounded up for partial years"
}
}I
"title" : "A simulator for trees"

3.24 Security Considerations

While it is usually quite easy to build software that works as expected, it is much harder to check that nobody can use
it in a way that was not anticipated.

In Solidity, this is even more important because you can use smart contracts to handle tokens or, possibly, even more
valuable things. Furthermore, every execution of a smart contract happens in public and, in addition to that, the source
code is often available.

Of course you always have to consider how much is at stake: You can compare a smart contract with a web service
that is open to the public (and thus, also to malicious actors) and perhaps even open source. If you only store your
grocery list on that web service, you might not have to take too much care, but if you manage your bank account using
that web service, you should be more careful.

This section will list some pitfalls and general security recommendations but can, of course, never be complete. Also,
keep in mind that even if your smart contract code is bug-free, the compiler or the platform itself might have a bug. A
list of some publicly known security-relevant bugs of the compiler can be found in the /ist of known bugs, which is also
machine-readable. Note that there is a bug bounty program that covers the code generator of the Solidity compiler.

As always, with open source documentation, please help us extend this section (especially, some examples would not
hurt)!

NOTE: In addition to the list below, you can find more security recommendations and best practices in Guy Lando’s
knowledge list and the Consensys GitHub repo.

3.24.1 Pitfalls

174 Chapter 3. Contents

https://github.com/guylando/KnowledgeLists/blob/master/EthereumSmartContracts.md
https://github.com/guylando/KnowledgeLists/blob/master/EthereumSmartContracts.md
https://consensys.github.io/smart-contract-best-practices/

Solidity Documentation, Release 0.7.5

Private Information and Randomness

Everything you use in a smart contract is publicly visible, even local variables and state variables marked private.

Using random numbers in smart contracts is quite tricky if you do not want miners to be able to cheat.

Re-Entrancy

Any interaction from a contract (A) with another contract (B) and any transfer of Ether hands over control to that
contract (B). This makes it possible for B to call back into A before this interaction is completed. To give an example,
the following code contains a bug (it is just a snippet and not a complete contract):

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

// THIS CONTRACT CONTAINS A BUG - DO NOT USE
contract Fund {
/// @dev Mapping of ether shares of the contract.
mapping (address => uint) shares;
/// Withdraw your share.
function withdraw () public {
if (msg.sender.send(shares[msg.sender]))
shares[msg.sender] = 0;

The problem is not too serious here because of the limited gas as part of send, but it still exposes a weakness: Ether
transfer can always include code execution, so the recipient could be a contract that calls back into withdraw. This
would let it get multiple refunds and basically retrieve all the Ether in the contract. In particular, the following contract
will allow an attacker to refund multiple times as it uses call which forwards all remaining gas by default:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.2 <0.8.0;

// THIS CONTRACT CONTAINS A BUG - DO NOT USE
contract Fund {
/// @dev Mapping of ether shares of the contract.
mapping (address => uint) shares;
/// Withdraw your share.
function withdraw () public {

(bool success,) = msg.sender.call{value: shares[msg.sender]} ("");
if (success)
shares[msg.sender] = 0;

To avoid re-entrancy, you can use the Checks-Effects-Interactions pattern as outlined further below:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.11 <0.8.0;

contract Fund ({
/// @dev Mapping of ether shares of the contract.
mapping (address => uint) shares;
/// Withdraw your share.
function withdraw () public {

(continues on next page)

3.24. Security Considerations 175

Solidity Documentation, Release 0.7.5

(continued from previous page)

uint share = shares[msg.sender];
shares[msg.sender] = 0;
msg.sender.transfer (share);

Note that re-entrancy is not only an effect of Ether transfer but of any function call on another contract. Furthermore,
you also have to take multi-contract situations into account. A called contract could modify the state of another
contract you depend on.

Gas Limit and Loops

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values, have to be used
carefully: Due to the block gas limit, transactions can only consume a certain amount of gas. Either explicitly or just
due to normal operation, the number of iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. This may not apply to view functions that are only executed to read
data from the blockchain. Still, such functions may be called by other contracts as part of on-chain operations and stall
those. Please be explicit about such cases in the documentation of your contracts.

Sending and Receiving Ether

* Neither contracts nor “external accounts” are currently able to prevent that someone sends them Ether. Contracts
can react on and reject a regular transfer, but there are ways to move Ether without creating a message call. One
way is to simply “mine to” the contract address and the second way is using selfdestruct (x).

* If a contract receives Ether (without a function being called), either the receive Ether or the fallback function
is executed. If it does not have a receive nor a fallback function, the Ether will be rejected (by throwing an
exception). During the execution of one of these functions, the contract can only rely on the “gas stipend” it is
passed (2300 gas) being available to it at that time. This stipend is not enough to modify storage (do not take this
for granted though, the stipend might change with future hard forks). To be sure that your contract can receive
Ether in that way, check the gas requirements of the receive and fallback functions (for example in the “details”
section in Remix).

* There is a way to forward more gas to the receiving contract using addr.call{value: x} (""). This
is essentially the same as addr.transfer (x), only that it forwards all remaining gas and opens up the
ability for the recipient to perform more expensive actions (and it returns a failure code instead of automatically
propagating the error). This might include calling back into the sending contract or other state changes you
might not have thought of. So it allows for great flexibility for honest users but also for malicious actors.

» Use the most precise units to represent the wei amount as possible, as you lose any that is rounded due to a lack
of precision.

* If you want to send Ether using address.transfer, there are certain details to be aware of:

1. If the recipient is a contract, it causes its receive or fallback function to be executed which can, in turn, call
back the sending contract.

2. Sending Ether can fail due to the call depth going above 1024. Since the caller is in total control of the
call depth, they can force the transfer to fail; take this possibility into account or use send and make sure
to always check its return value. Better yet, write your contract using a pattern where the recipient can
withdraw Ether instead.

3. Sending Ether can also fail because the execution of the recipient contract requires more than the allotted
amount of gas (explicitly by using require, assert, revert or because the operation is too expensive) - it
“runs out of gas” (OOG). If you use t ransfer or send with a return value check, this might provide a

176 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

means for the recipient to block progress in the sending contract. Again, the best practice here is to use a
“withdraw” pattern instead of a “send” pattern.

Callstack Depth

External function calls can fail any time because they exceed the maximum call stack of 1024. In such situations,
Solidity throws an exception. Malicious actors might be able to force the call stack to a high value before they interact
with your contract.

Note that . send () does not throw an exception if the call stack is depleted but rather returns false in that case.
The low-level functions .call (), .delegatecall() and .staticcall () behave in the same way.

tx.origin

Never use tx.origin for authorization. Let’s say you have a wallet contract like this:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity "0.7.0;

// THIS CONTRACT CONTAINS A BUG - DO NOT USE
contract TxUserWallet ({
address owner;

constructor () {
owner = msg.sender;

function transferTo (address payable dest, uint amount) public {
require (tx.origin == owner);
dest.transfer (amount) ;

Now someone tricks you into sending Ether to the address of this attack wallet:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

interface TxUserWallet {

function transferTo (address payable dest, uint amount) external;
contract TxAttackWallet {

address payable owner;

constructor () {

owner = msg.sender;

receive () external payable ({
TxUserWallet (msg.sender) .transferTo (owner, msg.sender.balance);

If your wallet had checked msg. sender for authorization, it would get the address of the attack wallet, instead of
the owner address. But by checking t x . origin, it gets the original address that kicked off the transaction, which is

3.24. Security Considerations 177

Solidity Documentation, Release 0.7.5

still the owner address. The attack wallet instantly drains all your funds.

Two’s Complement / Underflows / Overflows

As in many programming languages, Solidity’s integer types are not actually integers. They resemble integers when
the values are small, but behave differently if the numbers are larger. For example, the following is true: uint 8 (255)
+ uint8 (1) == 0. This situation is called an overflow. It occurs when an operation is performed that requires a
fixed size variable to store a number (or piece of data) that is outside the range of the variable’s data type. An underflow
is the converse situation: uint8 (0) - uint8 (1) == 255.

In general, read about the limits of two’s complement representation, which even has some more special edge cases
for signed numbers.

Try to use require to limit the size of inputs to a reasonable range and use the SMT checker to find potential
overflows, or use a library like SafeMath if you want all overflows to cause a revert.

Code such as require ((balanceOf[_to] + _value) >= balanceOf[_to]) can also help you check
if values are what you expect.

Clearing Mappings

The Solidity type mapping (see Mapping Types) is a storage-only key-value data structure that does not keep track of
the keys that were assigned a non-zero value. Because of that, cleaning a mapping without extra information about the
written keys is not possible. If a mapping is used as the base type of a dynamic storage array, deleting or popping the
array will have no effect over the mapping elements. The same happens, for example, if a mapping is used as the
type of a member field of a st ruct that is the base type of a dynamic storage array. The mapping is also ignored
in assignments of structs or arrays containing a mapping.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

contract Map {
mapping (uint => uint) [] array;

function allocate (uint _newMaps) public {
for (uint i1 = 0; i < _newMaps; i++)
array.push();

function writeMap (uint _map, uint _key, uint _value) public {
array[_map] [_key] = _value;

}

function readMap (uint _map, uint _key) public view returns (uint) ({
return array[_map] [_key];

}

function eraseMaps () public {
delete array;

}

Consider the example above and the following sequence of calls: allocate (10), writeMap (4, 128, 256).
At this point, calling readMap (4, 128) returns 256. If we call eraseMaps, the length of state variable array is
zeroed, but since its mapping elements cannot be zeroed, their information stays alive in the contract’s storage. After

178 Chapter 3. Contents

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

Solidity Documentation, Release 0.7.5

deleting array, calling allocate (5) allows us to access array[4] again, and calling readMap (4, 128)
returns 256 even without another call to writeMap.

If your mapping information must be deleted, consider using a library similar to iterable mapping, allowing you to
traverse the keys and delete their values in the appropriate mapping.

Minor Details

» Types that do not occupy the full 32 bytes might contain “dirty higher order bits”. This is especially important
if you access msg . data - it poses a malleability risk: You can craft transactions that call a function £ (uint8
x) with a raw byte argument of Ox£f£000001 and with 0x00000001. Both are fed to the contract and
both will look like the number 1 as far as x is concerned, but msg.data will be different, so if you use
keccak256 (msg.data) for anything, you will get different results.

3.24.2 Recommendations

Take Warnings Seriously

If the compiler warns you about something, you should better change it. Even if you do not think that this particular
warning has security implications, there might be another issue buried beneath it. Any compiler warning we issue can
be silenced by slight changes to the code.

Always use the latest version of the compiler to be notified about all recently introduced warnings.

Restrict the Amount of Ether

Restrict the amount of Ether (or other tokens) that can be stored in a smart contract. If your source code, the compiler
or the platform has a bug, these funds may be lost. If you want to limit your loss, limit the amount of Ether.

Keep it Small and Modular

Keep your contracts small and easily understandable. Single out unrelated functionality in other contracts or into
libraries. General recommendations about source code quality of course apply: Limit the amount of local variables,
the length of functions and so on. Document your functions so that others can see what your intention was and whether
it is different than what the code does.

Use the Checks-Effects-Interactions Pattern
Most functions will first perform some checks (who called the function, are the arguments in range, did they send
enough Ether, does the person have tokens, etc.). These checks should be done first.

As the second step, if all checks passed, effects to the state variables of the current contract should be made. Interaction
with other contracts should be the very last step in any function.

Early contracts delayed some effects and waited for external function calls to return in a non-error state. This is often
a serious mistake because of the re-entrancy problem explained above.

Note that, also, calls to known contracts might in turn cause calls to unknown contracts, so it is probably better to just
always apply this pattern.

3.24. Security Considerations 179

https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol

Solidity Documentation, Release 0.7.5

Include a Fail-Safe Mode

While making your system fully decentralised will remove any intermediary, it might be a good idea, especially for
new code, to include some kind of fail-safe mechanism:

You can add a function in your smart contract that performs some self-checks like “Has any Ether leaked?”, “Is the
sum of the tokens equal to the balance of the contract?” or similar things. Keep in mind that you cannot use too much
gas for that, so help through off-chain computations might be needed there.

If the self-check fails, the contract automatically switches into some kind of “failsafe” mode, which, for example,
disables most of the features, hands over control to a fixed and trusted third party or just converts the contract into a
simple “give me back my money” contract.

Ask for Peer Review

The more people examine a piece of code, the more issues are found. Asking people to review your code also helps as
a cross-check to find out whether your code is easy to understand - a very important criterion for good smart contracts.

3.24.3 Formal Verification

Using formal verification, it is possible to perform an automated mathematical proof that your source code fulfills a
certain formal specification. The specification is still formal (just as the source code), but usually much simpler.

Note that formal verification itself can only help you understand the difference between what you did (the specification)
and how you did it (the actual implementation). You still need to check whether the specification is what you wanted
and that you did not miss any unintended effects of it.

Solidity implements a formal verification approach based on SMT solving. The SMTChecker module automatically
tries to prove that the code satisfies the specification given by require/assert statements. That is, it considers
require statements as assumptions and tries to prove that the conditions inside assert statements are always true.
If an assertion failure is found, a counterexample is given to the user, showing how the assertion can be violated.

The SMTChecker also checks automatically for arithmetic underflow/overflow, trivial conditions and unreachable
code. It is currently an experimental feature, therefore in order to use it you need to enable it via a pragma directive.

The SMTChecker traverses the Solidity AST creating and collecting program constraints. When it encounters a
verification target, an SMT solver is invoked to determine the outcome. If a check fails, the SMTChecker provides
specific input values that lead to the failure.

While the SMTChecker encodes Solidity code into SMT constraints, it contains two reasoning engines that use that
encoding in different ways.

SMT Encoding

The SMT encoding tries to be as precise as possible, mapping Solidity types and expressions to their closest SMT-LIB
representation, as shown in the table below.

Solidity type SMT sort Theories (quantifier-free)
Boolean Bool Bool

intN, uintN, address, bytesN, enum | Integer LIA, NIA

array, mapping, bytes, string Tuple (Array elements, Integer length) | Datatypes, Arrays, LIA
struct Tuple Datatypes

other types Integer LIA

180 Chapter 3. Contents

http://smtlib.cs.uiowa.edu/

Solidity Documentation, Release 0.7.5

Types that are not yet supported are abstracted by a single 256-bit unsigned integer, where their unsupported operations
are ignored.

For more details on how the SMT encoding works internally, see the paper SMT-based Verification of Solidity Smart
Contracts.

Model Checking Engines

The SMTChecker module implements two different reasoning engines that use the SMT encoding above, a Bounded
Model Checker (BMC) and a system of Constrained Horn Clauses (CHC). Both engines are currently under develop-
ment, and have different characteristics.

Bounded Model Checker (BMC)

The BMC engine analyzes functions in isolation, that is, it does not take the overall behavior of the contract throughout
many transactions into account when analyzing each function. Loops are also ignored in this engine at the moment.
Internal function calls are inlined as long as they are not recursive, direct or indirectly. External function calls are
inlined if possible, and knowledge that is potentially affected by reentrancy is erased.

The characteristics above make BMC easily prone to reporting false positives, but it is also lightweight and should be
able to quickly find small local bugs.

Constrained Horn Clauses (CHC)

The Solidity contract’s Control Flow Graph (CFG) is modelled as a system of Horn clauses, where the lifecycle of
the contract is represented by a loop that can visit every public/external function non-deterministically. This way, the
behavior of the entire contract over an unbounded number of transactions is taken into account when analyzing any
function. Loops are fully supported by this engine. Internal function calls are supported, but external function calls
are currently unsupported.

The CHC engine is much more powerful than BMC in terms of what it can prove, and might require more computing
resources.

Abstraction and False Positives

The SMTChecker implements abstractions in an incomplete and sound way: If a bug is reported, it might be a false
positive introduced by abstractions (due to erasing knowledge or using a non-precise type). If it determines that a
verification target is safe, it is indeed safe, that is, there are no false negatives (unless there is a bug in the SMTChecker).

In the BMC engine, function calls to the same contract (or base contracts) are inlined when possible, that is, when
their implementation is available. Calls to functions in other contracts are not inlined even if their code is available,
since we cannot guarantee that the actual deployed code is the same.

The CHC engine creates nonlinear Horn clauses that use summaries of the called functions to support internal function
calls. The same approach can and will be used for external function calls, but the latter requires more work regarding
the entire state of the blockchain and is still unimplemented.

Complex pure functions are abstracted by an uninterpreted function (UF) over the arguments.

3.24. Security Considerations 181

https://github.com/leonardoalt/text/blob/master/solidity_isola_2018/main.pdf
https://github.com/leonardoalt/text/blob/master/solidity_isola_2018/main.pdf

Solidity Documentation, Release 0.7.5

Functions SMT behavior

assert Verification target

require Assumption

internal BMC: Inline function call CHC: Function summaries

external BMC: Inline function call or erase knowledge about state variables

and local storage references. CHC: Function summaries and erase
state knowledge.

gasleft, blockhash, keccak256, | Abstracted with UF

ecrecover ripemdl60, addmod,
mulmod

pure functions without implementation | Abstracted with UF
(external or complex)
external functions without implementa- | BMC: Unsupported CHC: Nondeterministic summary
tion
others Currently unsupported

Using abstraction means loss of precise knowledge, but in many cases it does not mean loss of proving power.

// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.5.0;

pragma experimental SMTChecker;

// This may report a warning if no SMT solver available.

contract Recover
{
function £ (
bytes32 hash,
uint8 _vl, uint8 _v2,
bytes32 _rl1, bytes32 _r2,
bytes32 _sl, bytes32 _s2
) public pure returns (address) {

address al = ecrecover (hash, _vl1, _rl, _sl);
require (_vl == _v2);

require (_rl == _r2);

require (_sl == _s2);

address a2 = ecrecover (hash, _v2, _r2, _s2);
assert (al == a2);

return al;

In the example above, the SMTChecker is not expressive enough to actually compute ecrecover, but by modelling
the function calls as uninterpreted functions we know that the return value is the same when called on equivalent
parameters. This is enough to prove that the assertion above is always true.

Abstracting a function call with an UF can be done for functions known to be deterministic, and can be easily done
for pure functions. It is however difficult to do this with general external functions, since they might depend on state
variables.

External function calls also imply that any current knowledge that the SMTChecker might have regarding mutable
state variables needs to be erased to guarantee no false negatives, since the called external function might direct or
indirectly call a function in the analyzed contract that changes state variables.

182 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Reference Types and Aliasing

Solidity implements aliasing for reference types with the same data location. That means one variable may be modified
through a reference to the same data area. The SMTChecker does not keep track of which references refer to the same
data. This implies that whenever a local reference or state variable of reference type is assigned, all knowledge
regarding variables of the same type and data location is erased. If the type is nested, the knowledge removal also
includes all the prefix base types.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.5.0;

pragma experimental ABIEncoderV2;
pragma experimental SMTChecker;

// This will report a warning

contract Aliasing
{
uint[] arrayl;
uint[] [] array2;
function £ (
uint[] memory a,
uint[] memory b,
uint[] [] memory c,
uint[] storage d
) internal {
arrayl[0] = 42;

al0] = 2;
cl01[00]1 = 2;
b[0] = 1;

// Erasing knowledge about memory references should not

// erase knowledge about state variables.

assert (arrayl[0] == 42);

// However, an assignment to a storage reference will erase
// storage knowledge accordingly.

d[o] = 2;

// Fails as false positive because of the assignment above.
assert (arrayl[0] == 42);

// Fails because ‘a == b’ 1is possible.

assert (a[0] == 2);

// Fails because ‘'c[i] == b’ is possible.

assert (c[0][0] == 2);

assert (d[0] == 2);

assert (b[0] == 1);

}

function g(
uint[] memory a,
uint[] memory b,
uint[] [] memory c,
uint x

) public ({
f(a, b, ¢, array2[x]);

After the assignment to b [0], we need to clear knowledge about a since it has the same type (uint []) and data
location (memory). We also need to clear knowledge about c, since its base type is also a uint [] located in memory.
This implies that some c [1] could refer to the same data as b or a.

Notice that we do not clear knowledge about array and d because they are located in storage, even though they also

3.24. Security Considerations 183

Solidity Documentation, Release 0.7.5

have type uint []. However, if d was assigned, we would need to clear knowledge about array and vice-versa.

Real World Assumptions

Some scenarios can be expressed in Solidity and the EVM, but are expected to never occur in practice. One of such
cases is the length of a dynamic storage array overflowing during a push: If the push operation is applied to an array
of length 27256 - 1, its length silently overflows. However, this is unlikely to happen in practice, since the operations
required to grow the array to that point would take billions of years to execute.

3.25 Resources

3.25.1 General

e Ethereum

* Changelog

* Source Code

* Ethereum Stackexchange
* Language Users Chat

* Compiler Developers Chat

3.25.2 Solidity Integrations

¢ Generic:

EthFiddle Solidity IDE in the Browser. Write and share your Solidity code. Uses server-side components.

Remix Browser-based IDE with integrated compiler and Solidity runtime environment without server-
side components.

Solhint Solidity linter that provides security, style guide and best practice rules for smart contract valida-
tion.

Solidity IDE Browser-based IDE with integrated compiler, Ganache and local file system support.

Ethlint Linter to identify and fix style and security issues in Solidity.

Superblocks Lab Browser-based IDE. Built-in browser-based VM and Metamask integration (one click
deployment to Testnet/Mainnet).

e Atom:

— Etheratom Plugin for the Atom editor that features syntax highlighting, compilation and a runtime envi-
ronment (Backend node & VM compatible).

— Atom Solidity Linter Plugin for the Atom editor that provides Solidity linting.
— Atom Solium Linter Configurable Solidity linter for Atom using Solium (now Ethlint) as a base.
* Eclipse:

— YAKINDU Solidity Tools Eclipse based IDE. Features context sensitive code completion and help, code
navigation, syntax coloring, built in compiler, quick fixes and templates.

¢ Emacs:

184 Chapter 3. Contents

https://ethereum.org
https://github.com/ethereum/solidity/blob/develop/Changelog.md
https://github.com/ethereum/solidity/
https://ethereum.stackexchange.com/
https://gitter.im/ethereum/solidity/
https://gitter.im/ethereum/solidity-dev/
https://ethfiddle.com/
https://remix.ethereum.org/
https://github.com/protofire/solhint
https://github.com/System-Glitch/Solidity-IDE
https://github.com/duaraghav8/Ethlint
https://lab.superblocks.com/
https://github.com/0mkara/etheratom
https://atom.io/packages/linter-solidity
https://atom.io/packages/linter-solium
https://yakindu.github.io/solidity-ide/

Solidity Documentation, Release 0.7.5

— Emacs Solidity Plugin for the Emacs editor providing syntax highlighting and compilation error report-
ing.

IntelliJ:
— IntelliJ IDEA plugin Solidity plugin for IntelliJ IDEA (and all other JetBrains IDEs)
* Sublime:

— Package for SublimeText - Solidity language syntax Solidity syntax highlighting for SublimeText edi-
tor.

e Vim:
— Vim Solidity Plugin for the Vim editor providing syntax highlighting.
— Vim Syntastic Plugin for the Vim editor providing compile checking.

Visual Studio Code:

— Visual Studio Code extension Solidity plugin for Microsoft Visual Studio Code that includes syntax
highlighting and the Solidity compiler.

3.25.3 Solidity Tools

» ABI to Solidity interface converter A script for generating contract interfaces from the ABI of a smart con-
tract.

e Dapp Build tool, package manager, and deployment assistant for Solidity.
* Doxity Documentation Generator for Solidity.

* evindis EVM Disassembler that performs static analysis on the bytecode to provide a higher level of abstraction
than raw EVM operations.

« EVM Lab Rich tool package to interact with the EVM. Includes a VM, Etherchain API, and a trace-viewer
with gas cost display.

* leafleth A documentation generator for Solidity smart-contracts.

e PIET A tool to develop, audit and use Solidity smart contracts through a simple graphical interface.
* solc-select A script to quickly switch between Solidity compiler versions.

* Solidity prettier plugin A Prettier Plugin for Solidity.

 Solidity REPL Try Solidity instantly with a command-line Solidity console.

* solgraph Visualize Solidity control flow and highlight potential security vulnerabilities.

* Securify Fully automated online static analyzer for smart contracts, providing a security report based on vul-
nerability patterns.

» Surya Utility tool for smart contract systems, offering a number of visual outputs and information about the
contracts’ structure. Also supports querying the function call graph.

 Universal Mutator A tool for mutation generation, with configurable rules and support for Solidity and Vyper.

3.25.4 Third-Party Solidity Parsers and Grammars

* Solidity Parser for JavaScript A Solidity parser for JS built on top of a robust ANTLR4 grammar.

3.25. Resources 185

https://github.com/ethereum/emacs-solidity/
https://plugins.jetbrains.com/plugin/9475-intellij-solidity
https://packagecontrol.io/packages/Ethereum/
https://github.com/tomlion/vim-solidity/
https://github.com/vim-syntastic/syntastic
https://juan.blanco.ws/solidity-contracts-in-visual-studio-code/
https://gist.github.com/chriseth/8f533d133fa0c15b0d6eaf3ec502c82b
https://dapp.tools/dapp/
https://github.com/DigixGlobal/doxity
https://github.com/Arachnid/evmdis
https://github.com/ethereum/evmlab/
https://github.com/clemlak/leafleth
https://piet.slock.it/
https://github.com/crytic/solc-select
https://github.com/prettier-solidity/prettier-plugin-solidity
https://github.com/raineorshine/solidity-repl
https://github.com/raineorshine/solgraph
https://securify.ch/
https://github.com/ConsenSys/surya/
https://github.com/agroce/universalmutator
https://github.com/solidity-parser/parser

Solidity Documentation, Release 0.7.5

3.26 Using the compiler

3.26.1 Using the Commandline Compiler

Note: This section does not apply to solcjs, not even if it is used in commandline mode.

One of the build targets of the Solidity repository is solc, the solidity commandline compiler. Using solc —--help
provides you with an explanation of all options. The compiler can produce various outputs, ranging from simple
binaries and assembly over an abstract syntax tree (parse tree) to estimations of gas usage. If you only want to compile
a single file, yourunitas solc --bin sourceFile.sol and it will print the binary. If you want to get some of
the more advanced output variants of solc, it is probably better to tell it to output everything to separate files using
solc -o outputDirectory —--bin —--ast-json —-—-asm sourceFile.sol.

Before you deploy your contract, activate the optimizer when compiling using solc —--optimize —--bin
sourceFile.sol. By default, the optimizer will optimize the contract assuming it is called 200 times across
its lifetime (more specifically, it assumes each opcode is executed around 200 times). If you want the initial contract
deployment to be cheaper and the later function executions to be more expensive, set it to ——optimize-runs=1.
If you expect many transactions and do not care for higher deployment cost and output size, set ——optimize—-runs
to a high number. This parameter has effects on the following (this might change in the future):

* the size of the binary search in the function dispatch routine
* the way constants like large numbers or strings are stored

The commandline compiler will automatically read imported files from the filesystem, but it is also possible to provide
path redirects using prefix=path in the following way:

solc github.com/ethereum/dapp-bin/=/usr/local/lib/dapp-bin/ file.sol

This essentially instructs the compiler to search for anything starting with github.com/ethereum/dapp-bin/
under /usr/local/lib/dapp-bin. solc will notread files from the filesystem that lie outside of the remapping
targets and outside of the directories where explicitly specified source files reside, so things like import "/etc/
passwd"; only work if you add /=/ as a remapping.

An empty remapping prefix is not allowed.
If there are multiple matches due to remappings, the one with the longest common prefix is selected.

When accessing the filesystem to search for imports, all paths are treated as if they were fully qualified paths. This
behaviour can be customized by adding the command line option ——base-path with a path to be prepended before
each filesystem access for imports is performed. Furthermore, the part added via ——base-path will not appear in
the contract metadata.

For security reasons the compiler has restrictions what directories it can access. Paths (and their subdirectories) of
source files specified on the commandline and paths defined by remappings are allowed for import statements, but
everything else is rejected. Additional paths (and their subdirectories) can be allowed via the ——allow-paths
/sample/path, /another/sample/path switch.

Everything inside the path specified via ——base-path is always allowed.

If your contracts use I[ibraries, you will notice that the bytecode contains substrings of the form
__$53aea86b7d70b31448b230b20ael41a537$__ . These are placeholders for the actual library addresses.
The placeholder is a 34 character prefix of the hex encoding of the keccak256 hash of the fully qualified library name.
The bytecode file will also contain lines of the form // <placeholder> -> <fg library name> atthe end
to help identify which libraries the placeholders represent. Note that the fully qualified library name is the path of its
source file and the library name separated by :. You can use solc as a linker meaning that it will insert the library
addresses for you at those points:

186 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Either add --libraries "file.sol:Math:0x1234567890123456789012345678901234567890
file.sol:Heap:0xabCD567890123456789012345678901234567890" to your command to provide an
address for each library or store the string in a file (one library per line) and run solc using ——libraries
fileName.

If solc is called with the option ——11ink, all input files are interpreted to be unlinked binaries (hex-encoded) in the
__$53aea86b7d70b31448b230b20ael41a537$__ -format given above and are linked in-place (if the input
is read from stdin, it is written to stdout). All options except ——libraries are ignored (including —o) in this case.

If solc is called with the option ——standard-Jjson, it will expect a JSON input (as explained below) on the
standard input, and return a JSON output on the standard output. This is the recommended interface for more complex
and especially automated uses. The process will always terminate in a “success” state and report any errors via the
JSON output. The option ——base-path is also processed in standard-json mode.

Note: The library placeholder used to be the fully qualified name of the library itself instead of the hash of it. This
format is still supported by solc —-1ink but the compiler will no longer output it. This change was made to reduce
the likelihood of a collision between libraries, since only the first 36 characters of the fully qualified library name
could be used.

3.26.2 Setting the EVM version to target

When you compile your contract code you can specify the Ethereum virtual machine version to compile for to avoid
particular features or behaviours.

Warning: Compiling for the wrong EVM version can result in wrong, strange and failing behaviour. Please
ensure, especially if running a private chain, that you use matching EVM versions.

On the command line, you can select the EVM version as follows:

solc —-—evm-version <VERSION> contract.sol

In the standard JSON interface, use the "evmVersion" key in the "settings" field:

{

"sources": { ... },
"settings": {
"optimizer": { ... },
"evmVersion": "<VERSION>"

Target options
Below is a list of target EVM versions and the compiler-relevant changes introduced at each version. Backward
compatibility is not guaranteed between each version.
* homestead
— (oldest version)
* tangerineWhistle

— Gas cost for access to other accounts increased, relevant for gas estimation and the optimizer.

3.26. Using the compiler 187

Solidity Documentation, Release 0.7.5

— All gas sent by default for external calls, previously a certain amount had to be retained.
* spuriousDragon
— Gas cost for the exp opcode increased, relevant for gas estimation and the optimizer.

* byzantium

Opcodes returndatacopy, returndatasize and staticcall are available in assembly.

The staticcall opcode is used when calling non-library view or pure functions, which prevents
the functions from modifying state at the EVM level, i.e., even applies when you use invalid type
conversions.

It is possible to access dynamic data returned from function calls.

revert opcode introduced, which means that revert () will not waste gas.
* constantinople
— Opcodes create2”, °“extcodehash, shl, shr and sar are available in assembly.
— Shifting operators use shifting opcodes and thus need less gas.
* petersburg
— The compiler behaves the same way as with constantinople.
¢ istanbul (default)
— Opcodes chainid and selfbalance are available in assembly.

* berlin (experimental)

3.26.3 Compiler Input and Output JSON Description
The recommended way to interface with the Solidity compiler especially for more complex and automated setups is
the so-called JSON-input-output interface. The same interface is provided by all distributions of the compiler.

The fields are generally subject to change, some are optional (as noted), but we try to only make backwards compatible
changes.

The compiler API expects a JSON formatted input and outputs the compilation result in a JSON formatted output. The
standard error output is not used and the process will always terminate in a “success” state, even if there were errors.
Errors are always reported as part of the JSON output.

The following subsections describe the format through an example. Comments are of course not permitted and used
here only for explanatory purposes.

Input Description

// Required: Source code language. Currently supported are "Solidity" and "Yul".
"language": "Solidity",
// Required
"sources":
{
// The keys here are the "global" names of the source files,
// imports can use other files via remappings (see below) .
"myFile.sol":

{

(continues on next page)

188 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

// Optional: keccak256 hash of the source file
// It is used to verify the retrieved content if imported via URLs.
"keccak256": "0x123...",
// Required (unless "content" is used, see below): URL(s) to the source file.
// URL(s) should be imported in this order and the result checked against the
// keccak256 hash (if available). If the hash doesn't match or none of the
// URL(s) result in success, an error should be raised.
// Using the commandline interface only filesystem paths are supported.
// With the JavaScript interface the URL will be passed to the user-supplied
// read callback, so any URL supported by the callback can be used.
"urls":
[

"bzzr://56ab...",

"ipfs://Qma...",

"/tmp/path/to/file.sol"
// If files are used, their directories should be added to the command line_

—via
// ~——-allow-paths <path>".
]
b
"destructible":
{
// Optional: keccak256 hash of the source file
"keccak256": "0x234...",
// Required (unless "urls" is used): literal contents of the source file
"content": "contract destructible is owned { function shutdown () { if (msg.
—sender == owner) selfdestruct (owner); } }"
}
}I
// Optional
"settings":

{

// Optional: Stop compilation after the given stage. Currently only "parsing" is

—valid here

"stopAfter": "parsing",
// Optional: Sorted list of remappings
"remappings": [":g=/dir"],
// Optional: Optimizer settings
"optimizer": {

// disabled by default

"enabled": true,

//
//
//

Optimize for how many times you intend to run the code.
Lower values will optimize more for initial deployment cost, higher
values will optimize more for high-frequency usage.

"runs": 200,

//
//
//

Switch optimizer components on or off in detail.
The "enabled" switch above provides two defaults which can be
tweaked here. If "details" is given, "enabled" can be omitted.

"details": {

// The peephole optimizer is always on if no details are given,

// use details to switch it off.

"peephole": true,

// The unused Jjumpdest remover is always on if no details are given,
// use details to switch it off.

"JumpdestRemover": true,

// Sometimes re-orders literals in commutative operations.
"orderLiterals": false,

(continues on next page)

3.26. Usi

ng the compiler 189

Solidity Documentation, Release 0.7.5

(continued from previous page)

// Removes duplicate code blocks

"deduplicate": false,

// Common subexpression elimination, this is the most complicated step but
// can also provide the largest gain.

"cse": false,
// Optimize representation of literal numbers and strings in code.
"constantOptimizer": false,

// The new Yul optimizer. Mostly operates on the code of ABI coder v2
// and inline assembly.
// It is activated together with the global optimizer setting
// and can be deactivated here.
// Before Solidity 0.6.0 it had to be activated through this switch.
"yul": false,
// Tuning options for the Yul optimizer.
"yulDetails": {
// Improve allocation of stack slots for variables, can free up stack slots,
—early.
// Activated by default if the Yul optimizer is activated.
"stackAllocation": true,
// Select optimization steps to be applied.
// Optional, the optimizer will use the default sequence if omitted.
"optimizerSteps": "dhfoDgvulfnTUtnIf..."

}
}I
// Version of the EVM to compile for.
// Affects type checking and code generation. Can be homestead,
// tangerineWhistle, spuriousDragon, byzantium, constantinople, petersburg,
—istanbul or berlin

"evmVersion": "byzantium",
// Optional: Debugging settings
"debug": {

// How to treat revert (and require) reason strings. Settings are
// "default", "strip", "debug" and "verboseDebug".
// "default" does not inject compiler—generated revert strings and keeps user-—
—supplied ones.
// "strip" removes all revert strings (if possible, i.e. if literals are used),
—~keeping side-effects
// "debug" injects strings for compiler-generated internal reverts, implemented,
—for ABI encoders V1 and V2 for now.
// "verboseDebug" even appends further information to user-supplied revert,
—~strings (not yet implemented)
"revertStrings": "default"
}
// Metadata settings (optional)

"metadata": {
// Use only literal content and not URLs (false by default)
"useLiteralContent": true,
// Use the given hash method for the metadata hash that is appended to the_
—bytecode.

// The metadata hash can be removed from the bytecode via option "none".
// The other options are "ipfs" and "bzzrl".
// If the option is omitted, "ipfs" is used by default.
"bytecodeHash": "ipfs"
}/
// Addresses of the libraries. If not all libraries are given here,
// it can result in unlinked objects whose output data is different.

(continues on next page)

190 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

L}

ibraries": {
// The top level key is the the name of the source file where the library is_

—used.

}

// If remappings are used, this source file should match the global path
// after remappings were applied.
// If this key is an empty string, that refers to a global level.
"myFile.sol": {

"MyLib": "0x123123..."

// The following can be used to select desired outputs based

// on file and contract names.

// If this field is omitted, then the compiler loads and does type checking,

// but will not generate any outputs apart from errors.

// The first level key is the file name and the second level key is the contract
—name.

// An empty contract name is used for outputs that are not tied to a contract

// but to the whole source file like the AST.

// A star as contract name refers to all contracts in the file.

// Similarly, a star as a file name matches all files.

// To select all outputs the compiler can possibly generate, use

// "outputSelection: { "*": { M"x": ["x"], "": ["x"] } "

// but note that this might slow down the compilation process needlessly.

//

// The available output types are as follows:

//

// File level (needs empty string as contract name) :

// ast - AST of all source files

// legacyAST - legacy AST of all source files

//

// Contract level (needs the contract name or "x"):

/7 abi - ABI

// devdoc - Developer documentation (natspec)

// userdoc - User documentation (natspec)

// metadata - Metadata

// ir - Yul intermediate representation of the code before optimization

// irOptimized - Intermediate representation after optimization

// storageLayout - Slots, offsets and types of the contract's state variables.

// evm.assembly - New assembly format

// evm.legacyAssembly - Old-style assembly format in JSON

// evm.bytecode.object - Bytecode object

// evm.bytecode.opcodes - Opcodes list

// evm.bytecode.sourceMap - Source mapping (useful for debugging)

// evm.bytecode.linkReferences - Link references (if unlinked object)

// evm.bytecode.generatedSources - Sources generated by the compiler

// evim.deployedBytecodex - Deployed bytecode (has all the options that ewvm.
—bytecode has)

// evm.deployedBytecode.immutableReferences - Map from AST ids to bytecode
—ranges that reference immutables

// evm.methodIdentifiers - The list of function hashes

// evm.gasEstimates - Function gas estimates

// ewasm.wast - Ewasm in WebAssembly S-expressions format

// ewasm.wasm — Ewasm in WebAssembly binary format

//

// Note that using a using ‘evm', ‘evm.bytecode’, ‘ewasm’', etc. will select every

//

—requ

target part of that output. Additionally, "% can be used as a wildcard to,
est everything.

(continues on next page)

3.26. Using the compiler 191

Solidity Documentation, Release 0.7.5

(continued from previous page)

//
"outputSelection": {
ll*ll: {
"*": [
"metadata", "evm.bytecode" // Enable the metadata and bytecode outputs of
—every single contract.
, "evm.bytecode.sourceMap" // Enable the source map output of every single
—contract.
]I
"": [
"ast" // Enable the AST output of every single file.
]
}I
// Enable the abi and opcodes output of MyContract defined in file def.
"def": {
"MyContract": ["abi", "evm.bytecode.opcodes"]
}
}I
}I
"modelCheckerSettings":
{
// Choose which model checker engine to use: all (default), bmc, chc, none.
"engine": "chc",
// Timeout for each SMT query in milliseconds.
// If this option is not given, the SMTChecker will use a deterministic
// resource limit by default.
// A given timeout of 0 means no resource/time restrictions for any query.
"timeout": 20000

Output Description

// Optional: not present if no errors/warnings were encountered
"errors": |
{

// Optional: Location within the source file.

"sourcelLocation": {
"file": "sourceFile.sol",
"start": O,
"end": 100

]I
// Optional: Further locations (e.g. places of conflicting declarations)
"secondarySourceLocations": [
{
"file": "sourceFile.sol",
"start": 64,
"end": 92,
"message": "Other declaration is here:"
}
]I
// Mandatory: Error type, such as "TypeError", "InternalCompilerError",
—"Exception", etc.
// See below for complete list of types.

(continues on next page)

192 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"type": "TypeError",
// Mandatory: Component where the error originated, such as "general", "ewasm",
—etc.

"component": "general",

// Mandatory ("error" or "warning")

"severity": "error",

// Optional: unique code for the cause of the error
"errorCode": "3141",

// Mandatory

"message": "Invalid keyword",

// Optional: the message formatted with source location
"formattedMessage": "sourceFile.so0l:100: Invalid keyword"

}
]I
// This contains the file-level outputs.
// It can be limited/filtered by the outputSelection settings.
"sources": {
"sourceFile.sol": {
// Identifier of the source (used in source maps)
"id": 1,
// The AST object
"ast": {1},
// The legacy AST object
"legacyAST": {}
}
}I
// This contains the contract-level outputs.
// It can be limited/filtered by the outputSelection settings.
"contracts": {
"sourceFile.sol": {
// If the language used has no contract names, this field should equal to an_
—empty string.
"ContractName": {
// The Ethereum Contract ABI. If empty, it is represented as an empty array.
// See https://solidity.readthedocs.io/en/develop/abi-spec.html
"abi": [],
// See the Metadata Output documentation (serialised JSON string)
"metadata": "{...}",
// User documentation (natspec)
"userdoc": {1},
// Developer documentation (natspec)
"devdoc": {},
// Intermediate representation (string)
"ir": "v,
// See the Storage Layout documentation.
"storageLayout": {"storage": [...], "types": {...} 1},
// EVM-related outputs
"evm": {
// Assembly (string)
"assembly": "",
// Old-style assembly (object)
"legacyAssembly": {1},
// Bytecode and related details.
"bytecode": {
// The bytecode as a hex string.
"object": "00fe",
// Opcodes list (string)

(continues on next page)

3.26. Using the compiler 193

Solidity Documentation, Release 0.7.5

(continued from previous page)

"OpCOdeS": "",
// The source mapping as a string. See the source mapping definition.
"sourceMap": "",

// Array of sources generated by the compiler. Currently only
// contains a single Yul file.

"generatedSources": [{
// Yul AST
"ast": { ... }
// Source file in its text form (may contain comments)
"contents":"{ function abi_decode (start, end) -> data { data :=_

—~calldataload(start) } ",
// Source file ID, used for source references, same "namespace" as the
—Solidity source files

"id": 2,
"language": "Yul",
"name": "#utility.yul"

}]
// If given, this is an unlinked object.
"linkReferences": {
"libraryFile.sol": {
// Byte offsets into the bytecode.
// Linking replaces the 20 bytes located there.
"Libraryl": [
{ "start": 0, "length": 20 },
{ "start": 200, "length": 20 }

}
by
"deployedBytecode": {
., // The same layout as above.
"immutableReferences": {
// There are two references to the immutable with AST ID 3, both 32,
—bytes long. One is
// at bytecode offset 42, the other at bytecode offset 80.
"3": [{ "start": 42, "length": 32 }, { "start": 80, "length": 32 }]
}
by
// The list of function hashes
"methodIdentifiers": {
"delegate (address)": "5cl19a95c"
}I
// Function gas estimates

"gasEstimates": {

"creation": {
"codeDepositCost": "420000",
"executionCost": "infinite",
"totalCost": "infinite"

}I

"external": {

"delegate (address)": "25000"

}I

"internal": {
"heavyLifting()": "infinite"

(continues on next page)

194 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

// Ewasm related outputs

"ewasm": {
// S—-expressions format
"wast": "",
// Binary format (hex string)
"WaSm": nmw

Error types

1. JSONError: JSON input doesn’t conform to the required format, e.g. input is not a JSON object, the language
is not supported, etc.

IOError: IO and import processing errors, such as unresolvable URL or hash mismatch in supplied sources.
ParserError: Source code doesn’t conform to the language rules.

DocstringParsingError: The NatSpec tags in the comment block cannot be parsed.

SyntaxError: Syntactical error, such as cont inue is used outside of a for loop.
DeclarationError: Invalid, unresolvable or clashing identifier names. e.g. Identifier not found

TypeError: Error within the type system, such as invalid type conversions, invalid assignments, etc.

® NNk wN

UnimplementedFeatureError: Feature is not supported by the compiler, but is expected to be supported
in future versions.

9. InternalCompilerError: Internal bug triggered in the compiler - this should be reported as an issue.
10. Exception: Unknown failure during compilation - this should be reported as an issue.
11. CompilerError: Invalid use of the compiler stack - this should be reported as an issue.
12. FatalError: Fatal error not processed correctly - this should be reported as an issue.

13. Warning: A warning, which didn’t stop the compilation, but should be addressed if possible.
3.26.4 Compiler tools

solidity-upgrade

solidity-upgrade can help you to semi-automatically upgrade your contracts to breaking language changes.
While it does not and cannot implement all required changes for every breaking release, it still supports the ones, that
would need plenty of repetitive manual adjustments otherwise.

Note: solidity-upgrade carries out a large part of the work, but your contracts will most likely need further
manual adjustments. We recommend using a version control system for your files. This helps reviewing and eventually
rolling back the changes made.

3.26. Using the compiler 195

Solidity Documentation, Release 0.7.5

Warning: solidity-upgrade is not considered to be complete or free from bugs, so please use with care.

How it works

You can pass (a) Solidity source file(s) to solidity—upgrade [files]. If these make use of import statement
which refer to files outside the current source file’s directory, you need to specify directories that are allowed to read
and import files from, by passing ——allow-paths [directory]. You can ignore missing files by passing
—-—ignore-missing.

solidity-upgrade is based on 1ibsolidity and can parse, compile and analyse your source files, and might
find applicable source upgrades in them.

Source upgrades are considered to be small textual changes to your source code. They are applied to an in-memory rep-
resentation of the source files given. The corresponding source file is updated by default, but you can pass ——dry-run
to simulate to whole upgrade process without writing to any file.

The upgrade process itself has two phases. In the first phase source files are parsed, and since it is not possible
to upgrade source code on that level, errors are collected and can be logged by passing ——verbose. No source
upgrades available at this point.

In the second phase, all sources are compiled and all activated upgrade analysis modules are run alongside compilation.
By default, all available modules are activated. Please read the documentation on available modules for further details.

This can result in compilation errors that may be fixed by source upgrades. If no errors occur, no source upgrades are
being reported and you’re done. If errors occur and some upgrade module reported a source upgrade, the first reported
one gets applied and compilation is triggered again for all given source files. The previous step is repeated as long as
source upgrades are reported. If errors still occur, you can log them by passing ——verbose. If no errors occur, your
contracts are up to date and can be compiled with the latest version of the compiler.

Available upgrade modules

Module Ver-| Description
sion
constructol 0.5.0] Constructors must now be defined using the constructor keyword.
visibility| 0.5.0| Explicit function visibility is now mandatory, defaults to public.

abstract 0.6.0| The keyword abstract has to be used if a contract does not implement all its functions.

virtual 0.6.0| Functions without implementation outside an interface have to be marked virtual.

override 0.6.0 When overriding a function or modifier, the new keyword override must be used.

dotsyntax | 0.7.0| The following syntax is deprecated: f.gas(...) (), £.value(...) () and (new
C) .value(...) (). Replace these calls by f{gas: .., value: ...} ()
and (new C) {value: ...} ().

now 0.7.0| The now keyword is deprecated. Use block .t imestamp instead.

constructorOvi®iRédmaves visibility of constructors.

Please read 0.5.0 release notes, 0.6.0 release notes and 0.7.0 release notes for further details.

Synopsis

196 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Usage: solidity-upgrade [options] contract.sol

Allowed options:
——help Show help message and exit.
—--version Show version and exit.
—-—allow-paths path(s)
Allow a given path for imports. A list of paths can be
supplied by separating them with a comma.

——ignore-missing Ignore missing files.

—-modules module(s) Only activate a specific upgrade module. A list of
modules can be supplied by separating them with a comma.

——dry-run Apply changes in-memory only and don't write to input
file.

——verbose Print logs, errors and changes. Shortens output of
upgrade patches.

—-—unsafe Accept =xunsafex changes.

Bug Reports / Feature requests

If you found a bug or if you have a feature request, please file an issue on Github.

Example

Assume that you have the following contract in Source.sol:

pragma solidity >=0.6.0 <0.6.4;

// This will not compile after 0.7.0

// SPDX-License-Identifier: GPL-3.0

contract C {
// FIXME: remove constructor visibility and make the contract abstract
constructor () internal {}

contract D {
uint time;

function f () public payable {
// FIXME: change now to block.timestamp
time = now;

contract E {
D d;

// FIXME: remove constructor visibility
constructor () public {}

function g () public {
// FIXME: change .value(5) => {value: 5}
d.f.value (5) ();

3.26. Using the compiler 197

https://github.com/ethereum/solidity/issues/new/choose

Solidity Documentation, Release 0.7.5

Required changes

The above contract will not compile starting from 0.7.0. To bring the contract up to date with the current Solidity ver-
sion, the following upgrade modules have to be executed: constructor-visibility, now and dotsyntax.
Please read the documentation on available modules for further details.

Running the upgrade

It is recommended to explicitly specify the upgrade modules by using ——modules argument.

$ solidity-upgrade —--modules constructor-visibility,now,dotsyntax Source.sol

The command above applies all changes as shown below. Please review them carefully (the pragmas will have to be
updated manually.)

pragma solidity 70.7.0;

// SPDX-License-Identifier: GPL-3.0

abstract contract C {
// FIXME: remove constructor visibility and make the contract abstract
constructor () {}

contract D {
uint time;

function f () public payable {
// FIXME: change now to block.timestamp
time = block.timestamp;

contract E {
D d;

// FIXME: remove constructor visibility
constructor () {}

function g () public {
// FIXME: change .value(5) => {value: 5}
d.f{value: 5} ();

3.27 VYul

Yul (previously also called JULIA or IULIA) is an intermediate language that can be compiled to bytecode for different
backends.

Support for EVM 1.0, EVM 1.5 and Ewasm is planned, and it is designed to be a usable common denominator of all
three platforms. It can already be used in stand-alone mode and for “inline assembly” inside Solidity and there is an
experimental implementation of the Solidity compiler that uses Yul as an intermediate language. Yul is a good target
for high-level optimisation stages that can benefit all target platforms equally.

198 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

3.27.1 Motivation and High-level Description

The design of Yul tries to achieve several goals:

1. Programs written in Yul should be readable, even if the code is generated by a compiler from Solidity or another
high-level language.

2. Control flow should be easy to understand to help in manual inspection, formal verification and optimization.
3. The translation from Yul to bytecode should be as straightforward as possible.
4. Yul should be suitable for whole-program optimization.

In order to achieve the first and second goal, Yul provides high-level constructs like for loops, 1f and switch
statements and function calls. These should be sufficient for adequately representing the control flow for assembly
programs. Therefore, no explicit statements for SWAP, DUP, JUMPDEST, JUMP and JUMPI are provided, because
the first two obfuscate the data flow and the last two obfuscate control flow. Furthermore, functional statements of the
formmul (add (x, y), 7) are preferred over pure opcode statements like 7 v x add mul because in the first
form, it is much easier to see which operand is used for which opcode.

Even though it was designed for stack machines, Yul does not expose the complexity of the stack itself. The program-
mer or auditor should not have to worry about the stack.

The third goal is achieved by compiling the higher level constructs to bytecode in a very regular way. The only non-
local operation performed by the assembler is name lookup of user-defined identifiers (functions, variables, ...) and
cleanup of local variables from the stack.

To avoid confusions between concepts like values and references, Yul is statically typed. At the same time, there is a
default type (usually the integer word of the target machine) that can always be omitted to help readability.

To keep the language simple and flexible, Yul does not have any built-in operations, functions or types in its pure form.
These are added together with their semantics when specifying a dialect of Yul, which allows specializing Yul to the
requirements of different target platforms and feature sets.

Currently, there is only one specified dialect of Yul. This dialect uses the EVM opcodes as builtin functions (see
below) and defines only the type u256, which is the native 256-bit type of the EVM. Because of that, we will not
provide types in the examples below.

3.27.2 Simple Example

The following example program is written in the EVM dialect and computes exponentiation. It can be compiled using
solc —--strict-assembly. The builtin functions mul and div compute product and division, respectively.

{

function power (base, exponent) -> result

{

switch exponent

case 0 { result := 1 }
case 1 { result := base }
default
{
result := power (mul (base, base), div(exponent, 2))
switch mod (exponent, 2)
case 1 { result := mul (base, result) }

3.27. Yul 199

Solidity Documentation, Release 0.7.5

It is also possible to implement the same function using a for-loop instead of with recursion. Here, 1t (a, b)
computes whether a is less than b. less-than comparison.

{

function power (base, exponent) —-> result
{
result := 1
for { let i := 0 } 1t (i, exponent) { i := add(i, 1) }
{
result := mul (result, base)

}

At the end of the section, a complete implementation of the ERC-20 standard can be found.

3.27.3 Stand-Alone Usage

You can use Yul in its stand-alone form in the EVM dialect using the Solidity compiler. This will use the Yul object no-
tation so that it is possible to refer to code as data to deploy contracts. This Yul mode is available for the commandline
compiler (use ——strict—-assembly) and for the standard-json interface:

{

"language": "Yul",
"sources": { "input.yul": { "content": "{ sstore(0, 1) }" } 1},
"settings": {
"outputSelection": { "x": { "x": ["x"], "": ["x"] } },
"optimizer": { "enabled": true, "details": { "yul": true } }

Warning: Yul is in active development and bytecode generation is only fully implemented for the EVM dialect
of Yul with EVM 1.0 as target.

3.27.4 Informal Description of Yul

In the following, we will talk about each individual aspect of the Yul language. In examples, we will use the default
EVM dialect.

Syntax
Yul parses comments, literals and identifiers in the same way as Solidity, so you can e.g. use // and /+ «/ to denote
comments. There is one exception: Identifiers in Yul can contain dots: ..

Yul can specify “objects” that consist of code, data and sub-objects. Please see Yul Objects below for details on that.
In this section, we are only concerned with the code part of such an object. This code part always consists of a
curly-braces delimited block. Most tools support specifying just a code block where an object is expected.

Inside a code block, the following elements can be used (see the later sections for more details):
e literals, i.e. 0x123, 42 or "abc" (strings up to 32 characters)

e calls to builtin functions, e.g. add (1, mload(0))

200 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

e variable declarations, e.g. let x := 7,let x := add(y, 3) orlet x (initial value of 0 is assigned)
e identifiers (variables), e.g. add (3, x)

e assignments, e.g. x := add(y, 3)

* blocks where local variables are scoped inside, e.g. { let x := 3 { let y := add(x, 1) } }

e if statements, e.g. if 1t (a, b) { sstore(0, 1) }

* switch statements, e.g. switch mload(0) case 0 { revert() } default { mstore(0, 1)
}

e forloops,e.g. for { let i := 0} 1lt(i, 10) { i := add(i, 1) } { mstore(i, 7) }

* function definitions, e.g. function f(a, b) -> ¢ { ¢ := add(a, b) }°

Multiple syntactical elements can follow each other simply separated by whitespace, i.e. there is no terminating ; or
newline required.

Literals

You can use integer constants in decimal or hexadecimal notation. When compiling for the EVM, this will be translated
into an appropriate PUSH1 instruction. In the following example, 3 and 2 are added resulting in 5 and then the bitwise
and with the string “abc” is computed. The final value is assigned to a local variable called x.

Strings are stored left-aligned and cannot be longer than 32 bytes. The limit does not apply to string literals passed
to builtin functions that require literal arguments (e.g. set immutable or loadimmutable). Those strings never
end up in the generated bytecode.

’let x := and("abc", add(3, 2))

Unless it is the default type, the type of a literal has to be specified after a colon:

’let % := and("abc":uint32, add(3:uint256, 2:uint256))

Function Calls

Both built-in and user-defined functions (see below) can be called in the same way as shown in the previous example.
If the function returns a single value, it can be directly used inside an expression again. If it returns multiple values,
they have to be assigned to local variables.

mstore (0x80, add(mload(0x80), 3))

// Here, the user—-defined function 'f' returns
// two values. The definition of the function
// is missing from the example.

let %, y := f£(1, mload(0))

For built-in functions of the EVM, functional expressions can be directly translated to a stream of opcodes: You just
read the expression from right to left to obtain the opcodes. In the case of the first line in the example, this is PUSH1
3 PUSH1 0x80 MLOAD ADD PUSH1 0x80 MSTORE.

For calls to user-defined functions, the arguments are also put on the stack from right to left and this is the order in
which argument lists are evaluated. The return values, though, are expected on the stack from left to right, i.e. in this
example, y is on top of the stack and x is below it.

3.27. Yul 201

Solidity Documentation, Release 0.7.5

Variable Declarations

You can use the 1et keyword to declare variables. A variable is only visible inside the { . . . }-block it was defined
in. When compiling to the EVM, a new stack slot is created that is reserved for the variable and automatically removed
again when the end of the block is reached. You can provide an initial value for the variable. If you do not provide a
value, the variable will be initialized to zero.

Since variables are stored on the stack, they do not directly influence memory or storage, but they can be used as
pointers to memory or storage locations in the built-in functions mstore, mload, sstore and sload. Future
dialects might introduce specific types for such pointers.

When a variable is referenced, its current value is copied. For the EVM, this translates to a DUP instruction.

{

let zero := 0

let v := calldataload(zero)

{
let vy := add(sload(v), 1)
v o=y

} // y is "deallocated" here
sstore (v, zero)
} // v and zero are "deallocated" here

If the declared variable should have a type different from the default type, you denote that following a colon. You can
also declare multiple variables in one statement when you assign from a function call that returns multiple values.

{

let zero:uint32 0:uint32
let v:uint256, t:uint32 := f()
let %, y := g/()

Depending on the optimiser settings, the compiler can free the stack slots already after the variable has been used for
the last time, even though it is still in scope.

Assignments

Variables can be assigned to after their definition using the : = operator. It is possible to assign multiple variables at
the same time. For this, the number and types of the values have to match. If you want to assign the values returned
from a function that has multiple return parameters, you have to provide multiple variables. The same variable may
not occur multiple times on the left-hand side of an assignment, e.g. x, x := £ () isinvalid.

let v := 0

// re-assign v

v o= 2

let t := add(v, 2)
function f£() -> a, b { }
// assign multiple values
v, t = £()

If

The if statement can be used for conditionally executing code. No ‘“else” block can be defined. Consider using
“switch” instead (see below) if you need multiple alternatives.

202 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

if eg(value, 0) { revert(0, 0) }

The curly braces for the body are required.

Switch

You can use a switch statement as an extended version of the if statement. It takes the value of an expression and
compares it to several literal constants. The branch corresponding to the matching constant is taken. Contrary to other
programming languages, for safety reasons, control flow does not continue from one case to the next. There can be a
fallback or default case called default which is taken if none of the literal constants matches.

{
let x := 0
switch calldataload (4)
case 0 {
x := calldataload(0x24)
}
default {
x := calldataload(0x44)
}
sstore (0, div(x, 2))

The list of cases is not enclosed by curly braces, but the body of a case does require them.

Loops

Yul supports for-loops which consist of a header containing an initializing part, a condition, a post-iteration part and
a body. The condition has to be an expression, while the other three are blocks. If the initializing part declares any
variables at the top level, the scope of these variables extends to all other parts of the loop.

The break and cont inue statements can be used in the body to exit the loop or skip to the post-part, respectively.

The following example computes the sum of an area in memory.

{

let x := 0
for { let 1 := 0 } 1t(i, 0x100) { i := add(i, 0x20) } {
x := add(x, mload(i))

For loops can also be used as a replacement for while loops: Simply leave the initialization and post-iteration parts
empty.

{

let x := 0

let 1 := 0

for { } 1t(i, 0x100) { } { // while(i < 0x100)
x := add(x, mload(i))
i := add(i, 0x20)

3.27. Yul 203

Solidity Documentation, Release 0.7.5

Function Declarations
Yul allows the definition of functions. These should not be confused with functions in Solidity since they are never
part of an external interface of a contract and are part of a namespace separate from the one for Solidity functions.

For the EVM, Yul functions take their arguments (and a return PC) from the stack and also put the results onto the
stack. User-defined functions and built-in functions are called in exactly the same way.

Functions can be defined anywhere and are visible in the block they are declared in. Inside a function, you cannot
access local variables defined outside of that function.

Functions declare parameters and return variables, similar to Solidity. To return a value, you assign it to the return
variable(s).

If you call a function that returns multiple values, you have to assign them to multiple variables using a, b :=
f(x)orlet a, b := f(x).

The leave statement can be used to exit the current function. It works like the ret urn statement in other languages
just that it does not take a value to return, it just exits the functions and the function will return whatever values are
currently assigned to the return variable(s).

Note that the EVM dialect has a built-in function called ret urn that quits the full execution context (internal message
call) and not just the current yul function.

The following example implements the power function by square-and-multiply.

{
function power (base, exponent) -> result {

switch exponent

case 0 { result := 1 }

case 1 { result := base }

default {
result := power (mul (base, base), div(exponent, 2))
switch mod (exponent, 2)

case 1 { result := mul (base, result) }

3.27.5 Specification of Yul

This chapter describes Yul code formally. Yul code is usually placed inside Yul objects, which are explained in their
own chapter.

Block = '"{' Statementx '}'
Statement =
Block |
FunctionDefinition |
VariableDeclaration |
Assignment |
If |
Expression |
Switch |
ForLoop |
BreakContinue |
Leave
FunctionDefinition =
'function' Identifier '(' TypedIdentifierList? ')'

(continues on next page)

204 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

('->'" TypedIdentifierList)? Block
VariableDeclaration =

'let' TypedIdentifierList (':=' Expression)?
Assignment =

IdentifierList ':=' Expression
Expression =

FunctionCall | Identifier | Literal
If =

'if' Expression Block
Switch =

'switch' Expression (Case+ Default? | Default)
Case =

'case' Literal Block
Default =

'default' Block
ForLoop =

'for' Block Expression Block Block
BreakContinue =

'break' | 'continue'
Leave = 'leave'
FunctionCall =

Identifier ' (' (Expression (',' Expression)x)? ')'
Identifier = [a-zA-Z_S$] [a-zA-Z_S$0-9.]+%
IdentifierList = Identifier (',' Identifier)x
TypeName = Identifier
TypedIdentifierList = Identifier (':' TypeName)? (',' Identifier (':' TypeName)?
<—>)*
Literal =

(NumberLiteral | StringLiteral | Trueliteral | FalselLiteral) (':' TypeName)?
NumberLiteral = HexNumber | DecimalNumber
StringLiteral = ""' ([""\r\n\\] | "\\' .)x '™
TruelLiteral = 'true'
FalselLiteral = 'false'
HexNumber = '0Ox' [0-9a-fA-F]1+
DecimalNumber = [0-9]+

Restrictions on the Grammar

Apart from those directly imposed by the grammar, the following restrictions apply:

Switches must have at least one case (including the default case). All case values need to have the same type and
distinct values. If all possible values of the expression type are covered, a default case is not allowed (i.e. a switch
with a bool expression that has both a true and a false case do not allow a default case).

Every expression evaluates to zero or more values. Identifiers and Literals evaluate to exactly one value and function
calls evaluate to a number of values equal to the number of return variables of the function called.

In variable declarations and assignments, the right-hand-side expression (if present) has to evaluate to a number of
values equal to the number of variables on the left-hand-side. This is the only situation where an expression evaluating
to more than one value is allowed. The same variable name cannot occur more than once in the left-hand-side of an
assignment or variable declaration.

Expressions that are also statements (i.e. at the block level) have to evaluate to zero values.
In all other situations, expressions have to evaluate to exactly one value.

The continue and break statements can only be used inside loop bodies and have to be in the same function as

3.27. Yul 205

Solidity Documentation, Release 0.7.5

the loop (or both have to be at the top level). The cont inue and break statements cannot be used in other parts of
a loop, not even when it is scoped inside a second loop’s body.

The condition part of the for-loop has to evaluate to exactly one value.

The 1eave statement can only be used inside a function.

Functions cannot be defined anywhere inside for loop init blocks.

Literals cannot be larger than their type. The largest type defined is 256-bit wide.

During assignments and function calls, the types of the respective values have to match. There is no implicit type
conversion. Type conversion in general can only be achieved if the dialect provides an appropriate built-in function
that takes a value of one type and returns a value of a different type.

Scoping Rules

Scopes in Yul are tied to Blocks (exceptions are functions and the for loop as explained below) and all declarations
(FunctionDefinition,VariableDeclaration) introduce new identifiers into these scopes.

Identifiers are visible in the block they are defined in (including all sub-nodes and sub-blocks).

As an exception, the scope of the “init” part of the or-loop (the first block) extends across all other parts of the for
loop. This means that variables declared in the init part (but not inside a block inside the init part) are visible in all
other parts of the for-loop.

Identifiers declared in the other parts of the for loop respect the regular syntactical scoping rules.

This means a for-loop of the form for { I... } C { P... } { B... }isequivalentto{ I... for {}
C{P... } {B... } 1}

The parameters and return parameters of functions are visible in the function body and their names have to be distinct.

Variables can only be referenced after their declaration. In particular, variables cannot be referenced in the right hand
side of their own variable declaration. Functions can be referenced already before their declaration (if they are visible).

Shadowing is disallowed, i.e. you cannot declare an identifier at a point where another identifier with the same name
is also visible, even if it is not accessible.

Inside functions, it is not possible to access a variable that was declared outside of that function.

Formal Specification

We formally specify Yul by providing an evaluation function E overloaded on the various nodes of the AST. As builtin
functions can have side effects, E takes two state objects and the AST node and returns two new state objects and a
variable number of other values. The two state objects are the global state object (which in the context of the EVM is
the memory, storage and state of the blockchain) and the local state object (the state of local variables, i.e. a segment
of the stack in the EVM).

If the AST node is a statement, E returns the two state objects and a “mode”, which is used for the break, continue
and leave statements. If the AST node is an expression, E returns the two state objects and as many values as the
expression evaluates to.

The exact nature of the global state is unspecified for this high level description. The local state L is a mapping of
identifiers i to values v, denotedas L[1] = wv.

For an identifier v, let Sv be the name of the identifier.

We will use a destructuring notation for the AST nodes.

206 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

E(G, L, <{stl, ..., Stn}>: Block) =
let G1, L1, mode = E(G, L, Stl, ..., Stn)
let L2 be a restriction of L1 to the identifiers of L
Gl, L2, mode
E(G, L, Stl, ..., Stn: Statement) =
if n is zero:
G, L, regular
else:
let G1, L1, mode = E(G, L, Stl)
if mode is regular then
E(Gl, L1, St2, ..., Stn)
otherwise
Gl, L1, mode
E(G, L, FunctionDefinition) =
G, L, regular

E(G, L, <let var_1, ..., var_n := rhs>: VariableDeclaration) =
E(G, L, <var_1l, ..., var_n := rhs>: Assignment)
E(G, L, <let wvar_1l, ..., var_n>: VariableDeclaration) =
let L1 be a copy of L where Ll[$var_i] = 0 for i =1, ..., n
G, L1, regular
E(G, L, <var_1, ..., var_n := rhs>: Assignment) =
let G1, L1, v1, ..., vn = E(G, L, rhs)
let L2 be a copy of Ll where L2[$var_i] = vi for 1 =1, ..., n
G, L2, regular
E(G, L, <for { il, ..., in } condition post body>: ForLoop) =
if n >= 1:
let G1, L, mode = E(G, L, i1, ..., in)

// mode has to be regular or leave due to the syntactic restrictions
if mode is leave then
Gl, L1 restricted to variables of L, leave
otherwise
let G2, L2, mode = E(Gl, L1, for {} condition post body)
G2, L2 restricted to variables of L, mode
else:
let G1, L1, v = E(G, L, condition)
if v is false:
Gl, L1, regular
else:
let G2, L2, mode = E(Gl, L, body)
if mode is break:
G2, L2, regular
otherwise if mode is leave:
G2, L2, leave
else:
G3, L3, mode = E(G2, L2, post)
if mode is leave:
G2, L3, leave
otherwise
E(G3, L3, for {} condition post body)
E(G, L, break: BreakContinue) =
G, L, break
E(G, L, continue: BreakContinue) =
G, L, continue
E(G, L, leave: Leave) =
G, L, leave
E(G, L, <if condition body>: If) =
let GO, LO, v = E(G, L, condition)

(continues on next page)

3.27. Yul 207

Solidity Documentation, Release 0.7.5

(continued from previous page)

if v is true:
E (GO, L0, body)

else:
GO, LO, regular
E(G, L, <switch condition case 11:tl1l stl ... case ln:tn stn>: Switch) =
E(G, L, switch condition case 11l:tl stl ... case ln:tn stn default {})
E(G, L, <switch condition case 11:tl stl ... case 1ln:tn stn default st'>: Switch) =

let GO, LO, v = E(G, L, condition)

// i =1 ..n

// Evaluate literals, context doesn't matter
let _, _, vl = E(GO, LO, 11)

let _, _, vn = E(GO, LO, 1n)

if there exists smallest i such that vi = v:
E (GO, LO, sti)

else:
E (GO, LO, st'")

E(G, L, <name>: Identifier) =
G, L, L[Sname]

E(G, L, <fname(argl, ..., argn)>: FunctionCall) =
Gl, L1, vn = E(G, L, argn)

G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)

Gn, Ln, vl = E(G(n-1), L(n-1), argl)

Let <function fname (paraml, ..., paramn) -> retl, ..., retm block>
be the function of name $fname visible at the point of the call.
Let L' be a new local state such that

L' [$parami] = vi and L'[$reti] = 0 for all i.
Let G'', L'', mode = E(Gn, L', block)
G'', Ln, L''[Sretl], ..., L''[Sretm]
E(G, L, 1l: StringLiteral) = G, L, utf8EncodelLeftAligned(l),

where utf8EncodeleftAligned performs a utf8 encoding of 1
and aligns it left into 32 bytes

E(G, L, n: HexNumber) = G, L, hex(n)
where hex is the hexadecimal decoding function
E(G, L, n: DecimalNumber) = G, L, dec(n),

where dec is the decimal decoding function

EVM Dialect

The default dialect of Yul currently is the EVM dialect for the currently selected version of the EVM. with a version
of the EVM. The only type available in this dialect is u256, the 256-bit native type of the Ethereum Virtual Machine.
Since it is the default type of this dialect, it can be omitted.

The following table lists all builtin functions (depending on the EVM version) and provides a short description of
the semantics of the function / opcode. This document does not want to be a full description of the Ethereum virtual
machine. Please refer to a different document if you are interested in the precise semantics.

Opcodes marked with — do not return a result and all others return exactly one value. Opcodes marked with F, H, B, C
or I are present since Frontier, Homestead, Byzantium, Constantinople or Istanbul, respectively.

In the following, mem[a. . .Db) signifies the bytes of memory starting at position a up to but not including position b
and storage [p] signifies the storage contents at slot p.

Since Yul manages local variables and control-flow, opcodes that interfere with these features are not available. This
includes the dup and swap instructions as well as jump instructions, labels and the push instructions.

208 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Instruction Explanation
stop() F | stop execution, identical
to return(0, 0)
add(x, y) X+y
sub(x, y) X-y
mul(X, y) X *y
div(x, y) x/yorQify==0
sdiv(x, y) x /'y, for signed numbers in two’s complement, 0 if y ==
mod(X, y) X%y, 0ify==0
smod(X, y) X % vy, for signed numbers in two’s complement, 0 if y ==
exp(x, y) X to the power of y
not(x) bitwise “not” of x (every bit of x is negated)
1t(x, y) 1if x <y, O otherwise
gt(x, y) 1 if x >y, O otherwise
slt(x, y) 1 if x <y, O otherwise, for signed numbers in two’s complement
sgt(x, y) 1 if x >y, O otherwise, for signed numbers in two’s complement
eq(x,y) 1if x ==Yy, 0 otherwise
iszero(x) 1 if x == 0, 0 otherwise
and(x, y) bitwise “and” of x and y
or(X, y) bitwise “or” of x and y
X0r(X, y) bitwise “xor” of x and y
byte(n, x) nth byte of x, where the most significant byte is the Oth byte
shl(x, y) logical shift left y by x bits
shr(x, y) logical shift right y by x bits
sar(x, y) signed arithmetic shift right y by x bits

addmod(x, y, m)

(X +y) % m with arbitrary precision arithmetic, 0 if m == 0

mulmod(x, y, m)

(x * y) % m with arbitrary precision arithmetic, 0 if m ==

signextend(i, X)

sign extend from (i*8+7)th bit counting from least significant

keccak256(p, n)

keccak(mem[p. .. (p+n)))

pcO current position in code
pop(x) discard value x
mload(p) mem[p...(p+32))

mstore(p, v)

mem|[p...(p+32)) :=v

mstore8(p, V)

mem|[p] := v & Oxff (only modifies a single byte)

sload(p) storage[p]

sstore(p, V) storage[p] :=v

msize() size of memory, i.e. largest accessed memory index

gas() gas still available to execution

address() address of the current contract / execution context
balance(a) wei balance at address a

selfbalance() equivalent to balance(address()), but cheaper

caller() call sender (excluding delegatecall)

callvalue() wei sent together with the current call

calldataload(p) call data starting from position p (32 bytes)

calldatasize() size of call data in bytes

calldatacopy(t, f, s) copy s bytes from calldata at position f to mem at position t
codesize() size of the code of the current contract / execution context
codecopy(t, f, s) copy s bytes from code at position f to mem at position t
extcodesize(a) size of the code at address a

extcodecopy(a, t, f, s)

jesiiesiResiies]fesiies] Res]Nes]fes| Ranl ResiNes| ResiRes] ResiResi ResiResl ResiResiResi ResResiResi Resi H@ | H@ K@ Resi Resi Besl Besl Besi Resl Res Besl Resi Res] Res Besi Resi Res] Res] fes| Res| Res] Res!

like codecopy(t, f, s) but take code at address a

3.27. Yul

209

Solidity Documentation, Release 0.7.5

Instruction Explanation

returndatasize() size of the last returndata

returndatacopy(t, f, s) - copy s bytes from returndata at position f to mem at position t
extcodehash(a) code hash of address a

create new contract with code mem|[p. .. (p+n)) and send v wei and return the new
create new contract with code mem[p. .. (p+n)) at address keccak256(0xff . this . :
call contract at address a with input mem[in. . . (in+insize)) providing g gas and v
identical to call but only use the code from a and stay in the context of the curre
identical to callcode but also keep caller and callvalue See more
identical to call (g, a, 0, in, insize, out, outsize) butdo not
end execution, return data mem[p. .. (p+s))

end execution, revert state changes, return data mem|[p. .. (p+s))

create(V, p, n)

create2(v, p, n, s)

call(g, a, v, in, insize, out, outsize)
callcode(g, a, v, in, insize, out, outsize)
delegatecall(g, a, in, insize, out, outsize)
staticcall(g, a, in, insize, out, outsize)
return(p, s) -
revert(p, s) -

selfdestruct(a) - end execution, destroy current contract and send funds to a
invalid() - end execution with invalid instruction
logO(p, s) - log without topics and data mem[p. .. (p+s))

log with topic t1 and data mem[p. .. (p+s))

log with topics tl, t2 and data mem[p. .. (p+s))

log with topics tl, t2, t3 and data mem[p. .. (p+s))
log with topics tl, t2, t3, t4 and data mem|[p.. . (p+s))

logl(p, s, t1) -
log2(p, s, t1, t2) -
log3(p, s, t1, t2, t3) -
logd(p, s, t1, t2, t3, t4) -

izl ResiRes]ResiResiResiResiRes| Ranl Resl ResiRos|Resi Res] ResRes| RuelRes] Rve] RaniBesl Res] N@ | Resl K@ =10~

chainid() ID of the executing chain (EIP 1344)

origin() transaction sender

gasprice() gas price of the transaction

blockhash(b) hash of block nr b - only for last 256 blocks excluding current
coinbase() current mining beneficiary

timestamp() timestamp of the current block in seconds since the epoch
number() current block number

difficulty() difficulty of the current block

gaslimit() block gas limit of the current block

Note: The callx instructions use the out and outsize parameters to define an area in memory where the return
data is placed. This area is written to depending on how many bytes the called contract returns. If it returns more data,
only the first out size bytes are written. You can access the rest of the data using the returndatacopy opcode.
If it returns less data, then the remaining bytes are not touched at all. You need to use the returndatasize opcode
to check which part of this memory area contains the return data. The remaining bytes will retain their values as of
before the call. If the call fails (it returns 0), nothing is written to that area, but you can still retrieve the failure data
using returndatacopy.

In some internal dialects, there are additional functions:

datasize, dataoffset, datacopy

The functions datasize (x), dataoffset (x) and datacopy (t, £, 1) are used to access other parts of a
Yul object.

datasize and dataoffset can only take string literals (the names of other objects) as arguments and return the
size and offset in the data area, respectively. For the EVM, the datacopy function is equivalent to codecopy.

210 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

setimmutable, loadimmutable

The functions set immutable ("name", value) and loadimmutable ("name") are used for the immutable
mechanism in Solidity and do not nicely map to pure Yul. The function set immutable assumes that the runtime
code of a contract is currently copied to memory at offset zero. The call to setimmutable ("name", value)
will store value at all points in memory that contain a call to loadimmutable ("name").

linkersymbol

The function 1inkersymbol ("fg_library_name") is a placeholder for an address literal to be substituted by
the linker. Its first and only argument must be a string literal and represents the fully qualified library name used with
the -——libraries option.

For example this code

llet a := linkersymbol ("file.sol:Math") ‘

is equivalent to

’1et a := 0x1234567890123456789012345678901234567890 ‘

when the linker is invoked with ——1ibraries "file.sol:Math:0x1234567890123456789012345678901234567890
option.

See Using the Commandline Compiler for details about the Solidity linker.

memoryguard

This function is available in the EVM dialect with objects. The caller of let ptr := memoryguard(size)
(where size has to be a literal number) promises that they only use memory in either the range [0, size) or the
unbounded range starting at ptr.

Since the presence of a memoryguard call indicates that all memory access adheres to this restriction, it allows the
optimizer to perform additional optimization steps, for example the stack limit evader, which attempts to move stack
variables that would otherwise be unreachable to memory.

The Yul optimizer promises to only use the memory range [size, ptr) for its purposes. If the optimizer does not
need to reserve any memory, it holds that ptr == size.

memoryguard can be called multiple times, but needs to have the same literal as argument within one Yul subobject.
If at least one memoryguard call is found in a subobject, the additional optimiser steps will be run on it.

3.27.6 Specification of Yul Object

Yul objects are used to group named code and data sections. The functions datasize, dataoffset and
datacopy can be used to access these sections from within code. Hex strings can be used to specify data in hex
encoding, regular strings in native encoding. For code, datacopy will access its assembled binary representation.

Object = 'object' StringLiteral '{' Code (Object | Data)x '}'

Code = 'code' Block

Data = 'data' StringlLiteral (HexLiteral | StringLiteral)

HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2}) """ | '"\'"'" ([0-9a-fA-F]{2})* '"\'")
StringLiteral = ""' ([""\r\n\\] | "\\' .)x '™

3.27. Yul 211

Solidity Documentation, Release 0.7.5

Above, Block refers to Block in the Yul code grammar explained in the previous chapter.

An example Yul Object is shown below:

// A contract consists of a single object with sub-objects representing
// the code to be deployed or other contracts it can create.
// The single "code" node is the executable code of the object.
// Every (other) named object or data section is serialized and
// made accessible to the special built-in functions datacopy / dataoffset / datasize
// The current object, sub-objects and data items inside the current object
// are in scope.
object "Contractl" ({
// This 1is the constructor code of the contract.

code {
function allocate(size) -> ptr {
ptr := mload(0x40)
if iszero(ptr) { ptr := 0x60 }

mstore (0x40, add(ptr, size))

// first create "Contractl2"

let size := datasize("Contract2")

let offset := allocate(size)

// This will turn into codecopy for EVM

datacopy (offset, dataoffset ("Contract2"), size)

// constructor parameter is a single number 0x1234
mstore (add (offset, size), 0x1234)

pop (create (offset, add(size, 32), 0))

// now return the runtime object (the currently

// executing code is the constructor code)

size := datasize ("runtime")

offset := allocate(size)

// This will turn into a memory->memory copy for Ewasm and
// a codecopy for EVM

datacopy (offset, dataoffset ("runtime"), size)

return (offset, size)

data "Table2" hex"4123"

object "runtime" {

code {
function allocate(size) —-> ptr {
ptr := mload(0x40)
if iszero(ptr) { ptr := 0x60 }

mstore (0x40, add(ptr, size))

// runtime code

mstore (0, "Hello, World!™)
return (0, 0x20)

// Embedded object. Use case is that the outside is a factory contract,
// and Contract2 is the code to be created by the factory

(continues on next page)

212 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

object "Contract2" {
code {
// code here

object "runtime" {
code {
// code here

data "Tablel" hex"4123"

3.27.7 Yul Optimizer

The Yul optimizer operates on Yul code and uses the same language for input, output and intermediate states. This
allows for easy debugging and verification of the optimizer.

Please see the documentation in the source code for more details about its internals.

If you want to use Solidity in stand-alone Yul mode, you activate the optimizer using ——optimize:

solc —--strict-assembly —--optimize

In Solidity mode, the Yul optimizer is activated together with the regular optimizer.

Optimization step sequence

By default the Yul optimizer applies its predefined sequence of optimization steps to the generated assembly. You can
override this sequence and supply your own using the ——yul-optimizations option:

solc —-optimize —-—-ir-optimized —--yul-optimizations 'dhfoD[xarrscLMcCTU]Jul jmul'

The order of steps is significant and affects the quality of the output. Moreover, applying a step may uncover new
optimization opportunities for others that were already applied so repeating steps is often beneficial. By enclosing part
of the sequence in square brackets ([]) you tell the optimizer to repeatedly apply that part until it no longer improves
the size of the resulting assembly. You can use brackets multiple times in a single sequence but they cannot be nested.

The following optimization steps are available:

3.27. Yul 213

https://github.com/ethereum/solidity/blob/develop/libyul/optimiser/README.md

Solidity Documentation, Release 0.7.5

Abbreviation | Full name

BlockFlattener
CircularReferencesPruner
CommonSubexpressionEliminator
ConditionalSimplifier
ConditionalUnsimplifier
ControlFlowSimplifier
DeadCodeEliminator
EquivalentFunctionCombiner
ExpressionInliner
ExpressionJoiner
ExpressionSimplifier
ExpressionSplitter
ForLoopConditionIntoBody
ForLoopConditionOutOfBody
ForLoopInitRewriter
FullInliner
FunctionGrouper
FunctionHoister
LiteralRematerialiser
LoadResolver
LoopInvariantCodeMotion
RedundantAssignEliminator
ReasoningBasedSimplifier - highly experimental
Rematerialiser

SSAReverser

SSATransform
StructuralSimplifier
UnusedPruner
VarDeclInitializer

olc|clo|<|B W s |R|IE|H|TQ|r|O0|O|H|X|0n|u || |OlB3|C|Qlal|l+]|mH

Some steps depend on properties ensured by BlockFlattener, FunctionGrouper,
ForLoopInitRewriter. For this reason the Yul optimizer always applies them before applying any steps
supplied by the user.

The ReasoningBasedSimplifier is an optimizer step that is currently not enabled in the default set of steps. It uses
an SMT solver to simplify arithmetic expressions and boolean conditions. It has not received thorough testing or
validation yet and can produce non-reproducible results, so please use with care!

3.27.8 Complete ERC20 Example

object "Token" {
code {
// Store the creator 1in slot zero.
sstore (0, caller())

// Deploy the contract
datacopy (0, dataoffset ("runtime"), datasize("runtime"))
return (0, datasize("runtime"))

}

object "runtime" {

(continues on next page)

214 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

code {

// Protection against sending Ether
require (iszero(callvalue()))

// Dispatcher
switch selector ()
case 0x70a08231 /* "balanceOf (address)" «/ {
returnUint (balanceOf (decodeAsAddress (0)))
}
case 0x18160ddd /* "totalSupply ()" */ {
returnUint (totalSupply ())
}
case 0xa9059cbb /* "transfer (address,uint256)" x/ {
transfer (decodeAsAddress (0), decodeAsUint (1))
returnTrue ()
}
case 0x23b872dd /% "transferFrom(address,address,uint256)" =/ {
transferFrom(decodeAsAddress (0), decodeAsAddress (1), decodeAsUint (2))
returnTrue ()
}
case 0x095ea7b3 /#* "approve (address,uint256)" */ {
approve (decodeAsAddress (0), decodeAsUint (1))
returnTrue ()
}
case Oxddo62ed3e /* "allowance (address,address)" */ {
returnUint (allowance (decodeAsAddress (0), decodeAsAddress(1l)))
}
case 0x40cl0f19 /# "mint (address,uint256)" %/ {
mint (decodeAsAddress (0), decodeAsUint (1))
returnTrue ()
}
default {
revert (0, 0)

function mint (account, amount) {
require (calledByOwner ())

mintTokens (amount)
addToBalance (account, amount)
emitTransfer (0, account, amount)

}

function transfer (to, amount) {
executeTransfer (caller (), to, amount)

}

function approve (spender, amount) {
revertIfZeroAddress (spender)
setAllowance (caller (), spender, amount)
emitApproval (caller (), spender, amount)

}

function transferFrom(from, to, amount) {
decreaseAllowanceBy (from, caller (), amount)
executeTransfer (from, to, amount)

function executeTransfer (from, to, amount) {
revertIfZeroAddress (to)

(continues on next page)

3.27. Yul

215

Solidity Documentation, Release 0.7.5

(continued from previous page)

deductFromBalance (from, amount)
addToBalance (to, amount)
emitTransfer (from, to, amount)

/e m calldata decoding functions ——-————————-— */
function selector () -> s {
s := div(calldataload(0),

—0x100)
}

function decodeAsAddress (offset) —> v {
v := decodeAsUint (offset)
if iszero(iszero(and (v,
—not (OXfffffffffffffffffffffffffffffffffffe£££e£)))) |

revert (0, 0)

}
function decodeAsUint (offset) —-> v {
let pos := add (4, mul (offset, 0x20))
if lt(calldatasize(), add(pos, 0x20)) {
revert (0, 0)

v := calldataload(pos)

S A e calldata encoding functions —————————— */
function returnUint (v) {
mstore (0, Wv)
return (0, 0x20)
}
function returnTrue () {
returnUint (1)

[——————— events —————————- */
function emitTransfer (from, to, amount) {
let signatureHash :=_
—0xddf252adl1be2c89b69c2b068fc378daa952ba7f163c4all628f55a4df523b3ef
emitEvent (signatureHash, from, to, amount)
}
function emitApproval (from, spender, amount) {
let signatureHash :=_
—0x8cSbelebebec7d5bdl14£71427d1e84£3dd0314c0£7b2291e5b200ac8c7¢c3b925
emitEvent (signatureHash, from, spender, amount)
}
function emitEvent (signatureHash, indexedl, indexed2, nonIndexed) {
mstore (0, nonIndexed)
log3(0, 0x20, signatureHash, indexedl, indexed2)

/r mmmm—m—— storage layout —————————- */

function ownerPos() > p { p := 0 }

function totalSupplyPos() —> p { p := 1 }

function accountToStorageOffset (account) —> offset {
offset := add(0x1000, account)

(continues on next page)

216 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

function allowanceStorageOffset (account, spender) -> offset {
offset := accountToStorageOffset (account)
mstore (0, offset)
mstore (0x20, spender)

offset := keccak256(0, 0x40)
}
JH —mm— storage access —————————-— */
function owner () -> o {
o := sload(ownerPos())
}
function totalSupply () —> supply {
supply := sload(totalSupplyPos())

}
function mintTokens (amount) {
sstore (totalSupplyPos (), safeAdd(totalSupply (), amount))
}
function balanceOf (account) —> bal {
bal := sload(accountToStorageOffset (account))
}
function addToBalance (account, amount) {
let offset := accountToStorageOffset (account)
sstore (offset, safeAdd(sload(offset), amount))
}
function deductFromBalance (account, amount) {
let offset := accountToStorageOffset (account)
let bal := sload(offset)
require (lte (amount, bal))
sstore (offset, sub(bal, amount))
}
function allowance (account, spender) -> amount {
amount := sload(allowanceStorageOffset (account, spender))
}
function setAllowance (account, spender, amount) {
sstore (allowanceStorageOffset (account, spender), amount)
}
function decreaseAllowanceBy (account, spender, amount) {
let offset := allowanceStorageOffset (account, spender)
let currentAllowance := sload(offset)
require (lte (amount, currentAllowance))
sstore (offset, sub(currentAllowance, amount))

S A mmm e utility functions —————————- */
function lte(a, b) -> r {
r := iszero(gt(a, b))
}
function gte(a, b) > r {
r := iszero(lt(a, b))
}
function safeAdd(a, b) -> r {
r := add(a, b)
if or(lt(r, a), lt(r, b)) { revert (0, 0) }
}
function calledByOwner () -> cbo {
cbo := eg(owner(), caller())

(continues on next page)

3.27. Yul

217

Solidity Documentation, Release 0.7.5

(continued from previous page)

function revertIfZeroAddress (addr) {
require (addr)

}

function require(condition) {
if iszero(condition) { revert (0, 0) }

}

3.28 Style Guide

3.28.1 Introduction

This guide is intended to provide coding conventions for writing solidity code. This guide should be thought of as
an evolving document that will change over time as useful conventions are found and old conventions are rendered
obsolete.

Many projects will implement their own style guides. In the event of conflicts, project specific style guides take
precedence.

The structure and many of the recommendations within this style guide were taken from python’s pep8 style guide.

The goal of this guide is not to be the right way or the best way to write solidity code. The goal of this guide is
consistency. A quote from python’s pep8 captures this concept well.

Note: A style guide is about consistency. Consistency with this style guide is important. Consistency within a project
is more important. Consistency within one module or function is most important.

But most importantly: know when to be inconsistent — sometimes the style guide just doesn’t apply. When in doubt,
use your best judgement. Look at other examples and decide what looks best. And don’t hesitate to ask!

3.28.2 Code Layout

Indentation

Use 4 spaces per indentation level.

Tabs or Spaces

Spaces are the preferred indentation method.
Mixing tabs and spaces should be avoided.
Blank Lines

Surround top level declarations in solidity source with two blank lines.

Yes:

218 Chapter 3. Contents

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract A {

/7

contract B {

/7

contract C {

/7

No:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract A {
//
}

contract B {

/7

contract C {
//

Within a contract surround function declarations with a single blank line.
Blank lines may be omitted between groups of related one-liners (such as stub functions for an abstract contract)

Yes:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

abstract contract A {
function spam() public virtual pure;
function ham() public virtual pure;

contract B is A {
function spam() public pure override {

/7

function ham() public pure override {
/S

No:

3.28. Style Guide 219

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0 <0.8.0;

abstract contract A {
function spam() virtual pure public;
function ham() public virtual pure;

contract B is A {
function spam() public pure override {
/S
}
function ham() public pure override {

/7

Maximum Line Length
Keeping lines under the PEP 8 recommendation to a maximum of 79 (or 99) characters helps readers easily parse the
code.
Wrapped lines should conform to the following guidelines.
1. The first argument should not be attached to the opening parenthesis.
2. One, and only one, indent should be used.
3. Each argument should fall on its own line.
4. The terminating element,) ; , should be placed on the final line by itself.
Function Calls

Yes:

thisFunctionCallIsReallyLong (
longArgumentl,
longArgument2,
longArgument3

)i

No:

thisFunctionCallIsReallyLong (longArgumentl,
longArgument2,
longArgument 3

)i

thisFunctionCallIsReallyLong (longArgumentl,
longArgument2,
longArgument3

)i

thisFunctionCallIsReallyLong (
longArgumentl, longArgument2,
longArgument3

(continues on next page)

220 Chapter 3. Contents

https://www.python.org/dev/peps/pep-0008/#maximum-line-length

Solidity Documentation, Release 0.7.5

(continued from previous page)

)i

thisFunctionCallIsReallyLong (
longArgumentl,

longArgument2,

longArgument3

)i

thisFunctionCallIsReallyLong (
longArgumentl,
longArgument2,
longArgument3) ;

Assignment Statements

Yes:
thisIsALongNestedMapping[being] [set] [to_some_value] = someFunction (
argumentl,
argument?2,
argument3,
argument4
)
No:
thisIsALongNestedMapping[being] [set] [to_some_value] = someFunction (argumentl,
argument2,
argument3,
argument4) ;

Event Definitions and Event Emitters

Yes:

event LongAndLotsOfArgs (
address sender,
address recipient,
uint256 publicKey,
uint256 amount,
bytes32[] options

)

LongAndLotsOfArgs (
sender,
recipient,
publicKey,
amount,
options

)i

No:

event LongAndLotsOfArgs (address sender,
address recipient,
uint256 publicKey,
uint256 amount,

(continues on next page)

3.28. Style Guide 221

Solidity Documentation, Release 0.7.5

(continued from previous page)

bytes32[] options);

LongAndLotsOfArgs (sender,
recipient,
publicKey,
amount,
options);

Source File Encoding

UTF-8 or ASCII encoding is preferred.

Imports

Import statements should always be placed at the top of the file.
Yes:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

import "./Owned.sol";
contract A {

//

contract B is Owned {
//

No:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract A {

//

import "./Owned.sol";

contract B is Owned {

/7

Order of Functions

Ordering helps readers identify which functions they can call and to find the constructor and fallback definitions easier.

Functions should be grouped according to their visibility and ordered:

222 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

* constructor

¢ receive function (if exists)
e fallback function (if exists)
¢ external

* public

* internal

e private

Within a grouping, place the view and pure functions last.

Yes:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

contract A {
constructor () {

/7

receive () external payable ({

/7

fallback () external {
//

// External functions
//

// External functions that are view

/7

// External functions that are pure

/7

// Public functions
//

// Internal functions

/7

// Private functions

/7

No:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity 70.7.0;

contract A {

// External functions

(continues on next page)

3.28. Style Guide

223

Solidity Documentation, Release 0.7.5

(continued from previous page)

/7

fallback () external {
//
}

receive () external payable ({

/7

// Private functions

//

// Public functions
//

constructor () {

/7

// Internal functions

/7

Whitespace in Expressions

Avoid extraneous whitespace in the following situations:
Immediately inside parenthesis, brackets or braces, with the exception of single line function declarations.

Yes:

spam (ham([1], Coin({name: "ham"}));

No:
’spam(ham[1], Coin({ name: "ham" }));
Exception:

’function singlelLine () public { spam(); }

Immediately before a comma, semicolon:

Yes:

’function spam(uint i, Coin coin) public;

No:

’function spam(uint i , Coin coin) public ;

More than one space around an assignment or other operator to align with another:

Yes:

224 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

x = 1;

y = 2;
long_variable = 3;
No:

X = 1;
Y = 2;
long_variable = 3;

Don’t include a whitespace in the receive and fallback functions:

Yes:

receive () external payable {

fallback () external {

No:

receive () external payable ({
}

fallback () external {

Control Structures

The braces denoting the body of a contract, library, functions and structs should:
 open on the same line as the declaration
* close on their own line at the same indentation level as the beginning of the declaration.
» The opening brace should be preceded by a single space.

Yes:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract Coin {
struct Bank {
address owner;
uint balance;

No:

3.28. Style Guide 225

Solidity Documentation, Release 0.7.5

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

contract Coin
{
struct Bank {
address owner;
uint balance;

The same recommendations apply to the control structures i f, else, while, and for.

Additionally there should be a single space between the control structures i f, while, and for and the parenthetic
block representing the conditional, as well as a single space between the conditional parenthetic block and the opening
brace.

Yes:

while(...){

for (...) {
-}

For control structures whose body contains a single statement, omitting the braces is ok if the statement is contained
on a single line.

Yes:

if (x < 10)
x += 1;

No:

if (x < 10)

someArray.push (Coin ({
name: 'spam',
value: 42

1))

For if blocks which have an else or else if clause, the else should be placed on the same line as the 1 £’s
closing brace. This is an exception compared to the rules of other block-like structures.

226 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

if (x < 3)
x += 1;

} else if (x > 7) {
x —= 1;

} else {

{

Function Declaration

For short function declarations, it is recommended for the opening brace of the function body to be kept on the same
line as the function declaration.

The closing brace should be at the same indentation level as the function declaration.

The opening brace should be preceded by a single space.

Yes:

function increment (uint x) public pure returns (uint) ({
return x + 1;

function increment (uint x) public pure onlyOwner returns (uint) ({
return x + 1;

No:

function increment (uint x) public pure returns (uint)

{

return x + 1;

function increment (uint x) public pure returns (uint) {
return x + 1;

function increment (uint x) public pure returns (uint) ({
return x + 1;

(continues on next page)

3.28. Style Guide 227

Solidity Documentation, Release 0.7.5

(continued from previous page)

function increment (uint x) public pure returns (uint) ({
return x + 1;}

The modifier order for a function should be:
1. Visibility
2. Mutability
3. Virtual
4. Override
5. Custom modifiers

Yes:

function balance (uint from) public view override returns (uint) {
return balanceOf [from];

function shutdown () public onlyOwner {
selfdestruct (owner) ;

No:

function balance (uint from) public override view returns (uint) {
return balanceOf [from];

function shutdown () onlyOwner public ({
selfdestruct (owner) ;

For long function declarations, it is recommended to drop each argument onto it’s own line at the same indentation
level as the function body. The closing parenthesis and opening bracket should be placed on their own line as well at
the same indentation level as the function declaration.

Yes:

function thisFunctionHasLotsOfArguments (
address a,
address b,
address ¢,
address d,
address e,
address f

public

doSomething () ;

228 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

function thisFunctionHasLotsOfArguments (address a, address b, address c,
address d, address e, address f) public {
doSomething () ;

function thisFunctionHasLotsOfArguments (address a,
address Db,
address c,
address d,
address e,
address f) public {
doSomething () ;

function thisFunctionHasLotsOfArguments (

address a,

address Db,

address c,

address d,

address e,

address f) public {

doSomething () ;

If a long function declaration has modifiers, then each modifier should be dropped to its own line.

Yes:

function thisFunctionNameIsReallyLong (address x, address y, address z)
public
onlyOwner
priced
returns (address)

doSomething () ;

function thisFunctionNameIsReallyLong (
address x,
address vy,
address z,

public

onlyOwner

priced

returns (address)

doSomething () ;

No:

function thisFunctionNameIsReallyLong (address x, address y, address z)
public
onlyOwner
priced

returns (address) {
doSomething () ;

(continues on next page)

3.28. Style Guide 229

Solidity Documentation, Release 0.7.5

(continued from previous page)

function thisFunctionNameIsReallylLong (address x, address y, address z)
public onlyOwner priced returns (address)

doSomething () ;

function thisFunctionNameIsReallyLong (address x, address y, address z)
public
onlyOwner
priced
returns (address) {
doSomething () ;

Multiline output parameters and return statements should follow the same style recommended for wrapping long lines
found in the Maximum Line Length section.

Yes:

function thisFunctionNameIsReallyLong (
address a,
address Db,
address c

public

returns (
address someAddressName,
uint256 LongArgument,
uint256 Argument

doSomething ()

return (
veryLongReturnArgl,
veryLongReturnArg2,
veryLongReturnArg3
)i

No:

function thisFunctionNameIsReallyLong (
address a,
address b,
address c

public

returns (address someAddressName,
uint256 LongArgument,
uint256 Argument)

doSomething ()

return (veryLongReturnArgl,

(continues on next page)

230 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

veryLongReturnArgl,
veryLongReturnArgl) ;

For constructor functions on inherited contracts whose bases require arguments, it is recommended to drop the base
constructors onto new lines in the same manner as modifiers if the function declaration is long or hard to read.

Yes:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

// Base contracts just to make this compile
contract B {
constructor (uint) {
}
}
contract C {
constructor (uint, uint) {
}
}
contract D {
constructor (uint) {

}

contract A is B, C, D {
uint x;

constructor (uint paraml, uint param2, uint param3, uint param4, uint paramb)
B (paraml)
C(param2, param3)
D (param4)

// do something with paramb
x = paramb;

No:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

// Base contracts just to make this compile
contract B {
constructor (uint) {

}

contract C {
constructor (uint, uint) {

}

(continues on next page)

3.28. Style Guide 231

Solidity Documentation, Release 0.7.5

(continued from previous page)

contract D {
constructor (uint) {

}

contract A is B, C, D {
uint x;

constructor (uint paraml, uint param2, uint param3, uint param4, uint paramb)
B (paraml)
C(param2, param3)
D (param4) {
x = paramb;

contract X is B, C, D {
uint x;

constructor (uint paraml, uint param2, uint param3, uint param4, uint paramb)
B (paraml)
C(param2, param3)
D (param4) {
X = paramb;

When declaring short functions with a single statement, it is permissible to do it on a single line.

Permissible:

function shortFunction() public { doSomething(); }

These guidelines for function declarations are intended to improve readability. Authors should use their best judgement
as this guide does not try to cover all possible permutations for function declarations.

Mappings

In variable declarations, do not separate the keyword mapping from its type by a space. Do not separate any nested
mapping keyword from its type by whitespace.

Yes:

mapping (uint => uint) map;

(
mapping (address => bool) registeredAddresses;
mapping (uint => mapping(bool => Data[])) public data;
mapping (uint => mapping (uint => s)) data;
No:

mapping (uint => uint) map;
mapping (address => bool) registeredAddresses;

(continues on next page)

232 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

mapping (uint => mapping (bool => Datal[])) public data;
mapping (uint => mapping (uint => s)) data;

Variable Declarations

Declarations of array variables should not have a space between the type and the brackets.

Yes:

’uint[] X;

No:

’uint [1 x;

Other Recommendations

* Strings should be quoted with double-quotes instead of single-quotes.

Yes:

str = "foo";

str = "Hamlet says, 'To be or not to be...'";

No:

str = 'bar';

str = '"Be yourself; everyone else is already taken." -Oscar Wilde';

* Surround operators with a single space on either side.

Yes:

x = 3;

x = 100 / 10;
x += 3 + 4;

X |=vy && z;
No:

x=3;

x = 100/10;

x += 3+4;

X |= yé&é&z;

» QOperators with a higher priority than others can exclude surrounding whitespace in order to denote precedence.
This is meant to allow for improved readability for complex statement. You should always use the same amount
of whitespace on either side of an operator:

Yes:

X = 2%x3 + 5;

X = 2%y + 3xz;

x = (atb) * (a-b);

3.28. Style Guide 233

Solidity Documentation, Release 0.7.5

No:

X = 2%x 3 + 5;
X = ytz;

x +=1;

3.28.3 Order of Layout

Layout contract elements in the following order:
1. Pragma statements
2. Import statements
3. Interfaces
4. Libraries
5. Contracts
Inside each contract, library or interface, use the following order:
1. Type declarations
2. State variables
3. Events

4. Functions

Note: It might be clearer to declare types close to their use in events or state variables.

3.28.4 Naming Conventions
Naming conventions are powerful when adopted and used broadly. The use of different conventions can convey
significant meta information that would otherwise not be immediately available.

The naming recommendations given here are intended to improve the readability, and thus they are not rules, but rather
guidelines to try and help convey the most information through the names of things.

Lastly, consistency within a codebase should always supersede any conventions outlined in this document.

Naming Styles

To avoid confusion, the following names will be used to refer to different naming styles.
* b (single lowercase letter)
* B (single uppercase letter)
* lowercase
* lower_case_with_underscores
e UPPERCASE
e UPPER_CASE_WITH_UNDERSCORES

* CapitalizedWords (or CapWords)

234 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

* mixedCase (differs from CapitalizedWords by initial lowercase character!)

* Capitalized_Words_With_Underscores

Note: When using initialisms in CapWords, capitalize all the letters of the initialisms. Thus HTTPServerError is better
than HttpServerError. When using initialisms in mixedCase, capitalize all the letters of the initialisms, except keep the
first one lower case if it is the beginning of the name. Thus xmIHTTPRequest is better than XMLHTTPRequest.

Names to Avoid

* 1 - Lowercase letter el
e O - Uppercase letter oh
* I - Uppercase letter eye

Never use any of these for single letter variable names. They are often indistinguishable from the numerals one and
Zero.

Contract and Library Names
* Contracts and libraries should be named using the CapWords style. Examples: SimpleToken, SmartBank,
CertificateHashRepository,Player, Congress, Owned.
* Contract and library names should also match their filenames.

* If a contract file includes multiple contracts and/or libraries, then the filename should match the core contract.
This is not recommended however if it can be avoided.

As shown in the example below, if the contract name is Congress and the library name is Owned, then their
associated filenames should be Congress.sol and Owned.sol.

Yes:

// SPDX-License—-Identifier: GPL-3.0
pragma solidity "0.7.0;

// Owned.sol
contract Owned ({
address public owner;

constructor () {
owner = msg.sender;

modifier onlyOwner {
require (msg.sender == owner);

—r

function transferOwnership (address newOwner) public onlyOwner {
owner = newOwner;

}

and in Congress.sol:

3.28. Style Guide 235

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.0 <0.8.0;

import "./Owned.sol";

contract Congress is Owned, TokenRecipient {

S/

No:

// SPDX-License-Identifier: GPL-3.0
pragma solidity 70.7.0;

// owned.sol
contract owned ({
address public owner;

constructor () {
owner = msg.sender;

modifier onlyOwner {
require (msg.sender == owner);

—

function transferOwnership (address newOwner) public onlyOwner {
owner = newOwner;

and in Congress.sol:

import "./owned.sol";

contract Congress is owned, tokenRecipient {

YV

Struct Names

Structs should be named using the CapWords style. Examples: MyCoin, Position, PositionXY.

Event Names

Events should be named using the CapWords style. Examples: Deposit, Transfer, Approval,
BeforeTransfer, AfterTransfer

236 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

Function Names

Functions should use mixedCase. Examples: getBalance, transfer, verifyOwner, addMember,
changeOwner.

Function Argument Names

Function arguments should use mixedCase. Examples: initialSupply, account, recipientAddress,
senderAddress, newOwner.

When writing library functions that operate on a custom struct, the struct should be the first argument and should
always be named self.

Local and State Variable Names

Use mixedCase. Examples: totalSupply, remainingSupply, balancesOf, creatorAddress,
isPreSale, tokenExchangeRate.

Constants

Constants should be named with all capital letters with underscores separating words. Examples: MAX_BLOCKS,
TOKEN_NAME, TOKEN_TICKER, CONTRACT_VERSTION.

Modifier Names

Use mixedCase. Examples: onlyBy, onlyAfter, onlyDuringThePreSale.

Enums

Enums, in the style of simple type declarations, should be named using the CapWords style. Examples: TokenGroup,
Frame, HashStyle, CharacterLocation.

Avoiding Naming Collisions

* single_trailing_underscore_

This convention is suggested when the desired name collides with that of a built-in or otherwise reserved name.

3.28.5 NatSpec

Solidity contracts can have a form of comments that are the basis of the Ethereum Natural Language Specification
Format.

Add comments above functions or contracts following doxygen notation of one or multiple lines starting with /// or
a multiline comment starting with / « and ending with « /.

For example, the contract from a simple smart contract with the comments added looks like the one below:

3.28. Style Guide 237

https://www.doxygen.nl

Solidity Documentation, Release 0.7.5

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

/// @author The Solidity Team
/// @title A simple storage example
contract SimpleStorage {

uint storedData;

/// Store ‘x°
/// @param x the new value to store
/// @dev stores the number in the state variable ‘storedData’
function set (uint x) public {
storedData = x;

/// Return the stored value.
/// @dev retrieves the value of the state variable ‘storedData’
/// @return the stored value
function get () public view returns (uint) ({
return storedData;

It is recommended that Solidity contracts are fully annotated using NatSpec for all public interfaces (everything in the
ABI).

Please see the section about NatSpec for a detailed explanation.

3.29 Common Patterns

3.29.1 Withdrawal from Contracts

The recommended method of sending funds after an effect is using the withdrawal pattern. Although the most intuitive
method of sending Ether, as a result of an effect, is a direct t ransfer call, this is not recommended as it introduces
a potential security risk. You may read more about this on the Security Considerations page.

The following is an example of the withdrawal pattern in practice in a contract where the goal is to send the most
money to the contract in order to become the “richest”, inspired by King of the Ether.

In the following contract, if you are no longer the richest, you receive the funds of the person who is now the richest.

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract WithdrawalContract {
address public richest;
uint public mostSent;

mapping (address => uint) pendingWithdrawals;
constructor () payable {

richest = msg.sender;
mostSent = msg.value;

(continues on next page)

238 Chapter 3. Contents

https://www.kingoftheether.com/

Solidity Documentation, Release 0.7.5

(continued from previous page)

function becomeRichest () public payable {
require (msg.value > mostSent, "Not enough money sent.");
pendingWithdrawals[richest] += msg.value;
richest = msg.sender;
mostSent = msg.value;

function withdraw () public {
uint amount = pendingWithdrawals|[msg.sender];
// Remember to zero the pending refund before
// sending to prevent re-—entrancy attacks
pendingWithdrawals[msg.sender] = 0;
msg.sender.transfer (amount) ;

This is as opposed to the more intuitive sending pattern:

// SPDX-License-Identifier: GPL-3.0
pragma solidity "0.7.0;

contract SendContract {
address payable public richest;
uint public mostSent;

constructor () payable {
richest = msg.sender;
mostSent = msg.value;

function becomeRichest () public payable ({
require (msg.value > mostSent, "Not enough money sent.");
// This line can cause problems (explained below) .
richest.transfer (msg.value);
richest = msg.sender;
mostSent = msg.value;

Notice that, in this example, an attacker could trap the contract into an unusable state by causing richest to be the
address of a contract that has a receive or fallback function which fails (e.g. by using revert () or by just consuming
more than the 2300 gas stipend transferred to them). That way, whenever t ransfer is called to deliver funds to the
“poisoned” contract, it will fail and thus also becomeRichest will fail, with the contract being stuck forever.

In contrast, if you use the “withdraw” pattern from the first example, the attacker can only cause his or her own
withdraw to fail and not the rest of the contract’s workings.

3.29.2 Restricting Access

Restricting access is a common pattern for contracts. Note that you can never restrict any human or computer from
reading the content of your transactions or your contract’s state. You can make it a bit harder by using encryption, but
if your contract is supposed to read the data, so will everyone else.

You can restrict read access to your contract’s state by other contracts. That is actually the default unless you declare
your state variables public.

3.29. Common Patterns 239

Solidity Documentation, Release 0.7.5

Furthermore, you can restrict who can make modifications to your contract’s state or call your contract’s functions and
this is what this section is about.

The use of function modifiers makes these restrictions highly readable.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract AccessRestriction {
// These will be assigned at the construction
// phase, where 'msg.sender’ 1is the account
// creating this contract.
address public owner = msg.sender;
uint public creationTime = block.timestamp;

// Modifiers can be used to change
// the body of a function.
// If this modifier is used, it will
// prepend a check that only passes
// 1if the function is called from
// a certain address.
modifier onlyBy (address _account)
{
require (
msg.sender == _account,
"Sender not authorized."
)i
// Do not forget the "_;"! Tt will
// be replaced by the actual function
// body when the modifier is used.

—

/// Make '_newOwner ' the new owner of this
/// contract.
function changeOwner (address _newOwner)
public
onlyBy (owner)

owner = _newOwner;

modifier onlyAfter (uint _time) {
require (
block.timestamp >= _time,
"Function called too early."
)i

—r

/// Erase ownership information.
/// May only be called 6 weeks after
/// the contract has been created.
function disown ()

public

onlyBy (owner)

onlyAfter (creationTime + 6 weeks)

(continues on next page)

240 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

delete owner;

// This modifier requires a certain
// fee being associated with a function call.
// If the caller sent too much, he or she 1is
// refunded, but only after the function body.
// This was dangerous before Solidity version 0.4.0,
// where it was possible to skip the part after "_;°
modifier costs (uint _amount) {
require (
msg.value >= _amount,
"Not enough Ether provided."
)
7
if (msg.value > _amount)
msg.sender.transfer (msg.value - _amount);

function forceOwnerChange (address _newOwner)
public
payable
costs (200 ether)

owner = _newOwner;
// just some example condition
if (uint (owner) & 0 == 1)

// This did not refund for Solidity
// before version 0.4.0.
return;

// refund overpaid fees

A more specialised way in which access to function calls can be restricted will be discussed in the next example.

3.29.3 State Machine

Contracts often act as a state machine, which means that they have certain stages in which they behave differently or
in which different functions can be called. A function call often ends a stage and transitions the contract into the next
stage (especially if the contract models interaction). It is also common that some stages are automatically reached at
a certain point in time.

An example for this is a blind auction contract which starts in the stage “accepting blinded bids”, then transitions to
“revealing bids” which is ended by “determine auction outcome”.

Function modifiers can be used in this situation to model the states and guard against incorrect usage of the contract.
Example

In the following example, the modifier at St age ensures that the function can only be called at a certain stage.

Automatic timed transitions are handled by the modifier t imeTransitions, which should be used for all functions.

3.29. Common Patterns 241

Solidity Documentation, Release 0.7.5

Note: Modifier Order Matters. If atStage is combined with timedTransitions, make sure that you mention it after
the latter, so that the new stage is taken into account.

Finally, the modifier t ransitionNext can be used to automatically go to the next stage when the function finishes.

Note: Modifier May be Skipped. This only applies to Solidity before version 0.4.0: Since modifiers are applied by
simply replacing code and not by using a function call, the code in the transitionNext modifier can be skipped if the
function itself uses return. If you want to do that, make sure to call nextStage manually from those functions. Starting
with version 0.4.0, modifier code will run even if the function explicitly returns.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;

contract StateMachine {
enum Stages {
AcceptingBlindedBids,
RevealBids,
AnotherStage,
AreWeDoneYet,
Finished

// This is the current stage.
Stages public stage = Stages.AcceptingBlindedBids;

uint public creationTime = block.timestamp;

modifier atStage (Stages _stage) {
require (
stage == _stage,
"Function cannot be called at this time."
)i

—r

function nextStage () internal ({
stage = Stages (uint (stage) + 1);

// Perform timed transitions. Be sure to mention
// this modifier first, otherwise the guards
// will not take the new stage into account.
modifier timedTransitions () {
if (stage == Stages.AcceptingBlindedBids &&
block.timestamp >= creationTime + 10 days)
nextStage();
if (stage == Stages.RevealBids &&
block.timestamp >= creationTime + 12 days)
nextStage () ;
// The other stages transition by transaction

—r

// Order of the modifiers matters here!

(continues on next page)

242 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

function bid()
public
payable
timedTransitions
atStage (Stages.AcceptingBlindedBids)

// We will not implement that here

function reveal ()
public
timedTransitions
atStage (Stages.RevealBids)

// This modifier goes to the next stage
// after the function is done.
modifier transitionNext ()
{
7

nextStage () ;

function g{()
public
timedTransitions
atStage (Stages.AnotherStage)
transitionNext

function h{()
public
timedTransitions
atStage (Stages.AreWeDoneYet)
transitionNext

function i ()
public
timedTransitions
atStage (Stages.Finished)

3.30 List of Known Bugs

Below, you can find a JSON-formatted list of some of the known security-relevant bugs in the Solidity compiler. The
file itself is hosted in the Github repository. The list stretches back as far as version 0.3.0, bugs known to be present
only in versions preceding that are not listed.

There is another file called bugs_by_version.json, which can be used to check which bugs affect a specific version of

3.30. List of Known Bugs 243

https://github.com/ethereum/solidity/blob/develop/docs/bugs.json
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

Solidity Documentation, Release 0.7.5

the compiler.

Contract source verification tools and also other tools interacting with contracts should consult this list according to
the following criteria:

« It is mildly suspicious if a contract was compiled with a nightly compiler version instead of a released version.
This list does not keep track of unreleased or nightly versions.

* It is also mildly suspicious if a contract was compiled with a version that was not the most recent at the time the
contract was created. For contracts created from other contracts, you have to follow the creation chain back to a
transaction and use the date of that transaction as creation date.

« It is highly suspicious if a contract was compiled with a compiler that contains a known bug and the contract
was created at a time where a newer compiler version containing a fix was already released.

The JSON file of known bugs below is an array of objects, one for each bug, with the following keys:
name Unique name given to the bug

summary Short description of the bug

description Detailed description of the bug

link URL of a website with more detailed information, optional

introduced The first published compiler version that contained the bug, optional

fixed The first published compiler version that did not contain the bug anymore

publish The date at which the bug became known publicly, optional

severity Severity of the bug: very low, low, medium, high. Takes into account discoverability in contract tests,
likelihood of occurrence and potential damage by exploits.

conditions Conditions that have to be met to trigger the bug. The following keys can be used: opt imizer, Boolean
value which means that the optimizer has to be switched on to enable the bug. evmVersion, a string that
indicates which EVM version compiler settings trigger the bug. The string can contain comparison opera-
tors. For example, ">=constantinople" means that the bug is present when the EVM version is set to
constantinople or later. If no conditions are given, assume that the bug is present.

check This field contains different checks that report whether the smart contract contains the bug or not. The first type
of check are Javascript regular expressions that are to be matched against the source code (“source-regex”) if the
bug is present. If there is no match, then the bug is very likely not present. If there is a match, the bug might be
present. For improved accuracy, the checks should be applied to the source code after stripping comments. The
second type of check are patterns to be checked on the compact AST of the Solidity program (“ast-compact-
json-path”). The specified search query is a JsonPath expression. If at least one path of the Solidity AST matches
the query, the bug is likely present.

"name": "EmptyByteArrayCopy",

"summary": "Copying an empty byte array (or string) from memory or calldata,
—to storage can result in data corruption if the target array's length is increased,
—subsequently without storing new data.",

"description": "The routine that copies byte arrays from memory or calldata,
—to storage stores unrelated data from after the source array in the storage slot if
—the source array is empty. If the storage array's length is subsequently increased,

—either by using "~ .push() " or by assigning to its " .length’ attribute (only,
—before 0.6.0), the newly created byte array elements will not be zero-initialized,
—but contain the unrelated data. You are not affected if you do not assign to
—~length” " and do not use " .push() " on byte arrays, or only use " .push(<arg>) " or,

—manually initialize the new elements.",

(continues on next page)

244 Chapter 3. Contents

https://github.com/json-path/JsonPath

Solidity Documentation, Release 0.7.5

(continued from previous page)

"fixed": "0.7.4",
"severity": "medium"
}I
{
"name": "DynamicArrayCleanup",
"summary": "When assigning a dynamically-sized array with types of size at,

—most 16 bytes in storage causing the assigned array to shrink, some parts of_
—~deleted slots were not zeroed out.",

"description": "Consider a dynamically-sized array in storage whose base-type,
—is small enough such that multiple values can be packed into a single slot, such as_
— - uintl128[] . Let us define its length to be "1°. When this array gets assigned from,
—another array with a smaller length, say "'m’, the slots between elements "m and
— 1% have to be cleaned by zeroing them out. However, this cleaning was not,
—performed properly. Specifically, after the slot corresponding to "m’, only the_
—~first packed value was cleaned up. If this array gets resized to a length larger,
—than "m’, the indices corresponding to the unclean parts of the slot contained the
—original value, instead of 0. The resizing here is performed by assigning to the_,

—

—array length’, by a "push()’ or via inline assembly. You are not affected if you,
—are only using "~ .push(<arg>)" or if you assign a value (even zero) to the new_
—elements after increasing the length of the array.",

"fixed": "0.7.3",

"severity": "medium"

by
"name": "FreeFunctionRedefinition",
"summary": "The compiler does not flag an error when two or more free_

—~functions with the same name and parameter types are defined in a source unit or,
—when an imported free function alias shadows another free function with a different
—name but identical parameter types.",

"description": "In contrast to functions defined inside contracts, free,
—functions with identical names and parameter types did not create an error. Both,,
—definition of free functions with identical name and parameter types and an_
—imported free function with an alias that shadows another function with a different
—name but identical parameter types were permitted due to which a call to either the_
—multiply defined free function or the imported free function alias within a_
—contract led to the execution of that free function which was defined first within_,
—the source unit. Subsequently defined identical free function definitions were_
—silently ignored and their code generation was skipped.",

"introduced": "0.7.1",
"fixed": "0.7.2",
"severity": "low"
}I
{
"name": "UsingForCalldata",
"summary": "Function calls to internal library functions with calldata,,
—parameters called via "~ “using for " can result in invalid data being read.",
"description": "Function calls to internal library functions using the_,
— “using for ~ mechanism copied all calldata parameters to memory first and passed,

—them on like that, regardless of whether it was an internal or an external call._
—Due to that, the called function would receive a memory pointer that is interpreted
—as a calldata pointer. Since dynamically sized arrays are passed using two stack,,
—slots for calldata, but only one for memory, this can lead to stack corruption. An_,
—affected library call will consider the JUMPDEST to which it is supposed to return,
—as part of its arguments and will instead Jjump out to whatever was on the stack,
—before the call.",

"introduced": "0.6.9",

"fixed": "0.6.10",

(continues on next page)

3.30. List of Known Bugs 245

Solidity Documentation, Release 0.7.5

(continued from previous page)

"severity": "very low"
}I
{
"name": "MissingEscapingInFormatting",
"summary": "String literals containing double backslash characters passed,

—directly to external or encoding function calls can lead to a different string,
—being used when ABIEncoderV2 is enabled.",

"description": "When ABIEncoderV2 is enabled, string literals passed directly,,
—to encoding functions or external function calls are stored as strings in the,
—intemediate code. Characters outside the printable range are handled correctly, but,
—backslashes are not escaped in this procedure. This leads to double backslashes_,
—being reduced to single backslashes and consequently re-interpreted as escapes,,
—potentially resulting in a different string being encoded.",

"introduced": "0.5.14",
"fixed": "0.6.8",
"severity": "very low",
"conditions": {

"ABIEncoderV2": true

"name": "ArraySliceDynamicallyEncodedBaseType",

"summary": "Accessing array slices of arrays with dynamically encoded base,
—types (e.g. multi-dimensional arrays) can result in invalid data being read.",

"description": "For arrays with dynamically sized base types, index range,
—accesses that use a start expression that is non-zero will result in invalid array,,
—slices. Any index access to such array slices will result in data being read from,
—incorrect calldata offsets. Array slices are only supported for dynamic calldata,,
—types and all problematic type require ABIEncoderV2 to be enabled.",

"introduced": "0.6.0",
"fixed": "0.6.8",
"severity": "very low",
"conditions": {

"ABIEncoderV2": true

"name": "ImplicitConstructorCallvalueCheck",

"summary": "The creation code of a contract that does not define a_,
—constructor but has a base that does define a constructor did not revert for calls,,
—with non-zero value.",

"description": "Starting from Solidity 0.4.5 the creation code of contracts,
—without explicit payable constructor is supposed to contain a callvalue check that,
—results in contract creation reverting, 1if non-zero value is passed. However, this_
—check was missing in case no explicit constructor was defined in a contract at all,
—but the contract has a base that does define a constructor. In these cases it is_,
—possible to send value in a contract creation transaction or using inline assembly,,
—without revert, even though the creation code is supposed to be non-payable.",

"introduced": "0.4.5",

"fixed": "0.6.8",

"severity": "very low"

"name": "TupleAssignmentMultiStackSlotComponents",

"summary": "Tuple assignments with components that occupy several stack slots,
— 1.e. nested tuples, pointers to external functions or references to dynamically,,
—sized calldata arrays, can result in invalid wvalues.",

(continues on next page)

246 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"description": "Tuple assignments did not correctly account for tuple_
—components that occupy multiple stack slots in case the number of stack slots_
—differs between left-hand-side and right-hand-side. This can either happen in the
—presence of nested tuples or if the right-hand-side contains external function,
—pointers or references to dynamic calldata arrays, while the left-hand-side_
—contains an omission.",

"introduced": "O0.1.6",
"fixed": "0.6.6",
"severity": "very low"
}I
{
"name": "MemoryArrayCreationOverflow",
"summary": "The creation of very large memory arrays can result in_
—overlapping memory regions and thus memory corruption.",
"description": "No runtime overflow checks were performed for the length of

—memory arrays during creation. In cases for which the memory size of an array in,,
—bytes, i.e. the array length times 32, is larger than 27256-1, the memory,,
—allocation will overflow, potentially resulting in overlapping memory areas. The,,
—length of the array is still stored correctly, so copying or iterating over such an_
—array will result in out-of-gas.",

"link": "https://solidity.ethereum.org/2020/04/06/memory-creation-overflow—
Hbug/ " 7
"introduced": "0.2.0",
"fixed": "0.6.5",
"severity": "low"
by
{
"name": "YulOptimizerRedundantAssignmentBreakContinue",
"summary": "The Yul optimizer can remove essential assignments to variables,,

—declared inside for loops when Yul's continue or break statement is used. You are,
—unlikely to be affected if you do not use inline assembly with for loops and_
—~continue and break statements.",

"description": "The Yul optimizer has a stage that removes assignments to_,
—variables that are overwritten again or are not used in all following control-flow,,
—branches. This logic incorrectly removes such assignments to variables declared,
—inside a for loop if they can be removed in a control-flow branch that ends with,

— “break’ or " “continue’’ even though they cannot be removed in other control-flow,
—branches. Variables declared outside of the respective for loop are not affected.",
"introduced": "0.6.0",
"fixed": "0.6.1",
"severity": "medium",
"conditions": {

"yulOptimizer": true

"name": "privateCanBeOverridden",

"summary": "Private methods can be overridden by inheriting contracts.",

"description": "While private methods of base contracts are not visible and,
—cannot be called directly from the derived contract, it is still possible to,,
—declare a function of the same name and type and thus change the behaviour of the,
—base contract's function.",

"introduced": "0.3.0",
"fixed": "0.5.17",
"severity": "low"

b
{

(continues on next page)

3.30. List of Known Bugs 247

Solidity Documentation, Release 0.7.5

(continued from previous page)

"name": "YulOptimizerRedundantAssignmentBreakContinue0.5",

"summary": "The Yul optimizer can remove essential assignments to variables,,
—declared inside for loops when Yul's continue or break statement is used. You are,
—unlikely to be affected if you do not use inline assembly with for loops and_
—~continue and break statements.",

"description": "The Yul optimizer has a stage that removes assignments to_,
—variables that are overwritten again or are not used in all following control-flow,
—branches. This logic incorrectly removes such assignments to variables declared,
—inside a for loop if they can be removed in a control-flow branch that ends with,

— “break’ or " “continue’’ even though they cannot be removed in other control-flow
—branches. Variables declared outside of the respective for loop are not affected.",
"introduced": "0.5.8",
"fixed": "0.5.16",
"severity": "low",
"conditions": {

"yulOptimizer": true

"name": "ABIEncoderV2LoopYulOptimizer",

"summary": "If both the experimental ABIEncoderV2 and the experimental Yul_
—optimizer are activated, one component of the Yul optimizer may reuse data in_
—memory that has been changed in the meantime.",

"description": "The Yul optimizer incorrectly replaces "~ "mload ~ and_

— 'sload’ " calls with values that have been previously written to the load location,
— (and potentially changed in the meantime) if all of the following conditions are_,
—met: (1) there is a matching "~ "mstore’ or "~“sstore’ call before; (2) the contents,
—of memory or storage is only changed in a function that is called (directly or,
—indirectly) in between the first store and the load call; (3) called function_
—contains a for loop where the same memory location is changed in the condition or,
—the post or body block. When used in Solidity mode, this can only happen if the_,
—experimental ABIEncoderV2 is activated and the experimental Yul optimizer has been,,
—activated manually in addition to the regular optimizer in the compiler settings.",

"introduced": "0.5.14",
"fixed": "0.5.15",
"severity": "low",
"conditions": {
"ABIEncoderV2": true,
"optimizer": true,

"yulOptimizer": true

}I
{

"name":
—"ABIEncoderV2CalldataStructsWithStaticallySizedAndDynamicallyEncodedMembers",

"summary": "Reading from calldata structs that contain dynamically encoded,
—but statically-sized members can result in incorrect values.",

"description": "When a calldata struct contains a dynamically encoded, but,
—statically-sized member, the offsets for all subsequent struct members are
—calculated incorrectly. All reads from such members will result in invalid values.
—Only calldata structs are affected, i.e. this occurs in external functions with_,
—such structs as argument. Using affected structs in storage or memory or as,
—arguments to public functions on the other hand works correctly.",

"introduced": "0.5.6",
"fixed": "0.5.11",
"severity": "low",
"conditions": {

(continues on next page)

248 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"ABIEncoderv2": true

"name": "SignedArrayStorageCopy",

"summary": "Assigning an array of signed integers to a storage array of
—different type can lead to data corruption in that array.",

"description": "In two's complement, negative integers have their higher
—order bits set. In order to fit into a shared storage slot, these have to be set to,
—zero. When a conversion is done at the same time, the bits to set to zero were,
—incorrectly determined from the source and not the target type. This means that_,
—such copy operations can lead to incorrect values being stored.",

"link": "https://blog.ethereum.org/2019/06/25/solidity—-storage—-array-bugs/",

"introduced": "0.4.7",

"fixed": "0.5.10",

"severity": "low/medium"

"name": "ABIEncoderV2StorageArrayWithMultiSlotElement",

"summary": "Storage arrays containing structs or other statically-sized,
—arrays are not read properly when directly encoded in external function calls or in,
—abi.encodex.",

"description": "When storage arrays whose elements occupy more than a single_
—storage slot are directly encoded in external function calls or using abi.encodex,
—their elements are read in an overlapping manner, i.e. the element pointer is not_,
—properly advanced between reads. This is not a problem when the storage data is_,
—first copied to a memory variable or if the storage array only contains value types,
—or dynamically-sized arrays.",

"link": "https://blog.ethereum.org/2019/06/25/solidity—-storage—array-bugs/",

"introduced": "0.4.16",

"fixed": "0.5.10",

"severity": "low",

"conditions": {

"ABIEncoderV2": true

"name": "DynamicConstructorArgumentsClippedABIV2",

"summary": "A contract's constructor that takes structs or arrays that_
—contain dynamically-sized arrays reverts or decodes to invalid data.",

"description": "During construction of a contract, constructor parameters are_
—copied from the code section to memory for decoding. The amount of bytes to copy,,
—was calculated incorrectly in case all parameters are statically-sized but contain,,
—dynamically-sized arrays as struct members or inner arrays. Such types are only_,
—~available if ABIEncoderV2 is activated.",

"introduced": "0.4.16",
"fixed": "0.5.9",
"severity": "very low",
"conditions": {

"ABIEncoderV2": true

"name": "UninitializedFunctionPointerInConstructor",

"summary": "Calling uninitialized internal function pointers created in the_,
—constructor does not always revert and can cause unexpected behaviour.",

"description": "Uninitialized internal function pointers point to a special,

—piece of code that causes a revert when called. Jump target positions deentiniesennexipage)
—during construction and after deployment, but the code for setting this special_,

é?ﬂym%:tar €L OnNly_ConsSidered the situation after deprloyment. ™,
.90. LI

st of Known Bugs 249

Solidity Documentation, Release 0.7.5

(continued from previous page)

"introduced": "0.5.0",
"fixed": "0.5.8",
"severity": "very low"
}I
{
"name": "UninitializedFunctionPointerInConstructor_0.4.x",
"summary": "Calling uninitialized internal function pointers created in the
—constructor does not always revert and can cause unexpected behaviour.",
"description": "Uninitialized internal function pointers point to a special,

—piece of code that causes a revert when called. Jump target positions are different
—during construction and after deployment, but the code for setting this special_,
—Jjump target only considered the situation after deployment.",

"introduced": "0.4.5",
"fixed": "0.4.26",
"severity": "very low"
}I
{
"name": "IncorrectEventSignatureInLibraries",
"summary": "Contract types used in events in libraries cause an incorrect,,
—event signature hash",
"description": "Instead of using the type “address’ in the hashed signature,
—the actual contract name was used, leading to a wrong hash in the logs.",
"introduced": "0.5.0",
"fixed": "0.5.8",
"severity": "very low"
by
{
"name": "IncorrectEventSignatureInLibraries_0.4.x",
"summary": "Contract types used in events in libraries cause an incorrect,
—event signature hash",
"description": "Instead of using the type "address’® in the hashed signature,
—the actual contract name was used, leading to a wrong hash in the logs.",
"introduced": "0.3.0",
"fixed": "0.4.26",
"severity": "very low"
}I
{
"name": "ABIEncoderV2PackedStorage",
"summary": "Storage structs and arrays with types shorter than 32 bytes can,

—cause data corruption if encoded directly from storage using the experimental,
—ABIEncoderv2.",

"description": "Elements of structs and arrays that are shorter than 32 bytes,
—are not properly decoded from storage when encoded directly (i.e. not via a memory,,
—type) using ABIEncoderV2. This can cause corruption in the values themselves but_,
—can also overwrite other parts of the encoded data.",

"link": "https://blog.ethereum.orqg/2019/03/26/solidity-optimizer—-and-
—abiencoderv2-bug/",

"introduced": "0.5.0",

"fixed": "0.5.7",

"severity": "low",

"conditions": {

"ABIEncoderV2": true

"name": "ABIEncoderV2PackedStorage_0.4.x",
"summary": "Storage structs and arrays with types shorter than 32 bytes can,

—,cause data corruption if encoded directly from storage using the exper {eeatiRues on next page)
—ABIEncoderv2.",

250 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"description": "Elements of structs and arrays that are shorter than 32 bytes,
—are not properly decoded from storage when encoded directly (i.e. not via a memory,,
—type) using ABIEncoderV2. This can cause corruption in the values themselves but,
—can also overwrite other parts of the encoded data.",

"link": "https://blog.ethereum.org/2019/03/26/solidity-optimizer—-and-
—abiencoderv2-bug/",

"introduced": "0.4.19",

"fixed": "0.4.26",

"severity": "low",

"conditions": {

"ABIEncoderV2": true

"name": "IncorrectByteInstructionOptimization",

"summary": "The optimizer incorrectly handles byte opcodes whose second,
—argument is 31 or a constant expression that evaluates to 31. This can result in_,
—unexpected values.",

"description": "The optimizer incorrectly handles byte opcodes that use the
—constant 31 as second argument. This can happen when performing index access on_,
—bytesNN types with a compile-time constant value (not index) of 31 or when using,
—the byte opcode in inline assembly.",

—

"link": "https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-
—abiencoderv2-bug/",

"introduced": "0.5.5",

"fixed": "0.5.7",

"severity": "very low",

"conditions": {

"optimizer": true

"name": "DoubleShiftSizeOverflow",

"summary": "Double bitwise shifts by large constants whose sum overflows 256
—bits can result in unexpected values.",

"description": "Nested logical shift operations whose total shift size is_,
—2%*%256 or more are incorrectly optimized. This only applies to shifts by numbers of
—bits that are compile-time constant expressions.",

"link": "https://blog.ethereum.org/2019/03/26/solidity-optimizer—and-
—abiencoderv2-bug/",

"introduced": "0.5.5",

"fixed": "0.5.6",

"severity": "low",

"conditions": {

"optimizer": true,
"evmVersion": ">=constantinople"

"name": "ExpExponentCleanup",

"summary": "Using the % operator with an exponent of type shorter than 256
—bits can result in unexpected values.",

"description”: "Higher order bits in the exponent are not properly cleaned,,
—before the EXP opcode is applied if the type of the exponent expression is smaller
—than 256 bits and not smaller than the type of the base. In that case, the result_
—might be larger than expected if the exponent is assumed to lie within the wvalue_,
—range of the type. Literal numbers as exponents are unaffected as are exponents or_

—bases of type uint256.", (continues on next page)

3.30. List of Known Bugs 251

Solidity Documentation, Release 0.7.5

(continued from previous page)

"link": "https://blog.ethereum.org/2018/09/13/solidity-bugfix-release/",

"fixed": "0.4.25",

"severity": "medium/high",

"check": {"regex-source": "[*/I*\\x x["~/0-9 "}

}’
{

"name": "EventStructWrongData",

"summary": "Using structs in events logged wrong data.",

"description": "If a struct is used in an event, the address of the struct is,
—logged instead of the actual data.",

"link": "https://blog.ethereum.org/2018/09/13/solidity-bugfix-release/",

"introduced": "0.4.17",

"fixed": "0.4.25",

"severity": "very low",

"check": {"ast-compact-json-path": "$..[?(@.nodeType === 'EventDefinition')]..
—[?(Q@.nodeType === 'UserDefinedTypeName' && (@.typeDescriptions.typeString.startsWith (
—'struct'))]"}

}I
{
"name": "NestedArrayFunctionCallDecoder",
"summary": "Calling functions that return multi-dimensional fixed-size arrays,

—can result in memory corruption.",

"description": "If Solidity code calls a function that returns a multi-
—dimensional fixed-size array, array elements are incorrectly interpreted as memory,,
—pointers and thus can cause memory corruption if the return values are accessed._
—~Calling functions with multi-dimensional fixed-size arrays 1is unaffected as is_,
—returning fixed-size arrays from function calls. The regular expression only checks,
—1if such functions are present, not if they are called, which is required for the_
—contract to be affected.",

"link": "https://blog.ethereum.org/2018/09/13/solidity-bugfix-release/",
"introduced": "0.1.4",

"fixed": "0.4.22",

"severity": "medium",

"check": {"regex-source": "returns[”; {1*\\[\\s*[*\\] \\t\\r\\n\\v\\f] [*

SANTTFANTANNSH AN [\ s* [N ANENNZE\ADA\AVANE] [A\NT T+ \NT [T+ (0™
}I
{

"name": "OneOfTwoConstructorsSkipped",

"summary": "If a contract has both a new-style constructor (using the_
—constructor keyword) and an old-style constructor (a function with the same name as
—the contract) at the same time, one of them will be ignored.",

"description": "If a contract has both a new-style constructor (using the_
—constructor keyword) and an old-style constructor (a function with the same name as
—the contract) at the same time, one of them will be ignored. There will be a_
—compiler warning about the old-style constructor, so contracts only using new-style

—

—constructors are fine.",
"introduced": "0.4.22",
"fixed": "0.4.23",
"severity": "very low"

"name": "ZeroFunctionSelector",

"summary": "It is possible to craft the name of a function such that it is_
—executed instead of the fallback function in very specific circumstances.",

"description": "If a function has a selector consisting only of zeros, is_
—payable and part of a contract that does not have a fallback function and at most_,
—five external functions in total, this function is called instead of the fallback,,

—function if Ether is sent to the contract without data.", (continues on next page)

252 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"fixed": "0.4.18",
"severity": "very low"
}I
{
"name": "DelegateCallReturnValue",
"summary": "The low-level .delegatecall() does not return the execution,

—outcome, but converts the value returned by the functioned called to a boolean,
—~instead.",

"description": "The return value of the low-level .delegatecall() function is_
—taken from a position in memory, where the call data or the return data resides.
—This value 1is interpreted as a boolean and put onto the stack. This means if the_,

—called function returns at least 32 zero bytes, .delegatecall() returns false even,
—~1if the call was successful.",
"introduced": "0.3.0",
"fixed": "0.4.15",
"severity": "low"
}’
{
"name": "ECRecoverMalformedInput",
"summary": "The ecrecover () builtin can return garbage for malformed input.",
"description": "The ecrecover precompile does not properly signal failure for,

—malformed input (especially in the 'v' argument) and thus the Solidity function can,
—return data that was previously present in the return area in memory.",

"fixed": "0.4.14",
"severity": "medium"
by
{
"name": "SkipEmptyStringLiteral",
"summary": "If \"\" is used in a function call, the following function,
—arguments will not be correctly passed to the function.",
"description": "If the empty string literal \"\" is used as an argument in a_,

—function call, it is skipped by the encoder. This has the effect that the encoding,
—of all arguments following this is shifted left by 32 bytes and thus the function,
—call data is corrupted.",

"fixed": "0.4.12",

"severity": "low"

by

"name": "ConstantOptimizerSubtraction",

"summary": "In some situations, the optimizer replaces certain numbers in the_
—code with routines that compute different numbers.",

"description": "The optimizer tries to represent any number in the bytecode
—by routines that compute them with less gas. For some special numbers, an incorrect,
—routine is generated. This could allow an attacker to e.g. trick victims about a_,
—specific amount of ether, or function calls to call different functions (or none at,
—all).",

"link": "https://blog.ethereum.org/2017/05/03/solidity-optimizer-bug/",
"fixed": "0.4.11",
"severity": "low",
"conditions": {
"optimizer": true
}
}I
{
"name": "IdentityPrecompileReturnIgnored",
"summary": "Failure of the identity precompile was ignored.",
"description": "Calls to the identity contract, which is used for copying,,

—memory, ignored its return value. On the public chain, calls to the iddeontirugs on nextpage)
—precompile can be made in a way that they never fail, but this might be different

Tivate cnaing.

3.30. List of Known Bugs 253

Solidity Documentation, Release 0.7.5

(continued from previous page)

"severity": "low",
"fixed": "0.4.7"
}I
{
"name": "OptimizerStateKnowledgeNotResetForJumpdest",
"summary": "The optimizer did not properly reset its internal state at jump,,
—destinations, which could lead to data corruption.",
"description": "The optimizer performs symbolic execution at certain stages._

—At jump destinations, multiple code paths join and thus it has to compute a common,,
—state from the incoming edges. Computing this common state was simplified to Jjust,,
—use the empty state, but this implementation was not done properly. This bug can_,
—cause data corruption.",

"severity": "medium",
"introduced": "0.4.5",
"fixed": "0.4.6",
"conditions": {

"optimizer": true

"name": "HighOrderByteCleanStorage",

"summary": "For short types, the high order bytes were not cleaned properly,,
—and could overwrite existing data.",

"description": "Types shorter than 32 bytes are packed together into the same
—32 byte storage slot, but storage writes always write 32 bytes. For some types, the
—higher order bytes were not cleaned properly, which made it sometimes possible to_,
—overwrite a variable in storage when writing to another one.",

—

"link": "https://blog.ethereum.org/2016/11/01/security-alert-solidity-
—variables—-can-overwritten-storage/",
"severity": "high",
"introduced": "0.1.6",
"fixed": "0.4.4"
}I
{
"name": "OptimizerStaleKnowledgeAboutSHA3",
"summary": "The optimizer did not properly reset its knowledge about SHA3

—operations resulting in some hashes (also used for storage variable positions) not,,
—being calculated correctly.",

"description”: "The optimizer performs symbolic execution in order to save re-—
—evaluating expressions whose value is already known. This knowledge was not_
—properly reset across control flow paths and thus the optimizer sometimes thought
—that the result of a SHA3 operation is already present on the stack. This could,,
—result in data corruption by accessing the wrong storage slot.",

"severity": "medium",
"fixed": "0.4.3",
"conditions": {

"optimizer": true

"name": "LibrariesNotCallableFromPayableFunctions",

"summary": "Library functions threw an exception when called from a call that,
—received Ether.",

"description": "Library functions are protected against sending them Ether

—through a call. Since the DELEGATECALL opcode forwards the information about how_,
—much Ether was sent with a call, the library function incorrectly assumed that,
—Ether was sent to the library and threw an exception.",

(continues on next page)

254 Chapter 3. Contents

Solidity Documentation, Release 0.7.5

(continued from previous page)

"severity": "low",
"introduced": "0.4.0",
"fixed": "0.4.2"
}I
{
"name": "SendFailsForZeroEther",
"summary": "The send function did not provide enough gas to the recipient if_

—no Ether was sent with it.",

"description": "The recipient of an Ether transfer automatically receives a,

—certain amount of gas from the EVM to handle the transfer. In the case of a zero-
—transfer, this gas is not provided which causes the recipient to throw an exception.

—
"severity": "low",
"fixed": "0.4.0"
}y
{
"name": "DynamicAllocationInfiniteLoop",
"summary": "Dynamic allocation of an empty memory array caused an infinite

—loop and thus an exception.",

"description": "Memory arrays can be created provided a length. If this_,

—~length is zero, code was generated that did not terminate and thus consumed all gas.

—
"severity": "low",
"fixed": "0.3.6"
}l
{
"name": "OptimizerClearStateOnCodePathJoin",
"summary": "The optimizer did not properly reset its internal state at jump,,

—destinations, which could lead to data corruption.",

—At jump destinations, multiple code paths join and thus it has to compute a common

"description": "The optimizer performs symbolic execution at certain stages.

—

—

—state from the incoming edges. Computing this common state was not done correctly.,
—This bug can cause data corruption, but it is probably quite hard to use for
—targeted attacks.",

"severity": "low",
"fixed": "0.3.6",
"conditions": {

"optimizer": true

"name": "CleanBytesHigherOrderBits",
"summary": "The higher order bits of short bytesNN types were not cleaned

—before comparison.",

"description": "Two variables of type bytesNN were considered different if |

—their higher order bits, which are not part of the actual value, were different. An_
—attacker might use this to reach seemingly unreachable code paths by providing,,
—incorrectly formatted input data.",

"severity": "medium/high",
"fixed": "0.3.3"
}I
{
"name": "ArrayAccessCleanHigherOrderBits",
"summary": "Access to array elements for arrays of types with less than 32

—bytes did not correctly clean the higher order bits, causing corruption in other
—array elements.",

"description": "Multiple elements of an array of values that are shorter than,

17 bytes are packed into the same storage slot. Writing to a single eldeentinues,en nextpage)
—an array did not properly clean the higher order bytes and thus could lead to data,

—COorruptio

3.

30. List of Known Bugs 255

Solidity Documentation, Release 0.7.5

(continued from previous page)

"severity": "medium/high",
"fixed": "0.3.1"
}I
{
"name": "AncientCompiler",
"summary": "This compiler version is ancient and might contain several,,

—undocumented or undiscovered bugs.",

"description": "The list of bugs is only kept for compiler versions starting_
—from 0.3.0, so older versions might contain undocumented bugs.",

"severity": "high",

"fixed": "0.3.0"

3.31 Contributing

Help is always welcome and there are plenty of options how you can contribute to Solidity.
In particular, we appreciate support in the following areas:
* Reporting issues.

* Fixing and responding to Solidity’s GitHub issues, especially those tagged as good first issue which are meant
as introductory issues for external contributors.

¢ Improving the documentation.
* Translating the documentation into more languages.
* Responding to questions from other users on StackExchange and the Solidity Gitter Chat.

* Getting involved in the language design process by joining language design calls, proposing language changes
or new features and providing feedback.

To get started, you can try Building from Source in order to familiarize yourself with the components of Solidity and
the build process. Also, it may be useful to become well-versed at writing smart-contracts in Solidity.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project - in the
issues, pull requests, or Gitter channels - you agree to abide by its terms.

3.31.1 Team Calls

If you have issues or pull requests to discuss, or are interested in hearing what the team and contributors are working
on, you can join our public team calls:

* Mondays at 12pm CET/CEST.

* Wednesdays at 2pm CET/CEST.

Both calls take place on Google Meet.

3.31.2 How to Report Issues

To report an issue, please use the GitHub issues tracker. When reporting issues, please mention the following details:

¢ Which version of Solidity you are using.

256 Chapter 3. Contents

https://github.com/ethereum/solidity/issues
https://github.com/ethereum/solidity/labels/good%20first%20issue
https://ethereum.stackexchange.com
https://gitter.im/ethereum/solidity
https://raw.githubusercontent.com/ethereum/solidity/develop/CODE_OF_CONDUCT.md
https://meet.google.com/mrq-kbwv-edg
https://github.com/ethereum/solidity/issues

Solidity Documentation, Release 0.7.5

* What was the source code (if applicable).
* Which platform are you running on.

* How to reproduce the issue.

* What was the result of the issue.

* What the expected behaviour is.

Reducing the source code that caused the issue to a bare minimum is always very helpful and sometimes even clarifies
a misunderstanding.

3.31.3 Workflow for Pull Requests

In order to contribute, please fork off of the develop branch and make your changes there. Your commit messages
should detail why you made your change in addition to what you did (unless it is a tiny change).

If you need to pull in any changes from develop after making your fork (for example, to resolve potential merge
conflicts), please avoid using git merge and instead, git rebase your branch. This will help us review your
change more easily.

Additionally, if you are writing a new feature, please ensure you add appropriate test cases under test/ (see below).

However, if you are making a larger change, please consult with the Solidity Development Gitter channel (different
from the one mentioned above, this one is focused on compiler and language development instead of language usage)
first.

New features and bugfixes should be added to the Changelog.md file: please follow the style of previous entries,
when applicable.

Finally, please make sure you respect the coding style for this project. Also, even though we do CI testing, please test
your code and ensure that it builds locally before submitting a pull request.

Thank you for your help!

3.31.4 Running the Compiler Tests

Prerequisites

Some tests require the evmone library, others require 1ibz3. The test script tries to discover the location of the evmone
library, which can be located in the current directory, installed on the system level, or the deps folder in the project
top level. The required file is called 1ibevmone. so on Linux systems, evmone .d11 on Windows systems and
libevmone.dylib on macOS.

Running the Tests

Solidity includes different types of tests, most of them bundled into the Boost C++ Test Framework application
soltest. Running build/test/soltest or its wrapper scripts/soltest.sh is sufficient for most
changes.

The ./scripts/tests.sh script executes most Solidity tests automatically, including those bundled into the
Boost C++ Test Framework application soltest (or its wrapper scripts/soltest.sh), as well as command
line tests and compilation tests.

The test system automatically tries to discover the location of the evmone library starting from the current di-
rectory. The required file is called 1ibevmone. so on Linux systems, evmone.d11 on Windows systems and

3.31. Contributing 257

https://gitter.im/ethereum/solidity-dev
https://github.com/ethereum/solidity/blob/develop/CODING_STYLE.md
https://github.com/ethereum/evmone/releases
https://github.com/Z3Prover/z3
https://www.boost.org/doc/libs/1_69_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_69_0/libs/test/doc/html/index.html

Solidity Documentation, Release 0.7.5

libevmone.dylib on macOS. If it is not found, tests that use it are skipped. These tests are 1ibsolididty/
semanticTests, libsolidity/GasCosts, libsolidity/SolidityEndToEndTest, part of the
soltest suite. To run all tests, download the library from GitHub and place it in the project root path or inside the
deps folder.

If the 1ibz3 library is not installed on your system, you should disable the SMT tests by export-
ing SMT_FLAGS=--no-smt before running ./scripts/tests.sh or running ./scripts/
soltest.sh ——no-smt. These tests are libsolidity/smtCheckerTests and libsolidity/
smtCheckerTestsJSON.

Note: To get a list of all unit tests run by Soltest, run . /build/test/soltest —--list_content=HRF.

For quicker results you can run a subset of, or specific tests.

To run a subset of tests, you can use filters: ./scripts/soltest.sh -t TestSuite/TestName, where
TestName can be a wildcard *.

Or, for example, to run all the tests for the yul disambiguator: ./scripts/soltest.sh -t
"yulOptimizerTests/disambiguator/*" ——-no-smt.

./build/test/soltest --help has extensive help on all of the options available.
See especially:

* show_progress (-p) to show test completion,

* run_test (-t) to run specific tests cases, and

* report-level (-r) give a more detailed report.

Note: Those working in a Windows environment wanting to run the above basic sets without libz3. Using Git Bash,
youuse: . /build/test/Release/soltest.exe —-- —-no-smt. If you are running this in plain Command
Prompt, use . \build\test\Release\soltest.exe —- —-no-smt.

If you want to debug using GDB, make sure you build differently than the “usual”. For example, you could run the
following command in your bui 1d folder:

cmake —-DCMAKE_BUILD_TYPE=Debug
make

This creates symbols so that when you debug a test using the ——debug flag, you have access to functions and variables
in which you can break or print with.

The CI runs additional tests (including solc—-7s and testing third party Solidity frameworks) that require compiling
the Emscripten target.

Writing and Running Syntax Tests

Syntax tests check that the compiler generates the correct error messages for invalid code and properly accepts valid
code. They are stored in individual files inside the tests/libsolidity/syntaxTests folder. These files must
contain annotations, stating the expected result(s) of the respective test. The test suite compiles and checks them
against the given expectations.

For example: . /test/libsolidity/syntaxTests/double_stateVariable_declaration.sol

258 Chapter 3. Contents

https://github.com/ethereum/evmone/releases/tag/v0.4.1
https://www.boost.org/doc/libs/1_69_0/libs/test/doc/html/boost_test/utf_reference/rt_param_reference/show_progress.html
https://www.boost.org/doc/libs/1_69_0/libs/test/doc/html/boost_test/utf_reference/rt_param_reference/run_test.html
https://www.boost.org/doc/libs/1_69_0/libs/test/doc/html/boost_test/utf_reference/rt_param_reference/report_level.html

Solidity Documentation, Release 0.7.5

contract test {
uint256 variable;
uintl28 variable;
}
/) ===
// DeclarationError: (36-52): Identifier already declared.

A syntax test must contain at least the contract under test itself, followed by the separator // ——--. The comments
that follow the separator are used to describe the expected compiler errors or warnings. The number range denotes the
location in the source where the error occurred. If you want the contract to compile without any errors or warning you
can leave out the separator and the comments that follow it.

In the above example, the state variable variable was declared twice, which is not allowed. This results in a
DeclarationError stating that the identifier was already declared.

The isoltest tool is used for these tests and you can find it under . /build/test/tools/. Itis an interactive
tool which allows editing of failing contracts using your preferred text editor. Let’s try to break this test by removing
the second declaration of variable:

contract test {
uint256 variable;

}

/) ===

// DeclarationError: (36-52): Identifier already declared.

Running . /build/test/isoltest again results in a test failure:

syntaxTests/double_stateVariable_declaration.sol: FAIL
Contract:
contract test {
uint256 variable;

Expected result:

DeclarationError: (36-52): Identifier already declared.
Obtained result:

Success

isoltest prints the expected result next to the obtained result, and also provides a way to edit, update or skip the
current contract file, or quit the application.

It offers several options for failing tests:

* edit: isoltest tries to open the contract in an editor so you can adjust it. It either uses the editor given on
the command line (as isoltest —-—-editor /path/to/editor),in the environment variable EDITOR
or just /usr/bin/editor (in that order).

* update: Updates the expectations for contract under test. This updates the annotations by removing unmet
expectations and adding missing expectations. The test is then run again.

* skip: Skips the execution of this particular test.
e quit: Quits isoltest.
All of these options apply to the current contract, expect quit which stops the entire testing process.

Automatically updating the test above changes it to

3.31. Contributing 259

Solidity Documentation, Release 0.7.5

contract test {
uint256 variable;

}

/) ===

and re-run the test. It now passes again:

Re-running test case...
syntaxTests/double_stateVariable_declaration.sol: OK

Note: Choose a name for the contract file that explains what it tests, e.g. double_variable_declaration.
sol. Do not put more than one contract into a single file, unless you are testing inheritance or cross-contract calls.
Each file should test one aspect of your new feature.

3.31.5 Running the Fuzzer via AFL

Fuzzing is a technique that runs programs on more or less random inputs to find exceptional execution states (seg-
mentation faults, exceptions, etc). Modern fuzzers are clever and run a directed search inside the input. We have a
specialized binary called solfuzzer which takes source code as input and fails whenever it encounters an internal
compiler error, segmentation fault or similar, but does not fail if e.g., the code contains an error. This way, fuzzing
tools can find internal problems in the compiler.

We mainly use AFL for fuzzing. You need to download and install the AFL packages from your repositories (afl,
afl-clang) or build them manually. Next, build Solidity (or just the solfuzzer binary) with AFL as your compiler:

cd build

E if needed

make clean

cmake .. -DCMAKE_C_COMPILER=path/to/afl-gcc -DCMAKE_CXX_COMPILER=path/to/afl-g++
make solfuzzer

At this stage you should be able to see a message similar to the following:

Scanning dependencies of target solfuzzer

[98%] Building CXX object test/tools/CMakeFiles/solfuzzer.dir/fuzzer.cpp.o
afl-cc 2.52b by <lcamtungoogle.com>

afl-as 2.52b by <lcamtungoogle.com>

[+] Instrumented 1949 locations (64-bit, non-hardened mode, ratio 100%).
[100%] Linking CXX executable solfuzzer

If the instrumentation messages did not appear, try switching the cmake flags pointing to AFL’s clang binaries:

E if previously failed

make clean

cmake .. -DCMAKE_C_COMPILER=path/to/afl-clang -DCMAKE_CXX_ COMPILER=path/to/afl-clang++
make solfuzzer

Otherwise, upon execution the fuzzer halts with an error saying binary is not instrumented:

afl-fuzz 2.52b by <lcamtungoogle.com>
(truncated messages)
[#] Validating target binary...

(continues on next page)

260 Chapter 3. Contents

https://lcamtuf.coredump.cx/afl/

Solidity Documentation, Release 0.7.5

(continued from previous page)

[-] Looks like the target binary is not instrumented! The fuzzer depends on
compile-time instrumentation to isolate interesting test cases while
mutating the input data. For more information, and for tips on how to
instrument binaries, please see /usr/share/doc/afl-doc/docs/README.

When source code is not available, you may be able to leverage QEMU
mode support. Consult the README for tips on how to enable this.

(It is also possible to use afl-fuzz as a traditional, "dumb" fuzzer.
For that, you can use the -n option - but expect much worse results.)

[-] PROGRAM ABORT : No instrumentation detected
Location : check_binary (), afl-fuzz.c:6920

Next, you need some example source files. This makes it much easier for the fuzzer to find errors. You can either copy
some files from the syntax tests or extract test files from the documentation or the other tests:

mkdir /tmp/test_cases

cd /tmp/test_cases

H extract from tests:

path/to/solidity/scripts/isolate_tests.py path/to/solidity/test/libsolidity/
—SolidityEndToEndTest.cpp

H extract from documentation:

path/to/solidity/scripts/isolate_tests.py path/to/solidity/docs docs

The AFL documentation states that the corpus (the initial input files) should not be too large. The files themselves
should not be larger than 1 kB and there should be at most one input file per functionality, so better start with a small
number of. There is also a tool called af1-cmin that can trim input files that result in similar behaviour of the binary.

Now run the fuzzer (the —m extends the size of memory to 60 MB):

afl-fuzz -m 60 -1 /tmp/test_cases -o /tmp/fuzzer_reports -—- /path/to/solfuzzer

The fuzzer creates source files that lead to failures in /tmp/fuzzer_reports. Often it finds many similar source
files that produce the same error. You can use the tool scripts/uniqueErrors. sh to filter out the unique errors.

3.31.6 Whiskers

Whiskers is a string templating system similar to Mustache. It is used by the compiler in various places to aid read-
ability, and thus maintainability and verifiability, of the code.

The syntax comes with a substantial difference to Mustache. The template markers { { and } } are replaced by < and
> in order to aid parsing and avoid conflicts with Yu/ (The symbols < and > are invalid in inline assembly, while { and
} are used to delimit blocks). Another limitation is that lists are only resolved one depth and they do not recurse. This
may change in the future.

A rough specification is the following:

Any occurrence of <name> is replaced by the string-value of the supplied variable name without any escaping and
without iterated replacements. An area can be delimited by <#name>...</name>. It is replaced by as many
concatenations of its contents as there were sets of variables supplied to the template system, each time replacing any
<inner> items by their respective value. Top-level variables can also be used inside such areas.

There are also conditionals of the form <?name>...<!name>...</name>, where template replacements con-
tinue recursively either in the first or the second segment depending on the value of the boolean parameter name.
If <?+name>...<!+name>...</+name> is used, then the check is whether the string parameter name is non-
empty.

3.31. Contributing 261

https://mustache.github.io

Solidity Documentation, Release 0.7.5

3.31.7 Documentation Style Guide

In the following section you find style recommendations specifically focusing on documentation contributions to
Solidity.

English Language

Use English, with British English spelling preferred, unless using project or brand names. Try to reduce the usage of
local slang and references, making your language as clear to all readers as possible. Below are some references to
help:

 Simplified technical English
¢ International English

* British English spelling

Note: While the official Solidity documentation is written in English, there are community contributed Translations
in other languages available.

Title Case for Headings
Use title case for headings. This means capitalise all principal words in titles, but not articles, conjunctions, and
prepositions unless they start the title.
For example, the following are all correct:
* Title Case for Headings.
» For Headings Use Title Case.
* Local and State Variable Names.

¢ Order of Layout.

Expand Contractions

Use expanded contractions for words, for example:
¢ “Do not” instead of “Don’t”.

e “Can not” instead of “Can’t”.

Active and Passive Voice

Active voice is typically recommended for tutorial style documentation as it helps the reader understand who or what
is performing a task. However, as the Solidity documentation is a mixture of tutorials and reference content, passive
voice is sometimes more applicable.

As a summary:
» Use passive voice for technical reference, for example language definition and internals of the Ethereum VM.
 Use active voice when describing recommendations on how to apply an aspect of Solidity.

For example, the below is in passive voice as it specifies an aspect of Solidity:

262 Chapter 3. Contents

https://en.wikipedia.org/wiki/Simplified_Technical_English
https://en.wikipedia.org/wiki/International_English
https://en.oxforddictionaries.com/spelling/british-and-spelling
https://titlecase.com

Solidity Documentation, Release 0.7.5

Functions can be declared pure in which case they promise not to read from or modify the state.
For example, the below is in active voice as it discusses an application of Solidity:

When invoking the compiler, you can specify how to discover the first element of a path, and also path
prefix remappings.

Common Terms

* “Function parameters” and “return variables”, not input and output parameters.

Code Examples

A CI process tests all code block formatted code examples that begin with pragma solidity, contract,
libraryor interface usingthe . /test/cmdlineTests. sh script when you create a PR. If you are adding
new code examples, ensure they work and pass tests before creating the PR.

Ensure that all code examples begin with a pragma version that spans the largest where the contract code is valid.
For example pragma solidity >=0.4.0 <0.8.0;.

Running Documentation Tests

Make sure your contributions pass our documentation tests by running . /scripts/docs. sh that installs depen-
dencies needed for documentation and checks for any problems such as broken links or syntax issues.

3.31.8 Solidity Language Design

If you want to get involved in the language design process and share your ideas, please join the solidity-users forum,
where existing properties of the language and proposals for new features can be discussed.

We regularly host language design discussion calls, in which selected topics, issues or feature implementations are
debated in detail. The invitation to those calls is shared via the aforementioned forum. We are also sharing feedback
surveys and other language design relevant content in this forum.

For ad-hoc cases and questions you can reach out to us via the Solidity-dev Gitter channel, a dedicated chatroom for
conversations around the Solidity compiler and language development.

You can follow the implementation status of new features in the Solidity Github project. Issues in the design backlog
need further specification and will either be discussed in a language design call or in a regular team call. You can see
the upcoming changes for the next breaking release by changing from the default branch (develop) to the breaking
branch.

We are happy to hear your thoughts on how we can improve the language design process to be even more collaborative
and transparent.

3.32 Solidity Brand Guide

This brand guide features information on Solidity’s brand policy and logo usage guidelines.

3.32. Solidity Brand Guide 263

https://groups.google.com/g/solidity-users
https://gitter.im/ethereum/solidity-dev
https://github.com/ethereum/solidity/projects/43
https://github.com/ethereum/solidity/tree/breaking
https://github.com/ethereum/solidity/tree/breaking

Solidity Documentation, Release 0.7.5

3.32.1 The Solidity Brand

The Solidity programming language is an open-source, community project governed by a core team. The core team is
sponsored by the Ethereum Foundation.

This document aims to provide information about how to best use the Solidity brand name and logo.

We encourage you to read this document carefully before using the brand name or the logo. Your cooperation is highly
appreciated!

3.32.2 Solidity Brand Name

“Solidity” should be used to refer to the Solidity programming language solely.
Please do not use “Solidity”:
¢ To refer to any other programming language.

e In a way that is misleading or may imply association of unrelated modules, tools, documentation, or other
resources with the Solidity programming language.

* In ways that confuse the community as to whether the Solidity programming language is open-source and free
to use.

3.32.3 Solidity Logo License

The Solidity logo is distributed and licensed under a Creative Commons Attribution 4.0 International License.
This is the most permissive Creative Commons license and allows reuse and modifications for any purpose.
You are free to:

» Share — Copy and redistribute the material in any medium or format.

» Adapt — Remix, transform, and build upon the material for any purpose, even commercially.
Under the following terms:

* Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the the Solidity core team
endorses you or your use.

When using the Solidity logo, please respect the Solidity logo guidelines.

3.32.4 Solidity Logo Guidelines

(Right click on the logo to download it.)
Please do not:
* Change the ratio of the logo (do not stretch it or cut it).

* Change the colors of the logo, unless it is absolutely necessary.

264 Chapter 3. Contents

https://ethereum.foundation/
https://creativecommons.org/licenses/by/4.0/

Solidity Documentation, Release 0.7.5

3.32.5 Credits

This document was, in parts, derived from the Python Software Foundation Trademark Usage Policy and the Rust
Media Guide.

3.32. Solidity Brand Guide 265

https://www.python.org/psf/trademarks/
https://www.rust-lang.org/policies/media-guide
https://www.rust-lang.org/policies/media-guide

Solidity Documentation, Release 0.7.5

266 Chapter 3. Contents

Index

A

abi, 76,77, 145
abstract contract, 117
access

restricting, 239
account, 11
addmod, 77, 130
address, 11, 50, 54
anonymous, 132
application binary interface, 145
array, 60, 61, 100

allocating, 62

length, 63

literals, 62

pop, 63

push, 63

slice, 66
array of strings, 100
asm, 126, 198
assembly, 126, 198
assert, 77,87, 130
assignment, 71, 84

destructuring, 84
auction

blind, 23

open, 23

B

balance, 11, 50, 78, 130
ballot, 20
base
constructor, 115
base class, 109
blind auction, 23
block, 10, 76, 130
number, 76, 130
timestamp, 76, 130
bool, 47
break, 80

Bugs, 243

byte array, 53
bytes, 56, 62
bytes32,53

C

C3 linearization, 116

call, 50,78
callcode, 13,78, 119
cast, 72

coding style, 218
coin, 10

coinbase, 76, 130
commandline compiler, 186
comment, 44
common subexpression elimination, 141
compile target, 187
compiler

commandline, 186
constant, 98, 132
constant propagation, 141
constructor, 91, 115

arguments, 91
continue, 80
contract, 45,91

abstract, 117

base, 109

creation, 91

interface, 118

modular, 39
contract creation, 13
contract type,53
contract verification, 142
contracts

creating, 83
creationCode, 80
cryptography, 77, 130

D

data, 76, 130

267

Solidity Documentation, Release 0.7.5

days, 75
deactivate, 14
declarations, 86
default value, 86

delegatecall, 13, 50,78, 119

delete, 71
deriving, 109
difficulty, 76, 130
do/while, 80
dynamic array, 100

E

ecrecover, 77, 130
else, 80

encode, 76
encoding, 77
enum, 45, 56
errors, 87
escrow, 29

ether, 75

ethereum virtual machine, 11

event, 9, 45, 107
evm, 11

EVM version, 187
evmasm, 126, 198
exception, 87
experimental, 41
external, 93, 132

F

fallback function, 104

false, 47

finney, 75

fixed, 49

fixed point number, 49

for, 80

function, 45
call, 13, 80
external, 80
fallback, 104
getter, 94
internal, 80

modifier, 45, 96, 240, 241

pure, 102

receive ! receive, 103

view, 101
function parameter, 80
function type, 57
functions, 99

G

gas, 12,76, 130
gas price, 12,76, 130
getter

function, 94
goto, 80
gwei, 75

H

hours, 75

if, 80
import, 42
indexed, 132
inheritance, 109
multiple, 116
inline
arrays, 62
installing, 14
instruction, 12
int, 47
integer, 47
interface contract, 118
internal, 93, 132
iterable mappings, 70
iulia, 198

J

julia, 198

K

keccak256, 77, 130
L

length, 63

library, 13,119, 124

license, 40

linearization, 116

linker, 186

literal, 54-56
address, 54
rational, 54
string, 55

location, 60

log, 13, 108

lvalue, 71

M

mapping, 9, 68, 133
memory, 12, 60
message call, 13
metadata, 142
minutes, 75
modifiers, 132
modular contract, 39
module, 42

msg, 76, 130

268

Index

Solidity Documentation, Release 0.7.5

mulmod, 77, 130

N

natspec, 44
new, 62, 83
number, 76, 130

O

open auction, 23
optimizer, 141
origin, 76, 130
overload, 105
overriding
function, 112
modifier, 114

P

packed, 77
parameter, 80
function, 80
input, 80
output, 80
payable, 132
pop, 63
pragmna, 40, 41
precedence, 129
private, 93, 132
public, 93,132
purchase, 29
pure, 132

pure function, 102

push, 63

R

receive ether function, 103
reference type, 60
remote purchase, 29

require, 77, 87, 130
return, 80
return array, 100

return string, 100
return struct, 100
return variable, 80

revert, 77, 87, 130
ripemdl160, 77, 130
runtimeCode, 80

S

scoping, 86
seconds, 75
self-destruct, 14

selfdestruct, 14,79, 130

send, 50, 78, 130
sender, 76, 130

set, 120

sha256, 77, 130

solc, 186

source file, 42
source mappings, 140
spdx, 40

stack, 12

state machine, 241
state variable, 45, 133
staticcall, 50,78
storage, 11, 12, 60, 133
string, 55, 62, 100
struct, 45, 60, 67, 100
style, 218
subcurrency, 8
super, 130

switch, 80

szabo, 75

T

this, 79, 130

throw, 87

time, 75

timestamp, 76, 130

transaction, 10, 11

transfer, 50, 78

true, 47

type, 47, 80
contract, 53
conversion, 72
function, 57
reference, 60
struct, 67
value, 47

U

ufixed, 49
uint, 47
using for, 120, 124

\Y

value, 76, 130
value type, 47
variable
return, 80
variably sized array, 100
version, 41
view, 132
view function, 101
visibility, 93, 132
voting, 20

W

weeks, 75

Index

269

Solidity Documentation, Release 0.7.5

wel, 75
while, 80
withdrawal, 238

Y

years, 75
yul, 198

270 Index

	Getting Started
	Translations
	Contents
	Introduction to Smart Contracts
	Installing the Solidity Compiler
	Solidity by Example
	Layout of a Solidity Source File
	Structure of a Contract
	Types
	Units and Globally Available Variables
	Expressions and Control Structures
	Contracts
	Inline Assembly
	Cheatsheet
	Layout of State Variables in Storage
	Layout in Memory
	Layout of Call Data
	Cleaning Up Variables
	Source Mappings
	The Optimiser
	Contract Metadata
	Contract ABI Specification
	Solidity v0.5.0 Breaking Changes
	Solidity v0.6.0 Breaking Changes
	Solidity v0.7.0 Breaking Changes
	NatSpec Format
	Security Considerations
	Resources
	Using the compiler
	Yul
	Style Guide
	Common Patterns
	List of Known Bugs
	Contributing
	Solidity Brand Guide

	Index

