
web3.js Documentation
Release 1.0.0

Fabian Vogelsteller, Marek Kotewicz, Jeffrey Wilcke, Marian Oancea, Gav Wood

Jun 05, 2019

User Documentation

1 Getting Started 3
1.1 Adding web3.js . 3

2 Callbacks Promises Events 5

3 Glossary 7
3.1 Specification . 7
3.2 Example . 8

4 Web3 9
4.1 Initiating of Web3 . 9
4.2 Web3.modules . 10
4.3 options . 10
4.4 defaultBlock . 11
4.5 defaultAccount . 12
4.6 defaultGasPrice . 12
4.7 defaultGas . 12
4.8 transactionBlockTimeout . 13
4.9 transactionConfirmationBlocks . 13
4.10 transactionPollingTimeout . 13
4.11 transactionSigner . 14
4.12 setProvider . 14
4.13 providers . 15
4.14 givenProvider . 16
4.15 currentProvider . 16
4.16 BatchRequest . 17
4.17 version . 17

5 web3.eth 19
5.1 Note on checksum addresses . 19
5.2 subscribe . 20
5.3 Contract . 20
5.4 Iban . 20
5.5 personal . 20
5.6 accounts . 20
5.7 ens . 20
5.8 abi . 20

i

5.9 net . 21
5.10 options . 21
5.11 defaultBlock . 21
5.12 defaultAccount . 22
5.13 defaultGasPrice . 22
5.14 defaultGas . 23
5.15 transactionBlockTimeout . 23
5.16 transactionConfirmationBlocks . 23
5.17 transactionPollingTimeout . 24
5.18 transactionSigner . 24
5.19 setProvider . 25
5.20 providers . 26
5.21 givenProvider . 26
5.22 currentProvider . 27
5.23 BatchRequest . 27
5.24 getProtocolVersion . 28
5.25 isSyncing . 28
5.26 getCoinbase . 29
5.27 isMining . 29
5.28 getHashrate . 30
5.29 getGasPrice . 30
5.30 getAccounts . 30
5.31 getBlockNumber . 31
5.32 getBalance . 31
5.33 getStorageAt . 32
5.34 getCode . 32
5.35 getBlock . 33
5.36 getBlockTransactionCount . 34
5.37 getUncle . 35
5.38 getTransaction . 36
5.39 getPendingTransactions . 37
5.40 getTransactionFromBlock . 38
5.41 getTransactionReceipt . 39
5.42 getTransactionCount . 40
5.43 sendTransaction . 40
5.44 sendSignedTransaction . 42
5.45 sign . 43
5.46 signTransaction . 44
5.47 call . 45
5.48 estimateGas . 46
5.49 getPastLogs . 46
5.50 getWork . 48
5.51 submitWork . 48
5.52 requestAccounts . 49
5.53 getChainId . 49
5.54 getNodeInfo . 50
5.55 getProof . 50

6 web3.eth.subscribe 53
6.1 subscribe . 53
6.2 clearSubscriptions . 54
6.3 subscribe(“pendingTransactions”) . 55
6.4 subscribe(“newBlockHeaders”) . 55
6.5 subscribe(“syncing”) . 57

ii

6.6 subscribe(“logs”) . 58

7 web3.eth.Contract 61
7.1 web3.eth.Contract . 61
7.2 = Properties = . 62
7.3 options . 62
7.4 address . 62
7.5 jsonInterface . 63
7.6 = Methods = . 64
7.7 clone . 64
7.8 deploy . 64
7.9 methods . 66
7.10 methods.myMethod.call . 67
7.11 methods.myMethod.send . 69
7.12 methods.myMethod.estimateGas . 71
7.13 methods.myMethod.encodeABI . 72
7.14 = Events = . 72
7.15 once . 73
7.16 events . 74
7.17 events.allEvents . 75
7.18 getPastEvents . 76

8 web3.eth.accounts 79
8.1 create . 79
8.2 privateKeyToAccount . 80
8.3 signTransaction . 81
8.4 recoverTransaction . 83
8.5 hashMessage . 83
8.6 sign . 84
8.7 recover . 85
8.8 encrypt . 86
8.9 decrypt . 86
8.10 wallet . 87
8.11 wallet.create . 88
8.12 wallet.add . 89
8.13 wallet.remove . 89
8.14 wallet.clear . 90
8.15 wallet.encrypt . 91
8.16 wallet.decrypt . 92
8.17 wallet.save . 93
8.18 wallet.load . 93

9 web3.eth.personal 95
9.1 options . 95
9.2 defaultBlock . 96
9.3 defaultAccount . 97
9.4 defaultGasPrice . 97
9.5 defaultGas . 97
9.6 transactionBlockTimeout . 98
9.7 transactionConfirmationBlocks . 98
9.8 transactionPollingTimeout . 98
9.9 transactionSigner . 99
9.10 setProvider . 99
9.11 providers . 100

iii

9.12 givenProvider . 101
9.13 currentProvider . 102
9.14 BatchRequest . 102
9.15 newAccount . 103
9.16 sign . 103
9.17 ecRecover . 104
9.18 signTransaction . 105
9.19 sendTransaction . 106
9.20 unlockAccount . 107
9.21 lockAccount . 107
9.22 getAccounts . 108
9.23 importRawKey . 108

10 web3.eth.ens 111
10.1 registry . 111
10.2 resolver . 112
10.3 supportsInterface . 112
10.4 getAddress . 113
10.5 setAddress . 114
10.6 getPubkey . 115
10.7 setPubkey . 116
10.8 getText . 117
10.9 setText . 118
10.10 getContent . 119
10.11 setContent . 119
10.12 getMultihash . 121
10.13 setMultihash . 121
10.14 getContenthash . 123
10.15 setContenthash . 123
10.16 Ens events . 124

11 web3.eth.Iban 127
11.1 Iban instance . 127
11.2 toAddress . 127
11.3 toIban . 128
11.4 fromAddress . 129
11.5 fromBban . 129
11.6 createIndirect . 130
11.7 isValid . 130
11.8 prototype.isValid . 131
11.9 prototype.isDirect . 131
11.10 prototype.isIndirect . 132
11.11 prototype.checksum . 132
11.12 prototype.institution . 133
11.13 prototype.client . 133
11.14 prototype.toAddress . 133
11.15 prototype.toString . 134

12 web3.eth.net 135
12.1 getId . 135
12.2 isListening . 136
12.3 getPeerCount . 136
12.4 getNetworkType . 137

13 web3.eth.abi 139

iv

13.1 encodeFunctionSignature . 139
13.2 encodeEventSignature . 140
13.3 encodeParameter . 141
13.4 encodeParameters . 142
13.5 encodeFunctionCall . 142
13.6 decodeParameter . 143
13.7 decodeParameters . 144
13.8 decodeLog . 144

14 web3.*.net 147
14.1 getId . 147
14.2 isListening . 148
14.3 getPeerCount . 148

15 web3.bzz 151

16 web3.shh 153
16.1 options . 153
16.2 defaultBlock . 154
16.3 defaultAccount . 155
16.4 defaultGasPrice . 155
16.5 defaultGas . 155
16.6 transactionBlockTimeout . 156
16.7 transactionConfirmationBlocks . 156
16.8 transactionPollingTimeout . 156
16.9 transactionSigner . 157
16.10 setProvider . 157
16.11 providers . 158
16.12 givenProvider . 159
16.13 currentProvider . 159
16.14 BatchRequest . 160
16.15 getId . 160
16.16 isListening . 161
16.17 getPeerCount . 161
16.18 getVersion . 162
16.19 getInfo . 162
16.20 setMaxMessageSize . 163
16.21 setMinPoW . 164
16.22 markTrustedPeer . 164
16.23 newKeyPair . 165
16.24 addPrivateKey . 165
16.25 deleteKeyPair . 166
16.26 hasKeyPair . 167
16.27 getPublicKey . 167
16.28 getPrivateKey . 168
16.29 newSymKey . 168
16.30 addSymKey . 169
16.31 generateSymKeyFromPassword . 169
16.32 hasSymKey . 170
16.33 getSymKey . 170
16.34 deleteSymKey . 171
16.35 post . 172
16.36 subscribe . 173
16.37 clearSubscriptions . 174

v

16.38 newMessageFilter . 175
16.39 deleteMessageFilter . 175
16.40 getFilterMessages . 176

17 web3.utils 177
17.1 randomHex . 177
17.2 BN . 178
17.3 isBN . 178
17.4 isBigNumber . 179
17.5 keccak256 . 179
17.6 soliditySha3 . 180
17.7 isHex . 182
17.8 isHexStrict . 182
17.9 isAddress . 183
17.10 toChecksumAddress . 184
17.11 stripHexPrefix . 185
17.12 checkAddressChecksum . 185
17.13 toHex . 186
17.14 toBN . 186
17.15 hexToNumberString . 187
17.16 hexToNumber . 188
17.17 numberToHex . 188
17.18 hexToUtf8 . 189
17.19 hexToAscii . 189
17.20 utf8ToHex . 190
17.21 asciiToHex . 190
17.22 hexToBytes . 191
17.23 bytesToHex . 191
17.24 toWei . 192
17.25 fromWei . 193
17.26 unitMap . 195
17.27 padLeft . 196
17.28 padRight . 197
17.29 toTwosComplement . 198
17.30 getSignatureParameters . 198

18 Module API 201
18.1 Example . 201

19 Contract Module API 205
19.1 Contract . 205

20 Core Module 207
20.1 AbstractWeb3Module . 207
20.2 options . 208
20.3 defaultBlock . 208
20.4 defaultAccount . 209
20.5 defaultGasPrice . 210
20.6 defaultGas . 210
20.7 transactionBlockTimeout . 210
20.8 transactionConfirmationBlocks . 211
20.9 transactionPollingTimeout . 211
20.10 transactionSigner . 211
20.11 setProvider . 212
20.12 providers . 213

vi

20.13 givenProvider . 213
20.14 currentProvider . 214
20.15 BatchRequest . 214

21 Core Method Module 217
21.1 AbstractMethodFactory . 217
21.2 AbstractMethod . 218
21.3 Type . 219
21.4 beforeExecution . 219
21.5 afterExecution . 220
21.6 execute . 220
21.7 rpcMethod . 220
21.8 parametersAmount . 221
21.9 parameters . 221
21.10 callback . 221
21.11 setArguments . 221
21.12 getArguments . 222
21.13 isHash . 222
21.14 AbstractObservedTransactionMethod . 223
21.15 Type . 223
21.16 beforeExecution . 223
21.17 afterExecution . 224
21.18 execute . 224
21.19 rpcMethod . 224
21.20 parametersAmount . 224
21.21 parameters . 225
21.22 callback . 225
21.23 setArguments . 225
21.24 getArguments . 226
21.25 isHash . 226

22 Core Subscriptions Module 227
22.1 AbstractSubscription . 227
22.2 subscribe . 228
22.3 unsubscribe . 228
22.4 beforeSubscription . 228
22.5 onNewSubscriptionItem . 229
22.6 type . 229
22.7 method . 229
22.8 options . 229
22.9 id . 230

23 Admin Module 231
23.1 options . 231
23.2 defaultBlock . 232
23.3 defaultAccount . 233
23.4 defaultGasPrice . 233
23.5 defaultGas . 233
23.6 transactionBlockTimeout . 234
23.7 transactionConfirmationBlocks . 234
23.8 transactionPollingTimeout . 234
23.9 transactionSigner . 235
23.10 setProvider . 235
23.11 providers . 236

vii

23.12 givenProvider . 237
23.13 currentProvider . 237
23.14 BatchRequest . 238
23.15 addPeer . 238
23.16 getDataDirectory . 239
23.17 getNodeInfo . 239
23.18 getPeers . 241
23.19 setSolc . 242
23.20 startRPC . 243
23.21 startWS . 243
23.22 stopRPC . 244
23.23 stopWS . 244

24 Debug Module 247
24.1 options . 247
24.2 defaultBlock . 248
24.3 defaultAccount . 249
24.4 defaultGasPrice . 249
24.5 defaultGas . 249
24.6 transactionBlockTimeout . 250
24.7 transactionConfirmationBlocks . 250
24.8 transactionPollingTimeout . 250
24.9 transactionSigner . 251
24.10 setProvider . 251
24.11 providers . 252
24.12 givenProvider . 253
24.13 currentProvider . 253
24.14 BatchRequest . 254
24.15 setBackTraceAt . 254
24.16 blockProfile . 255
24.17 cpuProfile . 255
24.18 dumpBlock . 256
24.19 getGCStats . 257
24.20 getBlockRlp . 257
24.21 goTrace . 258
24.22 getMemStats . 258
24.23 getSeedHash . 259
24.24 setBlockProfileRate . 259
24.25 setHead . 260
24.26 getStacks . 260
24.27 startCPUProfile . 261
24.28 stopCPUProfile . 261
24.29 startGoTrace . 262
24.30 stopGoTrace . 262
24.31 getBlockTrace . 263
24.32 getBlockTraceByNumber . 263
24.33 getBlockTraceByHash . 264
24.34 getBlockTraceFromFile . 264
24.35 getTransactionTrace . 265
24.36 setVerbosity . 266
24.37 setVerbosityPattern . 266
24.38 writeBlockProfile . 267
24.39 writeMemProfile . 268

viii

25 Miner Module 269
25.1 options . 269
25.2 defaultBlock . 270
25.3 defaultAccount . 271
25.4 defaultGasPrice . 271
25.5 defaultGas . 271
25.6 transactionBlockTimeout . 272
25.7 transactionConfirmationBlocks . 272
25.8 transactionPollingTimeout . 272
25.9 transactionSigner . 273
25.10 setProvider . 273
25.11 providers . 274
25.12 givenProvider . 275
25.13 currentProvider . 275
25.14 BatchRequest . 276
25.15 setExtra . 276
25.16 setGasPrice . 277
25.17 setEtherBase . 277
25.18 startMining . 278
25.19 stopMining . 278

26 TxPool Module 281
26.1 options . 281
26.2 defaultBlock . 282
26.3 defaultAccount . 283
26.4 defaultGasPrice . 283
26.5 defaultGas . 283
26.6 transactionBlockTimeout . 284
26.7 transactionConfirmationBlocks . 284
26.8 transactionPollingTimeout . 284
26.9 transactionSigner . 285
26.10 setProvider . 285
26.11 providers . 286
26.12 givenProvider . 287
26.13 currentProvider . 287
26.14 BatchRequest . 288
26.15 getContent . 288
26.16 getInspection . 291
26.17 getStatus . 292

Index 295

ix

x

web3.js Documentation, Release 1.0.0

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

web3.js is a collection of libraries which allow you to interact with a local or remote Ethereum node, using an HTTP,
WebSocket or IPC connection.

The following documentation will guide you through installing and running web3.js, as well as providing a API
reference documentation with examples.

Contents:

Keyword Index, Search Page

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

User Documentation 1

https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

2 User Documentation

CHAPTER 1

Getting Started

The web3.js library is a collection of modules which contain specific functionality for the Ethereum ecosystem.

• The web3-eth is for the Ethereum blockchain and smart contracts

• The web3-shh is for the whisper protocol to communicate p2p and broadcast

• The web3-utils contains useful helper functions for DApp developers.

1.1 Adding web3.js

First you need to get web3.js into your project. This can be done using the following methods:

• npm: npm install web3

After that you need to create a web3 instance and set a provider. A Ethereum compatible browser will have a window.
ethereum or web3.currentProvider available. For web3.js, check Web3.givenProvider. If this prop-
erty is null you should connect to your own local or remote node.

// in node.js use: const Web3 = require('web3');

// use the given Provider, e.g in the browser with Metamask, or instantiate a new
→˓websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546', null, {});

// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'), null, {});

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net, {}); // mac os
→˓path
// or

(continues on next page)

3

web3.js Documentation, Release 1.0.0

(continued from previous page)

const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net, {})); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

That’s it! now you can use the web3 object.

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

4 Chapter 1. Getting Started

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 2

Callbacks Promises Events

To help web3 integrate into all kind of projects with different standards we provide multiple ways to act on asyn-
chronous functions.

Most web3.js objects allow a callback as the last parameter, as well as returning promises to chain functions.

Ethereum as a blockchain has different levels of finality and therefore needs to return multiple “stages” of an action.
To cope with requirement we return a “PromiEvent” for functions like web3.eth.sendTransaction or contract methods.
These stages are encapsulated into a “PromiEvent”, which combines a promise with an event emitter. The event emitter
fires an event for each of the finality stages.

An example of a function that benefits from a PromiEvent is the web3.eth.sendTransaction method.

web3.eth.sendTransaction({from: '0x123...', data: '0x432...'})
.once('transactionHash', function(hash){ ... })
.once('receipt', function(receipt){ ... })
.on('confirmation', function(confNumber, receipt){ ... })
.on('error', function(error){ ... })
.then(function(receipt){

// will be fired once the receipt is mined
});

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

5

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

6 Chapter 2. Callbacks Promises Events

CHAPTER 3

Glossary

3.1 Specification

Functions:

• type: "function", "constructor" (can be omitted, defaulting to "function"; "fallback" also
possible but not relevant in web3.js);

• name: the name of the function (only present for function types);

• constant: true if function is specified to not modify the blockchain state;

• payable: true if function accepts ether, defaults to false;

• stateMutability: a string with one of the following values: pure (specified to not read blockchain state),
view (same as constant above), nonpayable and payable (same as payable above);

• inputs: an array of objects, each of which contains:

– name: the name of the parameter;

– type: the canonical type of the parameter.

• outputs: an array of objects same as inputs, can be omitted if no outputs exist.

Events:

• type: always "event"

• name: the name of the event;

• inputs: an array of objects, each of which contains:

– name: the name of the parameter;

– type: the canonical type of the parameter.

– indexed: true if the field is part of the log’s topics, false if it one of the log’s data segment.

• anonymous: true if the event was declared as anonymous.

7

web3.js Documentation, Release 1.0.0

3.2 Example

contract Test {
uint a;
address d = 0x12345678901234567890123456789012;

function Test(uint testInt) { a = testInt;}

event Event(uint indexed b, bytes32 c);

event Event2(uint indexed b, bytes32 c);

function foo(uint b, bytes32 c) returns(address) {
Event(b, c);
return d;

}
}

// would result in the JSON:
[{

"type":"constructor",
"payable":false,
"stateMutability":"nonpayable"
"inputs":[{"name":"testInt","type":"uint256"}],

},{
"type":"function",
"name":"foo",
"constant":false,
"payable":false,
"stateMutability":"nonpayable",
"inputs":[{"name":"b","type":"uint256"}, {"name":"c","type":"bytes32"}],
"outputs":[{"name":"","type":"address"}]

},{
"type":"event",
"name":"Event",
"inputs":[{"indexed":true,"name":"b","type":"uint256"}, {"indexed":false,"name":"c

→˓","type":"bytes32"}],
"anonymous":false

},{
"type":"event",
"name":"Event2",
"inputs":[{"indexed":true,"name":"b","type":"uint256"},{"indexed":false,"name":"c

→˓","type":"bytes32"}],
"anonymous":false

}]

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

8 Chapter 3. Glossary

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 4

Web3

The Web3 class is a wrapper to house all Ethereum related modules.

4.1 Initiating of Web3

4.1.1 Parameters

1. provider - string|object: A URL or one of the Web3 provider classes.

2. net - net.Socket (optional): The net NodeJS package.

3. options - object (optional) The Web3 options

4.1.2 Example

import Web3 from 'web3';

// "Web3.givenProvider" will be set in a Ethereum supported browser.
const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓net, options);

> web3.eth
> web3.shh
> web3.utils
> web3.version

9

web3.js Documentation, Release 1.0.0

4.2 Web3.modules

This Static property will return an object with the classes of all major sub modules, to be able to instantiate
them manually.

4.2.1 Returns

Object: A list of modules:

• Eth - Function: the Eth module for interacting with the Ethereum network see web3.eth for more.

• Net - Function: the Net module for interacting with network properties see web3.eth.net for more.

• Personal - Function: the Personal module for interacting with the Ethereum accounts see
web3.eth.personal for more.

• Shh - Function: the Shh module for interacting with the whisper protocol see web3.shh for more.

4.2.2 Example

Web3.modules
> {

Eth(provider, net?, options?),
Net(provider, net?, options?),
Personal(provider, net?, options?),
Shh(provider, net?, options?),

}

4.3 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

4.3.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

10 Chapter 4. Web3

web3.js Documentation, Release 1.0.0

4.3.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

4.4 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

4.4.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

4.4. defaultBlock 11

web3.js Documentation, Release 1.0.0

4.5 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

4.5.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

4.6 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

4.6.1 Returns

string|number: The current value of the defaultGasPrice property.

4.7 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

4.7.1 Returns

string|number: The current value of the defaultGas property.

12 Chapter 4. Web3

web3.js Documentation, Release 1.0.0

4.8 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

4.8.1 Returns

number: The current value of transactionBlockTimeout

4.9 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

4.9.1 Returns

number: The current value of transactionConfirmationBlocks

4.10 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

4.10.1 Returns

number: The current value of transactionPollingTimeout

4.8. transactionBlockTimeout 13

web3.js Documentation, Release 1.0.0

4.11 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

4.11.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

4.12 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

4.12.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

4.12.2 Returns

Boolean

14 Chapter 4. Web3

web3.js Documentation, Release 1.0.0

4.12.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

4.13 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

4.13.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

4.13.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

(continues on next page)

4.13. providers 15

web3.js Documentation, Release 1.0.0

(continued from previous page)

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

4.14 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

4.14.1 Returns

Object: The given provider set or false.

4.14.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

4.15 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

4.15.1 Returns

Object: The current provider set.

16 Chapter 4. Web3

web3.js Documentation, Release 1.0.0

4.15.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

4.16 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

4.16.1 Parameters

none

4.16.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

4.16.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

4.17 version

Property of the Web3 class.

web3.version

Contains the version of the web3 wrapper class.

4.16. BatchRequest 17

web3.js Documentation, Release 1.0.0

4.17.1 Returns

String: The current version.

4.17.2 Example

web3.version;
> "1.0.0"

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

18 Chapter 4. Web3

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 5

web3.eth

The web3-eth package allows you to interact with an Ethereum blockchain itself and the deployed smart contracts.

import Web3 from 'web3';
import {Eth} from 'web3-eth';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const eth = new Eth(Web3.givenProvider || 'ws://some.local-or-remote.node:8546', null,
→˓ options);

// or using the web3 umbrella package

const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

// -> web3.eth

5.1 Note on checksum addresses

All Ethereum addresses returned by functions of this package are returned as checksum addresses. This means some
letters are uppercase and some are lowercase. Based on that it will calculate a checksum for the address and prove its
correctness. Incorrect checksum addresses will throw an error when passed into functions. If you want to circumvent
the checksum check you can make an address all lower- or uppercase.

5.1.1 Example

web3.eth.getAccounts(console.log);
> ["0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe" ,
→˓"0x85F43D8a49eeB85d32Cf465507DD71d507100C1d"]

19

web3.js Documentation, Release 1.0.0

5.2 subscribe

For web3.eth.subscribe see the Subscribe reference documentation

5.3 Contract

For web3.eth.Contract see the Contract reference documentation

5.4 Iban

For web3.eth.Iban see the Iban reference documentation

5.5 personal

For web3.eth.personal see the personal reference documentation

5.6 accounts

For web3.eth.accounts see the accounts reference documentation

5.7 ens

For web3.eth.ens see the Ens reference documentation

5.8 abi

For web3.eth.abi see the ABI reference documentation

20 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.9 net

For web3.eth.net see the net reference documentation

5.10 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

5.10.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

5.10.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

5.11 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

5.9. net 21

web3.js Documentation, Release 1.0.0

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

5.11.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

5.12 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

5.12.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

5.13 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

22 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.13.1 Returns

string|number: The current value of the defaultGasPrice property.

5.14 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

5.14.1 Returns

string|number: The current value of the defaultGas property.

5.15 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

5.15.1 Returns

number: The current value of transactionBlockTimeout

5.16 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

5.14. defaultGas 23

web3.js Documentation, Release 1.0.0

5.16.1 Returns

number: The current value of transactionConfirmationBlocks

5.17 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

5.17.1 Returns

number: The current value of transactionPollingTimeout

5.18 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

5.18.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

24 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.19 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

5.19.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

5.19.2 Returns

Boolean

5.19.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

5.19. setProvider 25

web3.js Documentation, Release 1.0.0

5.20 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

5.20.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

5.20.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

5.21 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

5.21.1 Returns

Object: The given provider set or false.

26 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.21.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

5.22 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

5.22.1 Returns

Object: The current provider set.

5.22.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

5.23 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

5.23.1 Parameters

none

5.23.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

5.22. currentProvider 27

web3.js Documentation, Release 1.0.0

5.23.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

5.24 getProtocolVersion

web3.eth.getProtocolVersion([callback])

Returns the Ethereum protocol version of the node.

5.24.1 Returns

Promise<string> - The protocol version.

5.24.2 Example

web3.eth.getProtocolVersion().then(console.log);
> "63"

5.25 isSyncing

web3.eth.isSyncing([callback])

Checks if the node is currently syncing and returns either a syncing object, or false.

5.25.1 Returns

Promise<object|boolean> - A sync object when the node is currently syncing or false:

• startingBlock - Number: The block number where the sync started.

• currentBlock - Number: The block number where at which block the node currently synced to already.

• highestBlock - Number: The estimated block number to sync to.

• knownStates - Number: The estimated states to download

• pulledStates - Number: The already downloaded states

28 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.25.2 Example

web3.eth.isSyncing()
.then(console.log);

> {
startingBlock: 100,
currentBlock: 312,
highestBlock: 512,
knownStates: 234566,
pulledStates: 123455

}

5.26 getCoinbase

web3.eth.getCoinbase([callback])

Returns the coinbase address to which mining rewards will go.

5.26.1 Returns

Promise<string> - The coinbase address set in the node for mining rewards.

5.26.2 Example

web3.eth.getCoinbase().then(console.log);
> "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe"

5.27 isMining

web3.eth.isMining([callback])

Checks whether the node is mining or not.

5.27.1 Returns

Promise<boolean> - Returns true if the node is mining, otherwise false.

5.27.2 Example

web3.eth.isMining().then(console.log);
> true

5.26. getCoinbase 29

web3.js Documentation, Release 1.0.0

5.28 getHashrate

web3.eth.getHashrate([callback])

Returns the number of hashes per second that the node is mining with.

5.28.1 Returns

Promise<number> - The Number of hashes per second.

5.28.2 Example

web3.eth.getHashrate().then(console.log);
> 493736

5.29 getGasPrice

web3.eth.getGasPrice([callback])

Returns the current gas price oracle. The gas price is determined by the last few blocks median gas price. GasPrice is
the wei per unit of gas,.

5.29.1 Returns

Promise<string> - Number string of the current gas price in wei.

See the A note on dealing with big numbers in JavaScript.

5.29.2 Example

web3.eth.getGasPrice().then(console.log);
> "20000000000"

5.30 getAccounts

web3.eth.getAccounts([callback])

Will return a list of the unlocked accounts in the Web3 wallet or it will return the accounts from the currently connected
node.

This means you can add accounts with web3.eth.accounts.create() and you will get them returned here.

30 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.30.1 Returns

Promise<Array> - An array of addresses controlled by node.

5.30.2 Example

web3.eth.getAccounts().then(console.log);
> ["0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe",
→˓"0xDCc6960376d6C6dEa93647383FfB245CfCed97Cf"]

5.31 getBlockNumber

web3.eth.getBlockNumber([callback])

Returns the current block number.

5.31.1 Returns

Promise<number> - The number of the most recent block.

5.31.2 Example

web3.eth.getBlockNumber().then(console.log);
> 2744

5.32 getBalance

web3.eth.getBalance(address [, defaultBlock] [, callback])

Get the balance of an address at a given block.

5.32.1 Parameters

1. String - The address to get the balance of.

2. Number|String - (optional) If you pass this parameter it will not use the default block set with
web3.eth.defaultBlock.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.32.2 Returns

Promise<string> - The current balance for the given address in wei.

See the A note on dealing with big numbers in JavaScript.

5.31. getBlockNumber 31

web3.js Documentation, Release 1.0.0

5.32.3 Example

web3.eth.getBalance("0x407d73d8a49eeb85d32cf465507dd71d507100c1").then(console.log);
> "1000000000000"

5.33 getStorageAt

web3.eth.getStorageAt(address, position [, defaultBlock] [, callback])

Get the storage at a specific position of an address.

5.33.1 Parameters

1. String - The address to get the storage from.

2. Number - The index position of the storage.

3. Number|String - (optional) If you pass this parameter it will not use the default block set with
web3.eth.defaultBlock.

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.33.2 Returns

Promise<string> - The value in storage at the given position.

5.33.3 Example

web3.eth.getStorageAt("0x407d73d8a49eeb85d32cf465507dd71d507100c1", 0).then(console.
→˓log);
> "0x033456732123ffff2342342dd12342434324234234fd234fd23fd4f23d4234"

5.34 getCode

web3.eth.getCode(address [, defaultBlock] [, callback])

Get the code at a specific address.

5.34.1 Parameters

1. String - The address to get the code from.

2. Number|String - (optional) If you pass this parameter it will not use the default block set with
web3.eth.defaultBlock.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

32 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.34.2 Returns

Promise<string> - The data at given address address.

5.34.3 Example

web3.eth.getCode("0xd5677cf67b5aa051bb40496e68ad359eb97cfbf8").then(console.log);
>
→˓"0x600160008035811a818181146012578301005b601b6001356025565b8060005260206000f25b600060078202905091905056
→˓"

5.35 getBlock

web3.eth.getBlock(blockHashOrBlockNumber [, returnTransactionObjects] [, callback])

Returns a block matching the block number or block hash.

5.35.1 Parameters

1. String|Number - The block number or block hash. Or the string "genesis", "latest" or "pending"
as in the default block parameter.

2. Boolean - (optional, default false) If true, the returned block will contain all transactions as objects, if
false it will only contains the transaction hashes.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.35.2 Returns

Promise<object> - The block object:

• number - Number: The block number. null when its pending block.

• hash 32 Bytes - String: Hash of the block. null when its pending block.

• parentHash 32 Bytes - String: Hash of the parent block.

• nonce 8 Bytes - String: Hash of the generated proof-of-work. null when its pending block.

• sha3Uncles 32 Bytes - String: SHA3 of the uncles data in the block.

• logsBloom 256 Bytes - String: The bloom filter for the logs of the block. null when its pending block.

• transactionsRoot 32 Bytes - String: The root of the transaction trie of the block

• stateRoot 32 Bytes - String: The root of the final state trie of the block.

• receiptsRoot 32 Bytes - String: Transaction receipts are used to store the state after a transaction has
been executed and are kept in an index-keyed trie. The hash of its root is placed in the block header as the
receipts root.

• miner - String: The address of the beneficiary to whom the mining rewards were given.

• difficulty - String: Integer of the difficulty for this block.

5.35. getBlock 33

web3.js Documentation, Release 1.0.0

• totalDifficulty - String: Integer of the total difficulty of the chain until this block.

• extraData - String: The “extra data” field of this block.

• size - Number: Integer the size of this block in bytes.

• gasLimit - Number: The maximum gas allowed in this block.

• gasUsed - Number: The total used gas by all transactions in this block.

• timestamp - Number | String: The unix timestamp for when the block was collated (returns a string if
a overflow got detected).

• transactions - Array: Array of transaction objects, or 32 Bytes transaction hashes depending on the
returnTransactionObjects parameter.

• uncles - Array: Array of uncle hashes.

5.35.3 Example

web3.eth.getBlock(3150).then(console.log);
> {

"number": 3,
"hash": "0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46",
"parentHash": "0x2302e1c0b972d00932deb5dab9eb2982f570597d9d42504c05d9c2147eaf9c88

→˓",
"nonce": "0xfb6e1a62d119228b",
"sha3Uncles": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347

→˓",
"logsBloom":

→˓"0x00
→˓",

"transactionsRoot":
→˓"0x3a1b03875115b79539e5bd33fb00d8f7b7cd61929d5a3c574f507b8acf415bee",

"stateRoot": "0xf1133199d44695dfa8fd1bcfe424d82854b5cebef75bddd7e40ea94cda515bcb",
"receiptsRoot: '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421

→˓',
"miner": "0x8888f1f195afa192cfee860698584c030f4c9db1",
"difficulty": '21345678965432',
"totalDifficulty": '324567845321',
"size": 616,
"extraData": "0x",
"gasLimit": 3141592,
"gasUsed": 21662,
"timestamp": 1429287689,
"transactions": [

"0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b"
],
"uncles": []

}

5.36 getBlockTransactionCount

web3.eth.getBlockTransactionCount(blockHashOrBlockNumber [, callback])

Returns the number of transaction in a given block.

34 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.36.1 Parameters

1. String|Number - The block number or hash. Or the string "genesis", "latest" or "pending" as in
the default block parameter.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.36.2 Returns

Promise<number> - The number of transactions in the given block.

5.36.3 Example

web3.eth.getBlockTransactionCount("0x407d73d8a49eeb85d32cf465507dd71d507100c1").
→˓then(console.log);
> 1

5.37 getUncle

web3.eth.getUncle(blockHashOrBlockNumber, uncleIndex [, callback])

Returns a blocks uncle by a given uncle index position.

5.37.1 Parameters

1. String|Number - The block number or hash. Or the string "genesis", "latest" or "pending" as in
the default block parameter.

2. Number - The index position of the uncle.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.37.2 Returns

Promise<object> - The returned uncle. For a return value see web3.eth.getBlock().

Note: An uncle doesn’t contain individual transactions.

5.37.3 Example

web3.eth.getUncle(500, 0).then(console.log);
> // see web3.eth.getBlock

5.37. getUncle 35

web3.js Documentation, Release 1.0.0

5.38 getTransaction

web3.eth.getTransaction(transactionHash [, callback])

Returns a transaction matching the given transaction hash.

5.38.1 Parameters

1. String - The transaction hash.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.38.2 Returns

Promise<object> - A transaction object its hash transactionHash:

• hash 32 Bytes - String: Hash of the transaction.

• nonce - Number: The number of transactions made by the sender prior to this one.

• blockHash 32 Bytes - String: Hash of the block where this transaction was in. null when its pending.

• blockNumber - Number: Block number where this transaction was in. null when its pending.

• transactionIndex - Number: Integer of the transactions index position in the block. null when its
pending.

• from - String: Address of the sender.

• to - String: Address of the receiver. null when its a contract creation transaction.

• value - String: Value transferred in wei.

• gasPrice - String: The wei per unit of gas provided by the sender in wei.

• gas - Number: Gas provided by the sender.

• input - String: The data sent along with the transaction.

5.38.3 Example

web3.eth.getTransaction(
→˓'0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b§234').
→˓then(console.log);
> {

"hash": "0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b",
"nonce": 2,
"blockHash": "0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46",
"blockNumber": 3,
"transactionIndex": 0,
"from": "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",
"to": "0x6295ee1b4f6dd65047762f924ecd367c17eabf8f",
"value": '123450000000000000',
"gas": 314159,
"gasPrice": '2000000000000',
"input": "0x57cb2fc4"

}

36 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.39 getPendingTransactions

web3.eth.getPendingTransactions([, callback])

Returns a list of pending transactions.

5.39.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.39.2 Returns

Promise<object[]> - Array of pending transactions:

• hash 32 Bytes - String: Hash of the transaction.

• nonce - Number: The number of transactions made by the sender prior to this one.

• blockHash 32 Bytes - String: Hash of the block where this transaction was in. null when its pending.

• blockNumber - Number: Block number where this transaction was in. null when its pending.

• transactionIndex - Number: Integer of the transactions index position in the block. null when its
pending.

• from - String: Address of the sender.

• to - String: Address of the receiver. null when its a contract creation transaction.

• value - String: Value transferred in wei.

• gasPrice - String: The wei per unit of gas provided by the sender in wei.

• gas - Number: Gas provided by the sender.

• input - String: The data sent along with the transaction.

5.39.3 Example

web3.eth.getPendingTransactions().then(console.log);
> [

{
hash: '0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b',
nonce: 2,
blockHash:

→˓'0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46',
blockNumber: 3,
transactionIndex: 0,
from: '0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b',
to: '0x6295ee1b4f6dd65047762f924ecd367c17eabf8f',
value: '123450000000000000',
gas: 314159,
gasPrice: '2000000000000',

(continues on next page)

5.39. getPendingTransactions 37

web3.js Documentation, Release 1.0.0

(continued from previous page)

input: '0x57cb2fc4'
v: '0x3d',
r: '0xaabc9ddafffb2ae0bac4107697547d22d9383667d9e97f5409dd6881ce08f13f',
s: '0x69e43116be8f842dcd4a0b2f760043737a59534430b762317db21d9ac8c5034'

},....,{
hash: '0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b',
nonce: 3,
blockHash:

→˓'0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46',
blockNumber: 4,
transactionIndex: 0,
from: '0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b',
to: '0x6295ee1b4f6dd65047762f924ecd367c17eabf8f',
value: '123450000000000000',
gas: 314159,
gasPrice: '2000000000000',
input: '0x57cb2fc4'
v: '0x3d',
r: '0xaabc9ddafffb2ae0bac4107697547d22d9383667d9e97f5409dd6881ce08f13f',
s: '0x69e43116be8f842dcd4a0b2f760043737a59534430b762317db21d9ac8c5034'

}
]

5.40 getTransactionFromBlock

getTransactionFromBlock(hashStringOrNumber, indexNumber [, callback])

Returns a transaction based on a block hash or number and the transactions index position.

5.40.1 Parameters

1. String - A block number or hash. Or the string "genesis", "latest" or "pending" as in the default
block parameter.

2. Number - The transactions index position.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.40.2 Returns

Promise<object> - A transaction object, see web3.eth.getTransaction:

5.40.3 Example

const transaction = web3.eth.getTransactionFromBlock('0x4534534534', 2).then(console.
→˓log);
> // see web3.eth.getTransaction

38 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.41 getTransactionReceipt

web3.eth.getTransactionReceipt(hash [, callback])

Returns the receipt of a transaction by transaction hash.

Note: The receipt is not available for pending transactions and returns null.

5.41.1 Parameters

1. String - The transaction hash.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.41.2 Returns

Promise returns Object - A transaction receipt object, or null when no receipt was found:

• status - Boolean: TRUE if the transaction was successful, FALSE, if the EVM reverted the transaction.

• blockHash 32 Bytes - String: Hash of the block where this transaction was in.

• blockNumber - Number: Block number where this transaction was in.

• transactionHash 32 Bytes - String: Hash of the transaction.

• transactionIndex- Number: Integer of the transactions index position in the block.

• from - String: Address of the sender.

• to - String: Address of the receiver. null when its a contract creation transaction.

• contractAddress - String: The contract address created, if the transaction was a contract creation,
otherwise null.

• cumulativeGasUsed - Number: The total amount of gas used when this transaction was executed in the
block.

• gasUsed- Number: The amount of gas used by this specific transaction alone.

• logs - Array: Array of log objects, which this transaction generated.

5.41.3 Example

const receipt = web3.eth.getTransactionReceipt(
→˓'0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b')

.then(console.log);
> {

"status": true,
"transactionHash":

→˓"0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b",
"transactionIndex": 0,
"blockHash": "0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46",
"blockNumber": 3,
"contractAddress": "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe",

(continues on next page)

5.41. getTransactionReceipt 39

web3.js Documentation, Release 1.0.0

(continued from previous page)

"cumulativeGasUsed": 314159,
"gasUsed": 30234,
"logs": [{

// logs as returned by getPastLogs, etc.
}, ...]

}

5.42 getTransactionCount

web3.eth.getTransactionCount(address [, defaultBlock] [, callback])

Get the numbers of transactions sent from this address.

5.42.1 Parameters

1. String - The address to get the numbers of transactions from.

2. Number|String - (optional) If you pass this parameter it will not use the default block set with
web3.eth.defaultBlock.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.42.2 Returns

Promise<number> - The number of transactions sent from the given address.

5.42.3 Example

web3.eth.getTransactionCount("0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe").
→˓then(console.log);
> 1

5.43 sendTransaction

web3.eth.sendTransaction(transactionObject [, callback])

Sends a transaction to the network.

40 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.43.1 Parameters

1. Object - The transaction object to send:

• from - String|Number: The address for the sending account. Uses the web3.eth.defaultAccount property,
if not specified. Or an address or index of a local wallet in web3.eth.accounts.wallet.

• to - String: (optional) The destination address of the message, left undefined for a contract-creation transac-
tion.

• value - Number|String|BN|BigNumber: (optional) The value transferred for the transaction in wei,
also the endowment if it’s a contract-creation transaction.

• gas - Number: (optional, default: To-Be-Determined) The amount of gas to use for the transaction (unused
gas is refunded).

• gasPrice - Number|String|BN|BigNumber: (optional) The price of gas for this transaction in wei,
defaults to web3.eth.gasPrice.

• data - String: (optional) Either a ABI byte string containing the data of the function call on a contract, or in
the case of a contract-creation transaction the initialisation code.

• nonce - Number: (optional) Integer of a nonce. This allows to overwrite your own pending transactions that
use the same nonce.

2. callback - Function: (optional) Optional callback, returns an error object as first parameter and the result
as second.

Note: The from property can also be an address or index from the web3.eth.accounts.wallet. It will then sign locally
using the private key of that account, and send the transaction via web3.eth.sendSignedTransaction().

5.43.2 Returns

The callback will return the 32 bytes transaction hash.

PromiEvent: A promise combined event emitter. Will be resolved when the transaction receipt is available. Addi-
tionally the following events are available:

• "transactionHash" returns String: Is fired right after the transaction is sent and a transaction hash is
available.

• "receipt" returns Object: Is fired when the transaction receipt is available.

• "confirmation" returns Number, Object: Is fired for every confirmation up to the 12th confirmation.
Receives the confirmation number as the first and the receipt as the second argument. Fired from confirmation
0 on, which is the block where its minded.

• "error" returns Error: Is fired if an error occurs during sending. If a out of gas error, the second parameter
is the receipt.

5.43.3 Example

// compiled solidity source code using https://remix.ethereum.org
const code =
→˓"603d80600c6000396000f3007c01006000350463c6888fa18114602d57005b6007600435028060005260206000f3
→˓";

(continues on next page)

5.43. sendTransaction 41

http://solidity.readthedocs.io/en/latest/abi-spec.html

web3.js Documentation, Release 1.0.0

(continued from previous page)

// using the callback
web3.eth.sendTransaction({

from: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe',
data: code // deploying a contract

}, function(error, hash){
...

});

// using the promise
web3.eth.sendTransaction({

from: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe',
to: '0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe',
value: '1000000000000000'

})
.then(function(receipt){

...
});

// using the event emitter
web3.eth.sendTransaction({

from: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe',
to: '0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe',
value: '1000000000000000'

})
.on('transactionHash', function(hash){

...
})
.on('receipt', function(receipt){

...
})
.on('confirmation', function(confirmationNumber, receipt){ ... })
.on('error', console.error); // If a out of gas error, the second parameter is the
→˓receipt.

5.44 sendSignedTransaction

web3.eth.sendSignedTransaction(signedTransactionData [, callback])

Sends an already signed transaction, generated for example using web3.eth.accounts.signTransaction.

5.44.1 Parameters

1. String - Signed transaction data in HEX format

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

42 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.44.2 Returns

PromiEvent: A promise combined event emitter. Will be resolved when the transaction receipt is available.

Please see the return values for web3.eth.sendTransaction for details.

5.44.3 Example

const Tx = require('ethereumjs-tx');
const privateKey = new Buffer(
→˓'e331b6d69882b4cb4ea581d88e0b604039a3de5967688d3dcffdd2270c0fd109', 'hex')

const rawTx = {
nonce: '0x00',
gasPrice: '0x09184e72a000',
gasLimit: '0x2710',
to: '0x00',
value: '0x00',
data: '0x7f746573743200600057'

}

const tx = new Tx(rawTx);
tx.sign(privateKey);

const serializedTx = tx.serialize();

// console.log(serializedTx.toString('hex'));
//
→˓0xf889808609184e72a000822710940080a47f7465737432006000571ca08a8bbf888cfa37bbf0bb965423625641fc956967b81d12e23709cead01446075a01ce999b56a8a88504be365442ea61239198e23d1fce7d00fcfc5cd3b44b7215f

web3.eth.sendSignedTransaction('0x' + serializedTx.toString('hex'))
.on('receipt', console.log);

> // see eth.getTransactionReceipt() for details

5.45 sign

web3.eth.sign(dataToSign, address [, callback])

Signs data using a specific account. This account needs to be unlocked.

5.45.1 Parameters

1. String - Data to sign. If String it will be converted using web3.utils.utf8ToHex.

2. String|Number - Address to sign data with. Or an address or index of a local wallet in
web3.eth.accounts.wallet.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.45. sign 43

web3.js Documentation, Release 1.0.0

Note: The 2. address parameter can also be an address or index from the web3.eth.accounts.wallet. It will then
sign locally using the private key of this account.

5.45.2 Returns

Promise<string> - The signature.

5.45.3 Example

web3.eth.sign("Hello world", "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe")
.then(console.log);
>
→˓"0x30755ed65396facf86c53e6217c52b4daebe72aa4941d89635409de4c9c7f9466d4e9aaec7977f05e923889b33c0d0dd27d7226b6e6f56ce737465c5cfd04be400
→˓"

// the below is the same
web3.eth.sign(web3.utils.utf8ToHex("Hello world"),
→˓"0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe")
.then(console.log);
>
→˓"0x30755ed65396facf86c53e6217c52b4daebe72aa4941d89635409de4c9c7f9466d4e9aaec7977f05e923889b33c0d0dd27d7226b6e6f56ce737465c5cfd04be400
→˓"

5.46 signTransaction

web3.eth.signTransaction(transactionObject [, address,] [, callback])

Signs a transaction with the private key of the given address. If the given address is a local unlocked account, the
transaction will be signed locally.

5.46.1 Parameters

1. Object - The transaction data to sign web3.eth.sendTransaction() for more. 1. string - The address of the
account. 3. Function - (optional) Optional callback, returns an error object as first parameter and the result as
second.

5.46.2 Returns

Promise<object> - The RLP encoded transaction. The raw property can be used to send the transaction using
web3.eth.sendSignedTransaction.

5.46.3 Example

44 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

web3.eth.signTransaction({
from: "0xEB014f8c8B418Db6b45774c326A0E64C78914dC0",
gasPrice: "20000000000",
gas: "21000",
to: '0x35',
value: "1000000000000000000",
data: ""

}).then(console.log);
> {

raw:
→˓'0xf86c808504a817c8008252089435880de0b6b3a76400008025a04f4c17305743700648bc4f6cd3038ec6f6af0df73e31757007b7f59df7bee88da07e1941b264348e80c78c4027afc65a87b0a5e43e86742b8ca0823584c6788fd0
→˓',

tx: {
nonce: '0x0',
gasPrice: '0x4a817c800',
gas: '0x5208',
to: '0x35',
value: '0xde0b6b3a7640000',
input: '0x',
v: '0x25',
r: '0x4f4c17305743700648bc4f6cd3038ec6f6af0df73e31757007b7f59df7bee88d',
s: '0x7e1941b264348e80c78c4027afc65a87b0a5e43e86742b8ca0823584c6788fd0',
hash: '0xda3be87732110de6c1354c83770aae630ede9ac308d9f7b399ecfba23d923384'

}
}

5.47 call

web3.eth.call(callObject [, defaultBlock] [, callback])

Executes a message call transaction, which is directly executed in the VM of the node, but never mined into the
blockchain.

5.47.1 Parameters

1. Object - A transaction object see web3.eth.sendTransaction, with the difference that for calls the from prop-
erty is optional as well.

2. Number|String - (optional) If you pass this parameter it will not use the default block set with
web3.eth.defaultBlock.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.47.2 Returns

Promise<string> - The returned data of the call, e.g. a smart contract functions return value.

5.47. call 45

web3.js Documentation, Release 1.0.0

5.47.3 Example

web3.eth.call({
to: "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe", // contract address
data: "0xc6888fa10003"

}).then(console.log);
> "0x000a"

5.48 estimateGas

web3.eth.estimateGas(callObject [, callback])

Executes a message call or transaction and returns the amount of the gas used.

5.48.1 Parameters

1. Object - A transaction object see web3.eth.sendTransaction, with the difference that for calls the from prop-
erty is optional as well.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.48.2 Returns

Promise<number> - The used gas for the simulated call/transaction.

5.48.3 Example

web3.eth.estimateGas({
to: "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe",
data: "0xc6888fa10003"

}).then(console.log);
> "0x0015"

5.49 getPastLogs

web3.eth.getPastLogs(options [, callback])

Gets past logs, matching the given options.

46 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.49.1 Parameters

1. Object - The filter options as follows:

• fromBlock - Number|String: The number of the earliest block ("latest" may be given to mean the
most recent and "pending" currently mining, block). By default "latest".

• toBlock - Number|String: The number of the latest block ("latest" may be given to mean the most
recent and "pending" currently mining, block). By default "latest".

• address - String|Array: An address or a list of addresses to only get logs from particular account(s).

• topics - Array: An array of values which must each appear in the log entries. The order is important, if you
want to leave topics out use null, e.g. [null, '0x12...']. You can also pass an array for each topic
with options for that topic e.g. [null, ['option1', 'option2']]

5.49.2 Returns

Promise<Array> - Array of log objects.

The structure of the returned event Object in the Array looks as follows:

• address - String: From which this event originated from.

• data - String: The data containing non-indexed log parameter.

• topics - Array: An array with max 4 32 Byte topics, topic 1-3 contains indexed parameters of the log.

• logIndex - Number: Integer of the event index position in the block.

• transactionIndex - Number: Integer of the transaction’s index position, the event was created in.

• transactionHash 32 Bytes - String: Hash of the transaction this event was created in.

• blockHash 32 Bytes - String: Hash of the block where this event was created in. null when its still
pending.

• blockNumber - Number: The block number where this log was created in. null when still pending.

5.49.3 Example

web3.eth.getPastLogs({
address: "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe",
topics: ["0x033456732123ffff2342342dd12342434324234234fd234fd23fd4f23d4234"]

}).then(console.log);
> [{

data: '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
topics: ['0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385']
logIndex: 0,
transactionIndex: 0,
transactionHash:

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
blockHash: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
blockNumber: 1234,
address: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'

},{...}]

5.49. getPastLogs 47

web3.js Documentation, Release 1.0.0

5.50 getWork

web3.eth.getWork([callback])

Gets work for miners to mine on. Returns the hash of the current block, the seedHash, and the boundary condition to
be met (“target”).

5.50.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.50.2 Returns

Promise<Array> - The mining work with the following structure:

• String 32 Bytes - at index 0: current block header pow-hash

• String 32 Bytes - at index 1: the seed hash used for the DAG.

• String 32 Bytes - at index 2: the boundary condition (“target”), 2^256 / difficulty.

5.50.3 Example

web3.eth.getWork().then(console.log);
> [

"0x1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef",
"0x5EED00000000000000000000000000005EED0000000000000000000000000000",
"0xd1ff1c01710000000000000000000000d1ff1c01710000000000000000000000"

]

5.51 submitWork

web3.eth.submitWork(nonce, powHash, digest, [callback])

Used for submitting a proof-of-work solution.

5.51.1 Parameters

1. String 8 Bytes: The nonce found (64 bits)

2. String 32 Bytes: The header’s pow-hash (256 bits)

3. String 32 Bytes: The mix digest (256 bits)

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.51.2 Returns

Promise<boolean> - Returns true if the provided solution is valid, otherwise false.

48 Chapter 5. web3.eth

web3.js Documentation, Release 1.0.0

5.51.3 Example

web3.eth.submitWork([
"0x0000000000000001",
"0x1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef",
"0xD1FE5700000000000000000000000000D1FE5700000000000000000000000000"

])
.then(console.log);
> true

5.52 requestAccounts

web3.eth.requestAccounts([callback])

This method will request/enable the accounts from the current environment it is running (Metamask, Status or Mist).
It doesn’t work if you’re connected to a node with a default Web3.js provider. (WebsocketProvider, HttpProvidder and
IpcProvider) This method will only work if you’re using the injected provider from a application like Status, Mist or
Metamask.

For further information about the behavior of this method please read the EIP of it: EIP-1102

5.52.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.52.2 Returns

Promise<Array> - Returns an array of enabled accounts.

5.52.3 Example

web3.eth.requestAccounts().then(console.log);
> ['0aae0B295369a9FD31d5F28D9Ec85E40f4cb692BAf',
→˓0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe]

5.53 getChainId

web3.eth.getChainId([callback])

Returns the chain ID of the current connected node as described in the EIP-695.

5.53.1 Returns

Promise<Number> - Returns chain ID.

5.52. requestAccounts 49

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1102.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-695.md

web3.js Documentation, Release 1.0.0

5.53.2 Example

web3.eth.getChainId().then(console.log);
> 61

5.54 getNodeInfo

web3.eth.getNodeInfo([callback])

5.54.1 Returns

Promise<String> - The current client version.

5.54.2 Example

web3.eth.getNodeInfo().then(console.log);
> "Mist/v0.9.3/darwin/go1.4.1"

5.55 getProof

web3.eth.getProof(address, storageKey, blockNumber, [callback])

Returns the account and storage-values of the specified account including the Merkle-proof as described in EIP-1186.

5.55.1 Parameters

1. String 20 Bytes: The Address of the account or contract.

2. Array 32 Bytes: Array of storage-keys which should be proofed and included. See web3.eth.getStorageAt.

3. Number | String | "latest" | "earliest": Integer block number, or the string “latest” or “ear-
liest”.

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

5.55.2 Returns

Promise<Object> - A account object.

balance - The balance of the account. See web3.eth.getBalance. codeHash -
hash of the code of the account. For a simple Account without code it will return
“0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470” nonce - Nonce
of the account. storageHash - SHA3 of the StorageRoot. All storage will deliver a MerkleProof
starting with this rootHash. accountProof - Array of rlp-serialized MerkleTree-Nodes, starting with
the stateRoot-Node, following the path of the SHA3 (address) as key. storageProof - Array of
storage-entries as requested. key - The requested storage key. value - The storage value.

50 Chapter 5. web3.eth

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1186.md

web3.js Documentation, Release 1.0.0

5.55.3 Example

web3.eth.getProof(
"0x1234567890123456789012345678901234567890",
["0x00",

→˓"0x0001"],
"latest"

).then(console.log);
> {

"address": "0x1234567890123456789012345678901234567890",
"accountProof": [

→˓"0xf90211a090dcaf88c40c7bbc95a912cbdde67c175767b31173df9ee4b0d733bfdd511c43a0babe369f6b12092f49181ae04ca173fb68d1a5456f18d20fa32cba73954052bda0473ecf8a7e36a829e75039a3b055e51b8332cbf03324ab4af2066bbd6fbf0021a0bbda34753d7aa6c38e603f360244e8f59611921d9e1f128372fec0d586d4f9e0a04e44caecff45c9891f74f6a2156735886eedf6f1a733628ebc802ec79d844648a0a5f3f2f7542148c973977c8a1e154c4300fec92f755f7846f1b734d3ab1d90e7a0e823850f50bf72baae9d1733a36a444ab65d0a6faaba404f0583ce0ca4dad92da0f7a00cbe7d4b30b11faea3ae61b7f1f2b315b61d9f6bd68bfe587ad0eeceb721a07117ef9fc932f1a88e908eaead8565c19b5645dc9e5b1b6e841c5edbdfd71681a069eb2de283f32c11f859d7bcf93da23990d3e662935ed4d6b39ce3673ec84472a0203d26456312bbc4da5cd293b75b840fc5045e493d6f904d180823ec22bfed8ea09287b5c21f2254af4e64fca76acc5cd87399c7f1ede818db4326c98ce2dc2208a06fc2d754e304c48ce6a517753c62b1a9c1d5925b89707486d7fc08919e0a94eca07b1c54f15e299bd58bdfef9741538c7828b5d7d11a489f9c20d052b3471df475a051f9dd3739a927c89e357580a4c97b40234aa01ed3d5e0390dc982a7975880a0a089d613f26159af43616fd9455bb461f4869bfede26f2130835ed067a8b967bfb80
→˓",

→˓"0xf90211a0395d87a95873cd98c21cf1df9421af03f7247880a2554e20738eec2c7507a494a0bcf6546339a1e7e14eb8fb572a968d217d2a0d1f3bc4257b22ef5333e9e4433ca012ae12498af8b2752c99efce07f3feef8ec910493be749acd63822c3558e6671a0dbf51303afdc36fc0c2d68a9bb05dab4f4917e7531e4a37ab0a153472d1b86e2a0ae90b50f067d9a2244e3d975233c0a0558c39ee152969f6678790abf773a9621a01d65cd682cc1be7c5e38d8da5c942e0a73eeaef10f387340a40a106699d494c3a06163b53d956c55544390c13634ea9aa75309f4fd866f312586942daf0f60fb37a058a52c1e858b1382a8893eb9c1f111f266eb9e21e6137aff0dddea243a567000a037b4b100761e02de63ea5f1fcfcf43e81a372dafb4419d126342136d329b7a7ba032472415864b08f808ba4374092003c8d7c40a9f7f9fe9cc8291f62538e1cc14a074e238ff5ec96b810364515551344100138916594d6af966170ff326a092fab0a0d31ac4eef14a79845200a496662e92186ca8b55e29ed0f9f59dbc6b521b116fea090607784fe738458b63c1942bba7c0321ae77e18df4961b2bc66727ea996464ea078f757653c1b63f72aff3dcc3f2a2e4c8cb4a9d36d1117c742833c84e20de994a0f78407de07f4b4cb4f899dfb95eedeb4049aeb5fc1635d65cf2f2f4dfd25d1d7a0862037513ba9d45354dd3e36264aceb2b862ac79d2050f14c95657e43a51b85c80
→˓",

→˓"0xf90171a04ad705ea7bf04339fa36b124fa221379bd5a38ffe9a6112cb2d94be3a437b879a08e45b5f72e8149c01efcb71429841d6a8879d4bbe27335604a5bff8dfdf85dcea00313d9b2f7c03733d6549ea3b810e5262ed844ea12f70993d87d3e0f04e3979ea0b59e3cdd6750fa8b15164612a5cb6567cdfb386d4e0137fccee5f35ab55d0efda0fe6db56e42f2057a071c980a778d9a0b61038f269dd74a0e90155b3f40f14364a08538587f2378a0849f9608942cf481da4120c360f8391bbcc225d811823c6432a026eac94e755534e16f9552e73025d6d9c30d1d7682a4cb5bd7741ddabfd48c50a041557da9a74ca68da793e743e81e2029b2835e1cc16e9e25bd0c1e89d4ccad6980a041dda0a40a21ade3a20fcd1a4abb2a42b74e9a32b02424ff8db4ea708a5e0fb9a09aaf8326a51f613607a8685f57458329b41e938bb761131a5747e066b81a0a16808080a022e6cef138e16d2272ef58434ddf49260dc1de1f8ad6dfca3da5d2a92aaaadc58080
→˓",

→˓"0xf851808080a009833150c367df138f1538689984b8a84fc55692d3d41fe4d1e5720ff5483a6980808080808080808080a0a319c1c415b271afc0adcb664e67738d103ac168e0bc0b7bd2da7966165cb9518080
→˓"

],
"balance": 0,
"codeHash":

→˓"0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
"nonce": 0,
"storageHash":

→˓"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"storageProof": [
{

"key": "0x00
→˓",

"value": '0',
"proof": []

},
{

"key": "0x0001
→˓",

"value": '0',
"proof": []

}
]

}

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

5.55. getProof 51

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

52 Chapter 5. web3.eth

CHAPTER 6

web3.eth.subscribe

The web3.eth.subscribe function lets you subscribe to specific events in the blockchain.

6.1 subscribe

web3.eth.subscribe(type [, options] [, callback]);

6.1.1 Parameters

1. String - The subscription, you want to subscribe to.

2. Mixed - (optional) Optional additional parameters, depending on the subscription type.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.
Will be called for each incoming subscription, and the subscription itself as 3 parameter.

6.1.2 Returns

EventEmitter - A Subscription instance

• subscription.id: The subscription id, used to identify and unsubscribing the subscription.

• subscription.subscribe([callback]): Can be used to re-subscribe with the same parameters.

• subscription.unsubscribe([callback]): Unsubscribes the subscription and returns TRUE in the
callback if successfull.

• subscription.options: The subscription options, used when re-subscribing.

• subscription.type: The subscription type.

• subscription.method: The subscription method e.g.: logs.

• on("data") returns Object: Fires on each incoming log with the log object as argument.

53

web3.js Documentation, Release 1.0.0

• on("changed") returns Object: Fires on each log which was removed from the blockchain. The log will
have the additional property "removed: true".

• on("error") returns Object: Fires when an error in the subscription occurs.

6.1.3 Notification returns

• any - depends on the subscription, see the different subscriptions for more.

6.1.4 Example

const subscription = web3.eth.subscribe('logs', {
address: '0x123456..',
topics: ['0x12345...']

}, function(error, result){
if (!error)

console.log(result);
});

// unsubscribes the subscription
subscription.unsubscribe(function(error, success){

if(success)
console.log('Successfully unsubscribed!');

});

6.2 clearSubscriptions

web3.eth.clearSubscriptions()

Resets subscriptions.

Note: This will not reset subscriptions from other packages like web3-shh.

6.2.1 Returns

Promise<boolean>

6.2.2 Example

web3.eth.subscribe('logs', {} ,function(){ ... });

...

web3.eth.clearSubscriptions();

54 Chapter 6. web3.eth.subscribe

web3.js Documentation, Release 1.0.0

6.3 subscribe(“pendingTransactions”)

web3.eth.subscribe('pendingTransactions' [, callback]);

Subscribes to incoming pending transactions.

6.3.1 Parameters

1. String - "pendingTransactions", the type of the subscription.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.
Will be called for each incoming subscription.

6.3.2 Returns

EventEmitter: An subscription instance as an event emitter with the following events:

• "data" returns String: Fires on each incoming pending transaction and returns the transaction hash.

• "error" returns Object: Fires when an error in the subscription occurs.

6.3.3 Notification returns

1. Object|Null - First parameter is an error object if the subscription failed.

2. String - Second parameter is the transaction hash.

6.3.4 Example

const subscription = web3.eth.subscribe('pendingTransactions', function(error, result)
→˓{

if (!error)
console.log(result);

})
.on("data", function(transaction){

console.log(transaction);
});

// unsubscribes the subscription
subscription.unsubscribe(function(error, success){

if(success)
console.log('Successfully unsubscribed!');

});

6.4 subscribe(“newBlockHeaders”)

web3.eth.subscribe('newBlockHeaders' [, callback]);

Subscribes to incoming block headers. This can be used as timer to check for changes on the blockchain.

6.3. subscribe(“pendingTransactions”) 55

web3.js Documentation, Release 1.0.0

6.4.1 Parameters

1. String - "newBlockHeaders", the type of the subscription.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.
Will be called for each incoming subscription.

6.4.2 Returns

EventEmitter: An subscription instance as an event emitter with the following events:

• "data" returns Object: Fires on each incoming block header.

• "error" returns Object: Fires when an error in the subscription occurs.

The structure of a returned block header is as follows:

• number - Number: The block number. null when its pending block.

• hash 32 Bytes - String: Hash of the block. null when its pending block.

• parentHash 32 Bytes - String: Hash of the parent block.

• nonce 8 Bytes - String: Hash of the generated proof-of-work. null when its pending block.

• sha3Uncles 32 Bytes - String: SHA3 of the uncles data in the block.

• logsBloom 256 Bytes - String: The bloom filter for the logs of the block. null when its pending block.

• transactionsRoot 32 Bytes - String: The root of the transaction trie of the block

• stateRoot 32 Bytes - String: The root of the final state trie of the block.

• receiptsRoot 32 Bytes - String: Transaction receipts are used to store the state after a transaction has
been executed and are kept in an index-keyed trie. The hash of its root is placed in the block header as the
receipts root.

• miner - String: The address of the beneficiary to whom the mining rewards were given.

• extraData - String: The “extra data” field of this block.

• gasLimit - Number: The maximum gas allowed in this block.

• gasUsed - Number: The total used gas by all transactions in this block. It can be multiplied to gasPrice to
obtain total amount in wei.

• timestamp - Number: The unix timestamp for when the block was collated.

6.4.3 Notification returns

1. Object|Null - First parameter is an error object if the subscription failed.

2. Object - The block header object like above.

6.4.4 Example

const subscription = web3.eth.subscribe('newBlockHeaders', function(error, result){
if (!error) {

console.log(result);

(continues on next page)

56 Chapter 6. web3.eth.subscribe

web3.js Documentation, Release 1.0.0

(continued from previous page)

return;
}

console.error(error);
})
.on("data", function(blockHeader){

console.log(blockHeader);
})
.on("error", console.error);

// unsubscribes the subscription
subscription.unsubscribe(function(error, success){

if (success) {
console.log('Successfully unsubscribed!');

}
});

6.5 subscribe(“syncing”)

web3.eth.subscribe('syncing' [, callback]);

Subscribe to syncing events. This will return an object when the node is syncing and when its finished syncing will
return FALSE.

6.5.1 Parameters

1. String - "syncing", the type of the subscription.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.
Will be called for each incoming subscription.

6.5.2 Returns

EventEmitter: An subscription instance as an event emitter with the following events:

• "data" returns Object: Fires on each incoming sync object as argument.

• "changed" returns Object: Fires when the synchronisation is started with true and when finished with
false.

• "error" returns Object: Fires when an error in the subscription occurs.

For the structure of a returned event Object see web3.eth.isSyncing return values.

6.5.3 Notification returns

1. Object|Null - First parameter is an error object if the subscription failed.

2. Object|Boolean - The syncing object, when started it will return true once or when finished it will return
false once.

6.5. subscribe(“syncing”) 57

web3.js Documentation, Release 1.0.0

6.5.4 Example

const subscription = web3.eth.subscribe('syncing', function(error, sync){
if (!error)

console.log(sync);
})
.on("data", function(sync){

// show some syncing stats
})
.on("changed", function(isSyncing){

if(isSyncing) {
// stop app operation

} else {
// regain app operation

}
});

// unsubscribes the subscription
subscription.unsubscribe(function(error, success){

if(success)
console.log('Successfully unsubscribed!');

});

6.6 subscribe(“logs”)

web3.eth.subscribe('logs', options [, callback]);

Subscribes to incoming logs, filtered by the given options.

6.6.1 Parameters

1. "logs" - String, the type of the subscription.

2. Object - The subscription options

• fromBlock - Number: The number of the earliest block. By default null.

• address - String|Array: An address or a list of addresses to only get logs from particular account(s).

• topics - Array: An array of values which must each appear in the log entries. The order is important, if
you want to leave topics out use null, e.g. [null, '0x00...']. You can also pass another array for each
topic with options for that topic e.g. [null, ['option1', 'option2']]

3. callback - Function: (optional) Optional callback, returns an error object as first parameter and the result
as second. Will be called for each incoming subscription.

6.6.2 Returns

EventEmitter: An subscription instance as an event emitter with the following events:

• "data" returns Object: Fires on each incoming log with the log object as argument.

• "changed" returns Object: Fires on each log which was removed from the blockchain. The log will have
the additional property "removed: true".

58 Chapter 6. web3.eth.subscribe

web3.js Documentation, Release 1.0.0

• "error" returns Object: Fires when an error in the subscription occurs.

For the structure of a returned event Object see web3.eth.getPastEvents return values.

6.6.3 Notification returns

1. Object|Null - First parameter is an error object if the subscription failed.

2. Object - The log object like in web3.eth.getPastEvents return values.

6.6.4 Example

const subscription = web3.eth.subscribe('logs', {
address: '0x123456..',
topics: ['0x12345...']

}, (error, result) => {
if (!error) {

console.log(result);
}

console.error(error);
})
.on("data", (log) => {

console.log(log);
})
.on("changed", (log) => {

console.log(log);
});

// unsubscribes the subscription
subscription.unsubscribe((error, success) => {

if (success) {
console.log('Successfully unsubscribed!');

}
});

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

6.6. subscribe(“logs”) 59

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

60 Chapter 6. web3.eth.subscribe

CHAPTER 7

web3.eth.Contract

The web3.eth.Contract object makes it easy to interact with smart contracts on the Ethereum blockchain. When
you create a new contract object you give it the json interface of the respective smart contract and web3 will auto
convert all calls into low level ABI calls over RPC for you.

This allows you to interact with smart contracts as if they were JavaScript objects.

To use it standalone:

7.1 web3.eth.Contract

new web3.eth.Contract(jsonInterface, address, options)

Creates a new contract instance with all its methods and events defined in its json interface object.

7.1.1 Parameters

1. jsonInterface - Array: The json interface for the contract to instantiate

2. address - String (optional): This address is necessary for transactions and call requests and can also be
added later using myContract.options.address = '0x1234..'.

3. options - Object (optional): The options of the contract. Some are used as fallbacks for calls and transactions:

• data - String: The byte code of the contract. Used when the contract gets deployed.

• address - String: The address where the contract is deployed. See address.

• defaultAccount

• defaultBlock

• defaultGas

61

web3.js Documentation, Release 1.0.0

• defaultGasPrice

• transactionBlockTimeout

• transactionConfirmationBlocks

• transactionPollingTimeout

• transactionSigner

7.1.2 Returns

Object: The contract instance with all its methods and events.

7.1.3 Example

const myContract = new web3.eth.Contract([...],
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe', {

defaultAccount: '0x1234567890123456789012345678901234567891', // default from
→˓address

defaultGasPrice: '20000000000' // default gas price in wei, 20 gwei in this case
});

7.2 = Properties =

7.3 options

The contract options object has the following properties:

• data - String: The contract bytecode.

• address - String (deprecated use contract.address): The address of the contract.

7.4 address

myContract.address

The address used for this contract instance. All transactions generated by web3.js from this contract will contain this
address as the “to”.

The address will be stored in lowercase.

7.4.1 Property

address - String|null: The address for this contract, or null if it’s not yet set.

62 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

7.4.2 Example

myContract.address;
> '0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae'

// set a new address
myContract.address = '0x1234FFDD...';

7.5 jsonInterface

myContract.jsonInterface

The json interface object derived from the ABI of this contract.

7.5.1 Property

jsonInterface - AbiModel: The json interface for this contract. Re-setting this will regenerate the methods and
events of the contract instance.

7.5.2 AbiModel

interface AbiModel {
getMethod(name: string): AbiItemModel | false;
getMethods(): AbiItemModel[];
hasMethod(name: string): boolean;
getEvent(name: string): AbiItemModel | false;
getEvents(): AbiItemModel[];
getEventBySignature(signature: string): AbiItemModel;
hasEvent(name: string): boolean;

}

interface AbiItemModel {
name: string;
signature: string;
payable: boolean;
anonymous: boolean;
getInputLength(): Number;
getInputs(): AbiInput[];
getIndexedInputs(): AbiInput[];
getOutputs(): AbiOutput[];
isOfType(): boolean;

}

interface AbiInput {
name: string;
type: string;
indexed?: boolean;
components?: AbiInput[];

}

(continues on next page)

7.5. jsonInterface 63

https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI

web3.js Documentation, Release 1.0.0

(continued from previous page)

interface AbiOutput {
name: string;
type: string;
components?: AbiOutput[];

}

7.6 = Methods =

7.7 clone

myContract.clone()

Clones the current contract instance.

7.7.1 Parameters

none

7.7.2 Returns

Object: The new contract instance.

7.7.3 Example

const contract1 = new eth.Contract(abi, address, {gasPrice: '12345678',
→˓defaultAccount: fromAddress});

const contract2 = contract1.clone();
contract2.address = address2;

(contract1.address !== contract2.address);
> true

7.8 deploy

myContract.deploy(options)

Call this function to deploy the contract to the blockchain. After successful deployment the promise will resolve with
a new contract instance.

64 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

7.8.1 Parameters

1. options - Object: The options used for deployment.

• data - String: The byte code of the contract.

• arguments - Array (optional): The arguments which get passed to the constructor on deployment.

7.8.2 Returns

Object: The transaction object:

• Array - arguments: The arguments passed to the method before. They can be changed.

• Function - send: Will deploy the contract. The promise will resolve with the new contract instance, instead
of the receipt!

• Function - estimateGas: Will estimate the gas used for deploying.

• Function - encodeABI: Encodes the ABI of the deployment, which is contract data + constructor parameters

For details to the methods see the documentation below.

7.8.3 Example

myContract.deploy({
data: '0x12345...',
arguments: [123, 'My String']

})
.send({

from: '0x1234567890123456789012345678901234567891',
gas: 1500000,
gasPrice: '30000000000000'

}, (error, transactionHash) => { ... })
.on('error', (error) => { ... })
.on('transactionHash', (transactionHash) => { ... })
.on('receipt', (receipt) => {

console.log(receipt.contractAddress) // contains the new contract address
})
.on('confirmation', (confirmationNumber, receipt) => { ... })
.then((newContractInstance) => {

console.log(newContractInstance.options.address) // instance with the new
→˓contract address
});

// When the data is already set as an option to the contract itself
myContract.options.data = '0x12345...';

myContract.deploy({
arguments: [123, 'My String']

})
.send({

from: '0x1234567890123456789012345678901234567891',
gas: 1500000,
gasPrice: '30000000000000'

})

(continues on next page)

7.8. deploy 65

web3.js Documentation, Release 1.0.0

(continued from previous page)

.then((newContractInstance) => {
console.log(newContractInstance.options.address) // instance with the new

→˓contract address
});

// Simply encoding
myContract.deploy({

data: '0x12345...',
arguments: [123, 'My String']

})
.encodeABI();
> '0x12345...0000012345678765432'

// Gas estimation
myContract.deploy({

data: '0x12345...',
arguments: [123, 'My String']

})
.estimateGas((err, gas) => {

console.log(gas);
});

7.9 methods

myContract.methods.myMethod([param1[, param2[, ...]]])

Creates a transaction object for that method, which then can be called, send, estimated.

The methods of this smart contract are available through:

• The name: myContract.methods.myMethod(123)

• The name with parameters: myContract.methods['myMethod(uint256)'](123)

• The signature: myContract.methods['0x58cf5f10'](123)

This allows calling functions with same name but different parameters from the JavaScript contract object.

7.9.1 Parameters

Parameters of any method depend on the smart contracts methods, defined in the JSON interface.

7.9.2 Returns

Object: The Transaction Object:

• Array - arguments: The arguments passed to the method before. They can be changed.

• Function - call: Will call the “constant” method and execute its smart contract method in the EVM without
sending a transaction (Can’t alter the smart contract state).

66 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

• Function - send: Will send a transaction to the smart contract and execute its method (Can alter the smart
contract state).

• Function - estimateGas: Will estimate the gas used when the method would be executed on chain.

• Function - encodeABI: Encodes the ABI for this method. This can be send using a transaction, call the
method or passing into another smart contracts method as argument.

For details to the methods see the documentation below.

7.9.3 Example

// calling a method

myContract.methods.myMethod(123).call({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'}, (error, result) => {

...
});

// or sending and using a promise
myContract.methods.myMethod(123).send({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'})
.then((receipt) => {

// receipt can also be a new contract instance, when coming from a "contract.
→˓deploy({...}).send()"
});

// or sending and using the events

myContract.methods.myMethod(123).send({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'})
.on('transactionHash', (hash) => {

...
})
.on('receipt', (receipt) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('error', console.error);

7.10 methods.myMethod.call

myContract.methods.myMethod([param1[, param2[, ...]]]).call(transactionObject,
→˓blockNumber, callback])

Will call a “constant” method and execute its smart contract method in the EVM without sending any transaction.
Note calling can not alter the smart contract state.

7.10.1 Parameters

options - Object (optional): The options used for calling. 1.* transactionObject

7.10. methods.myMethod.call 67

web3.js Documentation, Release 1.0.0

• from - String (optional): The address the call “transaction” should be made from.

• gasPrice - String (optional): The gas price in wei to use for this call “transaction”.It is the wei per unit of
gas.

• gas - Number (optional): The maximum gas provided for this call “transaction” (gas limit).

2.*‘‘blockNumber‘‘ - Number: The block number this log was created in. null when still pending. 3.*‘‘callback‘‘ -
Function (optional): This callback will be fired with the result of the smart contract method execution as the second
argument, or with an error object as the first argument.

7.10.2 Returns

Promise<any> - The return value(s) of the smart contract method. If it returns a single value, it’s returned as is. If
it has multiple return values they are returned as an object with properties and indices:

7.10.3 Example

// using the callback
myContract.methods.myMethod(123).call({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'}, (error, result) => {

...
});

// using the promise
myContract.methods.myMethod(123).call({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'})
.then((result) => {

...
});

// MULTI-ARGUMENT RETURN:

// Solidity
contract MyContract {

function myFunction() returns(uint256 myNumber, string myString) {
return (23456, "Hello!%");

}
}

// web3.js
const MyContract = new web3.eth.Contract(abi, address);
MyContract.methods.myFunction().call()
.then(console.log);
> Result {

myNumber: '23456',
myString: 'Hello!%',
0: '23456', // these are here as fallbacks if the name is not know or given
1: 'Hello!%'

}

// SINGLE-ARGUMENT RETURN:

// Solidity

(continues on next page)

68 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

(continued from previous page)

contract MyContract {
function myFunction() returns(string myString) {

return "Hello!%";
}

}

// web3.js
const MyContract = new web3.eth.Contract(abi, address);
MyContract.methods.myFunction().call()
.then(console.log);
> "Hello!%"

7.11 methods.myMethod.send

myContract.methods.myMethod([param1[, param2[, ...]]]).send(options[, callback])

Will send a transaction to the smart contract and execute its method. Note this can alter the smart contract state.

7.11.1 Parameters

1. options - Object: The options used for sending.

• from - String: The address the transaction should be sent from.

• gasPrice - String (optional): The gas price in wei to use for this transaction.It is the wei per unit
of gas.

• gas - Number (optional): The maximum gas provided for this transaction (gas limit).

• value - ‘‘Number|String|BN|BigNumber‘‘(optional): The value transferred for the transaction in
wei.

2. callback - Function (optional): This callback will be fired first with the “transactionHash”, or with an
error object as the first argument.

7.11.2 Returns

The callback will return the 32 bytes transaction hash.

PromiEvent: A promise combined event emitter. Will be resolved when the transaction receipt is available, OR
if this send() is called from a someContract.deploy(), then the promise will resolve with the new contract
instance. Additionally the following events are available:

• "transactionHash" returns String: is fired right after the transaction is sent and a transaction hash is
available.

• "receipt" returns Object: is fired when the transaction receipt is available. Receipts from contracts will
have no logs property, but instead an events property with event names as keys and events as properties.
See getPastEvents return values for details about the returned event object.

• "confirmation" returns Number, Object: is fired for every confirmation up to the 24th confirmation.
Receives the confirmation number as the first and the receipt as the second argument. Fired from confirmation
1 on, which is the block where it’s mined.

7.11. methods.myMethod.send 69

web3.js Documentation, Release 1.0.0

• "error" returns Error: is fired if an error occurs during sending. If an out of gas error, the second parameter
is the receipt.

7.11.3 Example

// using the callback
myContract.methods.myMethod(123).send({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'}, (error, transactionHash) => {

...
});

// using the promise
myContract.methods.myMethod(123).send({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'})
.then((receipt) => {

// receipt can also be a new contract instance, when coming from a "contract.
→˓deploy({...}).send()"
});

// using the event emitter
myContract.methods.myMethod(123).send({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'})
.on('transactionHash', (hash) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('receipt', (receipt) => {

// receipt example
console.log(receipt);
> {

"transactionHash":
→˓"0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b",

"transactionIndex": 0,
"blockHash":

→˓"0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46",
"blockNumber": 3,
"contractAddress": "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe",
"cumulativeGasUsed": 314159,
"gasUsed": 30234,
"events": {

"MyEvent": {
returnValues: {

myIndexedParam: 20,
myOtherIndexedParam: '0x123456789...',
myNonIndexParam: 'My String'

},
raw: {

data:
→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',

topics: [
→˓'0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385']

},

(continues on next page)

70 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

(continued from previous page)

event: 'MyEvent',
signature:

→˓'0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
logIndex: 0,
transactionIndex: 0,
transactionHash:

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
blockHash:

→˓'0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
blockNumber: 1234,
address: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'

},
"MyOtherEvent": {

...
},
"MyMultipleEvent":[{...}, {...}] // If there are multiple of the same

→˓event, they will be in an array
}

}
})
.on('error', console.error); // If there's an out of gas error the second parameter
→˓is the receipt.

7.12 methods.myMethod.estimateGas

myContract.methods.myMethod([param1[, param2[, ...]]]).estimateGas(options[,
→˓callback])

Will call estimate the gas a method execution will take when executed in the EVM without. The estimation can differ
from the actual gas used when later sending a transaction, as the state of the smart contract can be different at that
time.

7.12.1 Parameters

1. options - Object (optional): The options used for calling.

• from - String (optional): The address the call “transaction” should be made from.

• gas - Number (optional): The maximum gas provided for this call “transaction” (gas limit). Setting
a specific value helps to detect out of gas errors. If all gas is used it will return the same number.

• value - ‘‘Number|String|BN|BigNumber‘‘(optional): The value transferred for the call “transaction”
in wei.

2. callback - Function (optional): This callback will be fired with the result of the gas estimation as the
second argument, or with an error object as the first argument.

7.12.2 Returns

Promise<number> - The gas amount estimated.

7.12. methods.myMethod.estimateGas 71

web3.js Documentation, Release 1.0.0

7.12.3 Example

// using the callback
myContract.methods.myMethod(123).estimateGas({gas: 5000000}, function(error,
→˓gasAmount){

if(gasAmount == 5000000)
console.log('Method ran out of gas');

});

// using the promise
myContract.methods.myMethod(123).estimateGas({from:
→˓'0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'})
.then(function(gasAmount){

...
})
.catch(function(error){

...
});

7.13 methods.myMethod.encodeABI

myContract.methods.myMethod([param1[, param2[, ...]]]).encodeABI()

Encodes the ABI for this method. This can be used to send a transaction, call a method, or pass it into another smart
contracts method as arguments.

7.13.1 Parameters

none

7.13.2 Returns

String: The encoded ABI byte code to send via a transaction or call.

7.13.3 Example

myContract.methods.myMethod(123).encodeABI();
> '0x58cf5f1007B'

7.14 = Events =

72 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

7.15 once

myContract.once(event[, options], callback)

Subscribes to an event and unsubscribes immediately after the first event or error. Will only fire for a single event.

7.15.1 Parameters

1. event - String: The name of the event in the contract, or "allEvents" to get all events.

2. options - Object (optional): The options used for deployment.

• filter - Object (optional): Lets you filter events by indexed parameters, e.g. {filter:
{myNumber: [12,13]}} means all events where “myNumber” is 12 or 13.

• topics - Array (optional): This allows you to manually set the topics for the event filter. If given
the filter property and event signature, (topic[0]) will not be set automatically.

3. callback - Function: This callback will be fired for the first event as the second argument, or an error as
the first argument. See getPastEvents return values for details about the event structure.

7.15.2 Returns

undefined

7.15.3 Example

myContract.once('MyEvent', {
filter: {myIndexedParam: [20,23], myOtherIndexedParam: '0x123456789...'}, //

→˓Using an array means OR: e.g. 20 or 23
fromBlock: 0

}, (error, event) => { console.log(event); });

// event output example
> {

returnValues: {
myIndexedParam: 20,
myOtherIndexedParam: '0x123456789...',
myNonIndexParam: 'My String'

},
raw: {

data: '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
topics: ['0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7

→˓', '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385']
},
event: 'MyEvent',
signature: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
logIndex: 0,
transactionIndex: 0,
transactionHash:

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
blockHash: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
blockNumber: 1234,

(continues on next page)

7.15. once 73

web3.js Documentation, Release 1.0.0

(continued from previous page)

address: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'
}

7.16 events

myContract.events.MyEvent([options][, callback])

Subscribe to an event

7.16.1 Parameters

1. options - Object (optional): The options used for deployment.

• filter - Object (optional): Let you filter events by indexed parameters, e.g. {filter:
{myNumber: [12,13]}} means all events where “myNumber” is 12 or 13.

• fromBlock - Number (optional): The block number from which to get events on.

• topics - Array (optional): This allows to manually set the topics for the event filter. If given the
filter property and event signature, (topic[0]) will not be set automatically.

2. callback - Function (optional): This callback will be fired for each event as the second argument, or an
error as the first argument.

7.16.2 Returns

EventEmitter: The event emitter has the following events:

• "data" returns Object: Fires on each incoming event with the event object as argument.

• "changed" returns Object: Fires on each event which was removed from the blockchain. The event will
have the additional property "removed: true".

• "error" returns Object: Fires when an error in the subscription occurs.

The structure of the returned event Object looks as follows:

• event - String: The event name.

• signature - String|Null: The event signature, null if it’s an anonymous event.

• address - String: Address this event originated from.

• returnValues - Object: The return values coming from the event, e.g. {myVar: 1, myVar2:
'0x234...'}.

• logIndex - Number: Integer of the event index position in the block.

• transactionIndex - Number: Integer of the transaction’s index position the event was created in.

• transactionHash 32 Bytes - String: Hash of the transaction this event was created in.

• blockHash 32 Bytes - String: Hash of the block this event was created in. null when it’s still pending.

• blockNumber - Number: The block number this log was created in. null when still pending.

74 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

• raw.data - String: The data containing non-indexed log parameter.

• raw.topics - Array: An array with max 4 32 Byte topics, topic 1-3 contains indexed parameters of the
event.

7.16.3 Example

myContract.events.MyEvent({
filter: {myIndexedParam: [20,23], myOtherIndexedParam: '0x123456789...'}, //

→˓Using an array means OR: e.g. 20 or 23
fromBlock: 0

}, (error, event) => { console.log(event); })
.on('data', (event) => {

console.log(event); // same results as the optional callback above
})
.on('changed', (event) => {

// remove event from local database
})
.on('error', console.error);

// event output example
> {

returnValues: {
myIndexedParam: 20,
myOtherIndexedParam: '0x123456789...',
myNonIndexParam: 'My String'

},
raw: {

data: '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
topics: ['0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7

→˓', '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385']
},
event: 'MyEvent',
signature: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
logIndex: 0,
transactionIndex: 0,
transactionHash:

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
blockHash: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
blockNumber: 1234,
address: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'

}

7.17 events.allEvents

myContract.events.allEvents([options][, callback])

Same as events but receives all events from this smart contract. Optionally the filter property can filter those events.

7.17. events.allEvents 75

web3.js Documentation, Release 1.0.0

7.18 getPastEvents

myContract.getPastEvents(event[, options][, callback])

Gets past events for this contract.

7.18.1 Parameters

1. event - String: The name of the event in the contract, or "allEvents" to get all events.

2. options - Object (optional): The options used for deployment.

• filter - Object (optional): Lets you filter events by indexed parameters, e.g. {filter:
{myNumber: [12,13]}} means all events where “myNumber” is 12 or 13.

• fromBlock - Number (optional): The block number from which to get events on.

• toBlock - Number (optional): The block number to get events up to (Defaults to "latest").

• topics - Array (optional): This allows manually setting the topics for the event filter. If given the
filter property and event signature, (topic[0]) will not be set automatically.

3. callback - Function (optional): This callback will be fired with an array of event logs as the second
argument, or an error as the first argument.

7.18.2 Returns

Promise returns Array: An array with the past event Objects, matching the given event name and filter.

For the structure of a returned event Object see getPastEvents return values.

7.18.3 Example

myContract.getPastEvents('MyEvent', {
filter: {myIndexedParam: [20,23], myOtherIndexedParam: '0x123456789...'}, //

→˓Using an array means OR: e.g. 20 or 23
fromBlock: 0,
toBlock: 'latest'

}, (error, events) => { console.log(events); })
.then((events) => {

console.log(events) // same results as the optional callback above
});

> [{
returnValues: {

myIndexedParam: 20,
myOtherIndexedParam: '0x123456789...',
myNonIndexParam: 'My String'

},
raw: {

data: '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
topics: ['0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7

→˓', '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385']
},
event: 'MyEvent',

(continues on next page)

76 Chapter 7. web3.eth.Contract

web3.js Documentation, Release 1.0.0

(continued from previous page)

signature: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
logIndex: 0,
transactionIndex: 0,
transactionHash:

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
blockHash: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
blockNumber: 1234,
address: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'

},{
...

}]

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

7.18. getPastEvents 77

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

78 Chapter 7. web3.eth.Contract

CHAPTER 8

web3.eth.accounts

The web3.eth.accounts contains functions to generate Ethereum accounts and sign transactions and data.

Note: This package got NOT audited until now. Take precautions to clear memory properly, store the private keys
safely, and test transaction receiving and sending functionality properly before using in production!

import {Accounts} from 'web3-eth-accounts';

// Passing in the eth or web3 package is necessary to allow retrieving chainId,
→˓gasPrice and nonce automatically
// for accounts.signTransaction().
const accounts = new Accounts('ws://localhost:8546', null, options);

8.1 create

web3.eth.accounts.create([entropy]);

Generates an account object with private key and public key. It’s different from web3.eth.personal.newAccount()
which creates an account over the network on the node via an RPC call.

8.1.1 Parameters

1. entropy - String (optional): A random string to increase entropy. If given it should be at least 32 characters.
If none is given a random string will be generated using randomhex.

79

web3.js Documentation, Release 1.0.0

8.1.2 Returns

Object - The account object with the following structure:

• address - string: The account address.

• privateKey - string: The accounts private key. This should never be shared or stored unencrypted in
localstorage! Also make sure to null the memory after usage.

• signTransaction(tx [, callback]) - Function: The function to sign transactions. See
web3.eth.accounts.signTransaction() for more.

• sign(data) - Function: The function to sign transactions. See web3.eth.accounts.sign() for more.

8.1.3 Example

web3.eth.accounts.create();
> {

address: "0xb8CE9ab6943e0eCED004cDe8e3bBed6568B2Fa01",
privateKey: "0x348ce564d427a3311b6536bbcff9390d69395b06ed6c486954e971d960fe8709",
signTransaction: function(tx){...},
sign: function(data){...},
encrypt: function(password){...}

}

web3.eth.accounts.create('2435@#@#@±±±±!!!!
→˓678543213456764321§34567543213456785432134567');
> {

address: "0xF2CD2AA0c7926743B1D4310b2BC984a0a453c3d4",
privateKey: "0xd7325de5c2c1cf0009fac77d3d04a9c004b038883446b065871bc3e831dcd098",
signTransaction: function(tx){...},
sign: function(data){...},
encrypt: function(password){...}

}

web3.eth.accounts.create(web3.utils.randomHex(32));
> {

address: "0xe78150FaCD36E8EB00291e251424a0515AA1FF05",
privateKey: "0xcc505ee6067fba3f6fc2050643379e190e087aeffe5d958ab9f2f3ed3800fa4e",
signTransaction: function(tx){...},
sign: function(data){...},
encrypt: function(password){...}

}

8.2 privateKeyToAccount

web3.eth.accounts.privateKeyToAccount(privateKey);

Creates an account object from a private key.

8.2.1 Parameters

1. privateKey - String: The private key hex string beginning with 0x.

80 Chapter 8. web3.eth.accounts

web3.js Documentation, Release 1.0.0

8.2.2 Returns

Object - The account object with the structure seen here.

8.2.3 Example

web3.eth.accounts.privateKeyToAccount(
→˓'0x348ce564d427a3311b6536bbcff9390d69395b06ed6c486954e971d960fe8709');
> {

address: '0xb8CE9ab6943e0eCED004cDe8e3bBed6568B2Fa01',
privateKey: '0x348ce564d427a3311b6536bbcff9390d69395b06ed6c486954e971d960fe8709',
signTransaction: function(tx){...},
sign: function(data){...},
encrypt: function(password){...}

}

8.3 signTransaction

web3.eth.accounts.signTransaction(tx, privateKey [, callback]);

Signs an Ethereum transaction with a given private key.

8.3.1 Parameters

1. tx - Object: The transaction’s properties object as follows:

• nonce - String: (optional) The nonce to use when signing this transaction. Default will use
web3.eth.getTransactionCount().

• chainId - String: (optional) The chain id to use when signing this transaction. Default will use
web3.eth.net.getId().

• to - String: (optional) The receiver of the transaction, can be empty when deploying a contract.

• data - String: (optional) The call data of the transaction, can be empty for simple value transfers.

• value - String: (optional) The value of the transaction in wei.

• gasPrice - String: (optional) The gas price set by this transaction, if empty, it will use
web3.eth.gasPrice()

• gas - String: The gas provided by the transaction.

2. privateKey - String: The private key to sign with.

3. callback - Function: (optional) Optional callback, returns an error object as first parameter and the result
as second.

8.3.2 Returns

Promise returning Object: The signed data RLP encoded transaction, or if returnSignature is true the signature values as follows:

8.3. signTransaction 81

web3.js Documentation, Release 1.0.0

• messageHash - String: The hash of the given message.

• r - String: First 32 bytes of the signature

• s - String: Next 32 bytes of the signature

• v - String: Recovery value + 27

• rawTransaction - String: The RLP encoded transaction, ready to be send using
web3.eth.sendSignedTransaction.

• transactionHash - String: The transaction hash for the RLP encoded transaction.

8.3.3 Example

web3.eth.accounts.signTransaction({
to: '0xF0109fC8DF283027b6285cc889F5aA624EaC1F55',
value: '1000000000',
gas: 2000000

}, '0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318')
.then(console.log);
> {

messageHash: '0x88cfbd7e51c7a40540b233cf68b62ad1df3e92462f1c6018d6d67eae0f3b08f5',
v: '0x25',
r: '0xc9cf86333bcb065d140032ecaab5d9281bde80f21b9687b3e94161de42d51895',
s: '0x727a108a0b8d101465414033c3f705a9c7b826e596766046ee1183dbc8aeaa68',
rawTransaction:

→˓'0xf869808504e3b29200831e848094f0109fc8df283027b6285cc889f5aa624eac1f55843b9aca008025a0c9cf86333bcb065d140032ecaab5d9281bde80f21b9687b3e94161de42d51895a0727a108a0b8d101465414033c3f705a9c7b826e596766046ee1183dbc8aeaa68
→˓',

transactionHash:
→˓'0xde8db924885b0803d2edc335f745b2b8750c8848744905684c20b987443a9593'
}

web3.eth.accounts.signTransaction({
to: '0xF0109fC8DF283027b6285cc889F5aA624EaC1F55',
value: '1000000000',
gas: 2000000,
gasPrice: '234567897654321',
nonce: 0,
chainId: 1

}, '0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318')
.then(console.log);
> {

messageHash: '0x6893a6ee8df79b0f5d64a180cd1ef35d030f3e296a5361cf04d02ce720d32ec5',
r: '0x9ebb6ca057a0535d6186462bc0b465b561c94a295bdb0621fc19208ab149a9c',
s: '0x440ffd775ce91a833ab410777204d5341a6f9fa91216a6f3ee2c051fea6a0428',
v: '0x25',
rawTransaction:

→˓'0xf86a8086d55698372431831e848094f0109fc8df283027b6285cc889f5aa624eac1f55843b9aca008025a009ebb6ca057a0535d6186462bc0b465b561c94a295bdb0621fc19208ab149a9ca0440ffd775ce91a833ab410777204d5341a6f9fa91216a6f3ee2c051fea6a0428
→˓',

transactionHash:
→˓'0xd8f64a42b57be0d565f385378db2f6bf324ce14a594afc05de90436e9ce01f60'
}

82 Chapter 8. web3.eth.accounts

web3.js Documentation, Release 1.0.0

8.4 recoverTransaction

web3.eth.accounts.recoverTransaction(rawTransaction);

Recovers the Ethereum address which was used to sign the given RLP encoded transaction.

8.4.1 Parameters

1. signature - String: The RLP encoded transaction.

8.4.2 Returns

String: The Ethereum address used to sign this transaction.

8.4.3 Example

web3.eth.accounts.recoverTransaction(
→˓'0xf86180808401ef364594f0109fc8df283027b6285cc889f5aa624eac1f5580801ca031573280d608f75137e33fc14655f097867d691d5c4c44ebe5ae186070ac3d5ea0524410802cdc025034daefcdfa08e7d2ee3f0b9d9ae184b2001fe0aff07603d9
→˓');
> "0xF0109fC8DF283027b6285cc889F5aA624EaC1F55"

8.5 hashMessage

web3.eth.accounts.hashMessage(message);

Hashes the given message to be passed web3.eth.accounts.recover() function. The data will be UTF-8 HEX decoded
and enveloped as follows: "\x19Ethereum Signed Message:\n" + message.length + message
and hashed using keccak256.

8.5.1 Parameters

1. message - String: A message to hash, if its HEX it will be UTF8 decoded before.

8.5.2 Returns

String: The hashed message

8.5.3 Example

web3.eth.accounts.hashMessage("Hello World")
> "0xa1de988600a42c4b4ab089b619297c17d53cffae5d5120d82d8a92d0bb3b78f2"

// the below results in the same hash
web3.eth.accounts.hashMessage(web3.utils.utf8ToHex("Hello World"))
> "0xa1de988600a42c4b4ab089b619297c17d53cffae5d5120d82d8a92d0bb3b78f2"

8.4. recoverTransaction 83

web3.js Documentation, Release 1.0.0

8.6 sign

web3.eth.accounts.sign(data, privateKey);

Signs arbitrary data. This data is before UTF-8 HEX decoded and enveloped as follows: "\x19Ethereum Signed
Message:\n" + message.length + message.

8.6.1 Parameters

1. data - String: The data to sign. If its a string it will be

2. privateKey - String: The private key to sign with.

8.6.2 Returns

Object: The signed data RLP encoded signature, or if returnSignature is true the signature values as follows:

• message - String: The the given message.

• messageHash - String: The hash of the given message.

• r - String: First 32 bytes of the signature

• s - String: Next 32 bytes of the signature

• v - String: Recovery value + 27

8.6.3 Example

web3.eth.accounts.sign('Some data',
→˓'0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318');
> {

message: 'Some data',
messageHash: '0x1da44b586eb0729ff70a73c326926f6ed5a25f5b056e7f47fbc6e58d86871655',
v: '0x1c',
r: '0xb91467e570a6466aa9e9876cbcd013baba02900b8979d43fe208a4a4f339f5fd',
s: '0x6007e74cd82e037b800186422fc2da167c747ef045e5d18a5f5d4300f8e1a029',
signature:

→˓'0xb91467e570a6466aa9e9876cbcd013baba02900b8979d43fe208a4a4f339f5fd6007e74cd82e037b800186422fc2da167c747ef045e5d18a5f5d4300f8e1a0291c
→˓'
}

84 Chapter 8. web3.eth.accounts

web3.js Documentation, Release 1.0.0

8.7 recover

web3.eth.accounts.recover(signatureObject);
web3.eth.accounts.recover(message, signature [, preFixed]);
web3.eth.accounts.recover(message, v, r, s [, preFixed]);

Recovers the Ethereum address which was used to sign the given data.

8.7.1 Parameters

1. message|signatureObject - String|Object: Either signed message or hash, or the signature object as following values:

• messageHash - String: The hash of the given message already prefixed with "\x19Ethereum
Signed Message:\n" + message.length + message.

• r - String: First 32 bytes of the signature

• s - String: Next 32 bytes of the signature

• v - String: Recovery value + 27

2. signature - String: The raw RLP encoded signature, OR parameter 2-4 as v, r, s values.

3. preFixed - Boolean (optional, default: false): If the last parameter is true, the given message will
NOT automatically be prefixed with "\x19Ethereum Signed Message:\n" + message.length
+ message, and assumed to be already prefixed.

8.7.2 Returns

String: The Ethereum address used to sign this data.

8.7.3 Example

web3.eth.accounts.recover({
messageHash: '0x1da44b586eb0729ff70a73c326926f6ed5a25f5b056e7f47fbc6e58d86871655',
v: '0x1c',
r: '0xb91467e570a6466aa9e9876cbcd013baba02900b8979d43fe208a4a4f339f5fd',
s: '0x6007e74cd82e037b800186422fc2da167c747ef045e5d18a5f5d4300f8e1a029'

})
> "0x2c7536E3605D9C16a7a3D7b1898e529396a65c23"

// message, signature
web3.eth.accounts.recover('Some data',
→˓'0xb91467e570a6466aa9e9876cbcd013baba02900b8979d43fe208a4a4f339f5fd6007e74cd82e037b800186422fc2da167c747ef045e5d18a5f5d4300f8e1a0291c
→˓');
> "0x2c7536E3605D9C16a7a3D7b1898e529396a65c23"

// message, v, r, s
web3.eth.accounts.recover('Some data', '0x1c',
→˓'0xb91467e570a6466aa9e9876cbcd013baba02900b8979d43fe208a4a4f339f5fd',
→˓'0x6007e74cd82e037b800186422fc2da167c747ef045e5d18a5f5d4300f8e1a029');
> "0x2c7536E3605D9C16a7a3D7b1898e529396a65c23"

8.7. recover 85

web3.js Documentation, Release 1.0.0

8.8 encrypt

web3.eth.accounts.encrypt(privateKey, password);

Encrypts a private key to the web3 keystore v3 standard.

8.8.1 Parameters

1. privateKey - String: The private key to encrypt.

2. password - String: The password used for encryption.

8.8.2 Returns

Object: The encrypted keystore v3 JSON.

8.8.3 Example

web3.eth.accounts.encrypt(
→˓'0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318', 'test!')
> {

version: 3,
id: '04e9bcbb-96fa-497b-94d1-14df4cd20af6',
address: '2c7536e3605d9c16a7a3d7b1898e529396a65c23',
crypto: {

ciphertext: 'a1c25da3ecde4e6a24f3697251dd15d6208520efc84ad97397e906e6df24d251
→˓',

cipherparams: { iv: '2885df2b63f7ef247d753c82fa20038a' },
cipher: 'aes-128-ctr',
kdf: 'scrypt',
kdfparams: {

dklen: 32,
salt: '4531b3c174cc3ff32a6a7a85d6761b410db674807b2d216d022318ceee50be10',
n: 262144,
r: 8,
p: 1

},
mac: 'b8b010fff37f9ae5559a352a185e86f9b9c1d7f7a9f1bd4e82a5dd35468fc7f6'

}
}

8.9 decrypt

web3.eth.accounts.decrypt(keystoreJsonV3, password);

Decrypts a keystore v3 JSON, and creates the account.

86 Chapter 8. web3.eth.accounts

web3.js Documentation, Release 1.0.0

8.9.1 Parameters

1. keystoreJsonV3 - String: The encrypted keystore v3 JSON.

2. password - String: The password used for encryption.

8.9.2 Returns

Object: The decrypted account.

8.9.3 Example

web3.eth.accounts.decrypt({
version: 3,
id: '04e9bcbb-96fa-497b-94d1-14df4cd20af6',
address: '2c7536e3605d9c16a7a3d7b1898e529396a65c23',
crypto: {

ciphertext: 'a1c25da3ecde4e6a24f3697251dd15d6208520efc84ad97397e906e6df24d251
→˓',

cipherparams: { iv: '2885df2b63f7ef247d753c82fa20038a' },
cipher: 'aes-128-ctr',
kdf: 'scrypt',
kdfparams: {

dklen: 32,
salt: '4531b3c174cc3ff32a6a7a85d6761b410db674807b2d216d022318ceee50be10',
n: 262144,
r: 8,
p: 1

},
mac: 'b8b010fff37f9ae5559a352a185e86f9b9c1d7f7a9f1bd4e82a5dd35468fc7f6'

}
}, 'test!');
> {

address: "0x2c7536E3605D9C16a7a3D7b1898e529396a65c23",
privateKey: "0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318",
signTransaction: function(tx){...},
sign: function(data){...},
encrypt: function(password){...}

}

8.10 wallet

web3.eth.accounts.wallet;

Contains an in memory wallet with multiple accounts. These accounts can be used when using
web3.eth.sendTransaction().

8.10.1 Example

8.10. wallet 87

web3.js Documentation, Release 1.0.0

web3.eth.accounts.wallet;
> Wallet {

0: {...}, // account by index
"0xF0109fC8DF283027b6285cc889F5aA624EaC1F55": {...}, // same account by address
"0xf0109fc8df283027b6285cc889f5aa624eac1f55": {...}, // same account by address

→˓lowercase
1: {...},
"0xD0122fC8DF283027b6285cc889F5aA624EaC1d23": {...},
"0xd0122fc8df283027b6285cc889f5aa624eac1d23": {...},

add: function(){},
remove: function(){},
save: function(){},
load: function(){},
clear: function(){},

length: 2,
}

8.11 wallet.create

web3.eth.accounts.wallet.create(numberOfAccounts [, entropy]);

Generates one or more accounts in the wallet. If wallets already exist they will not be overridden.

8.11.1 Parameters

1. numberOfAccounts - Number: Number of accounts to create. Leave empty to create an empty wallet.

2. entropy - String (optional): A string with random characters as additional entropy when generating ac-
counts. If given it should be at least 32 characters.

8.11.2 Returns

Object: The wallet object.

8.11.3 Example

web3.eth.accounts.wallet.create(2, '54674321§3456764321§345674321§3453647544±±±§±±±!
→˓!!43534534534534');
> Wallet {

0: {...},
"0xF0109fC8DF283027b6285cc889F5aA624EaC1F55": {...},
"0xf0109fc8df283027b6285cc889f5aa624eac1f55": {...},
...

}

88 Chapter 8. web3.eth.accounts

web3.js Documentation, Release 1.0.0

8.12 wallet.add

web3.eth.accounts.wallet.add(account);

Adds an account using a private key or account object to the wallet.

8.12.1 Parameters

1. account - String|Object: A private key or account object created with web3.eth.accounts.create().

8.12.2 Returns

Object: The added account.

8.12.3 Example

web3.eth.accounts.wallet.add(
→˓'0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318');
> {

index: 0,
address: '0x2c7536E3605D9C16a7a3D7b1898e529396a65c23',
privateKey: '0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318',
signTransaction: function(tx){...},
sign: function(data){...},
encrypt: function(password){...}

}

web3.eth.accounts.wallet.add({
privateKey: '0x348ce564d427a3311b6536bbcff9390d69395b06ed6c486954e971d960fe8709',
address: '0xb8CE9ab6943e0eCED004cDe8e3bBed6568B2Fa01'

});
> {

index: 0,
address: '0xb8CE9ab6943e0eCED004cDe8e3bBed6568B2Fa01',
privateKey: '0x348ce564d427a3311b6536bbcff9390d69395b06ed6c486954e971d960fe8709',
signTransaction: function(tx){...},
sign: function(data){...},
encrypt: function(password){...}

}

8.13 wallet.remove

web3.eth.accounts.wallet.remove(account);

Removes an account from the wallet.

8.12. wallet.add 89

web3.js Documentation, Release 1.0.0

8.13.1 Parameters

1. account - String|Number: The account address, or index in the wallet.

8.13.2 Returns

Boolean: true if the wallet was removed. false if it couldn’t be found.

8.13.3 Example

web3.eth.accounts.wallet;
> Wallet {

0: {...},
"0xF0109fC8DF283027b6285cc889F5aA624EaC1F55": {...}
1: {...},
"0xb8CE9ab6943e0eCED004cDe8e3bBed6568B2Fa01": {...}
...

}

web3.eth.accounts.wallet.remove('0xF0109fC8DF283027b6285cc889F5aA624EaC1F55');
> true

web3.eth.accounts.wallet.remove(3);
> false

8.14 wallet.clear

web3.eth.accounts.wallet.clear();

Securely empties the wallet and removes all its accounts.

8.14.1 Parameters

none

8.14.2 Returns

Object: The wallet object.

8.14.3 Example

web3.eth.accounts.wallet.clear();
> Wallet {

add: function(){},
remove: function(){},
save: function(){},

(continues on next page)

90 Chapter 8. web3.eth.accounts

web3.js Documentation, Release 1.0.0

(continued from previous page)

load: function(){},
clear: function(){},

length: 0
}

8.15 wallet.encrypt

web3.eth.accounts.wallet.encrypt(password);

Encrypts all wallet accounts to an array of encrypted keystore v3 objects.

8.15.1 Parameters

1. password - String: The password which will be used for encryption.

8.15.2 Returns

Array: The encrypted keystore v3.

8.15.3 Example

web3.eth.accounts.wallet.encrypt('test');
> [{ version: 3,

id: 'dcf8ab05-a314-4e37-b972-bf9b86f91372',
address: '06f702337909c06c82b09b7a22f0a2f0855d1f68',
crypto:
{ ciphertext: '0de804dc63940820f6b3334e5a4bfc8214e27fb30bb7e9b7b74b25cd7eb5c604',

cipherparams: [Object],
cipher: 'aes-128-ctr',
kdf: 'scrypt',
kdfparams: [Object],
mac: 'b2aac1485bd6ee1928665642bf8eae9ddfbc039c3a673658933d320bac6952e3' } },

{ version: 3,
id: '9e1c7d24-b919-4428-b10e-0f3ef79f7cf0',
address: 'b5d89661b59a9af0b34f58d19138baa2de48baaf',
crypto:
{ ciphertext: 'd705ebed2a136d9e4db7e5ae70ed1f69d6a57370d5fbe06281eb07615f404410',

cipherparams: [Object],
cipher: 'aes-128-ctr',
kdf: 'scrypt',
kdfparams: [Object],
mac: 'af9eca5eb01b0f70e909f824f0e7cdb90c350a802f04a9f6afe056602b92272b' } }

]

8.15. wallet.encrypt 91

web3.js Documentation, Release 1.0.0

8.16 wallet.decrypt

web3.eth.accounts.wallet.decrypt(keystoreArray, password);

Decrypts keystore v3 objects.

8.16.1 Parameters

1. keystoreArray - Array: The encrypted keystore v3 objects to decrypt.

2. password - String: The password which will be used for encryption.

8.16.2 Returns

Object: The wallet object.

8.16.3 Example

web3.eth.accounts.wallet.decrypt([
{ version: 3,
id: '83191a81-aaca-451f-b63d-0c5f3b849289',
address: '06f702337909c06c82b09b7a22f0a2f0855d1f68',
crypto:
{ ciphertext: '7d34deae112841fba86e3e6cf08f5398dda323a8e4d29332621534e2c4069e8d',

cipherparams: { iv: '497f4d26997a84d570778eae874b2333' },
cipher: 'aes-128-ctr',
kdf: 'scrypt',
kdfparams:
{ dklen: 32,

salt: '208dd732a27aa4803bb760228dff18515d5313fd085bbce60594a3919ae2d88d',
n: 262144,
r: 8,
p: 1 },

mac: '0062a853de302513c57bfe3108ab493733034bf3cb313326f42cf26ea2619cf9' } },
{ version: 3,
id: '7d6b91fa-3611-407b-b16b-396efb28f97e',
address: 'b5d89661b59a9af0b34f58d19138baa2de48baaf',
crypto:
{ ciphertext: 'cb9712d1982ff89f571fa5dbef447f14b7e5f142232bd2a913aac833730eeb43',

cipherparams: { iv: '8cccb91cb84e435437f7282ec2ffd2db' },
cipher: 'aes-128-ctr',
kdf: 'scrypt',
kdfparams:
{ dklen: 32,

salt: '08ba6736363c5586434cd5b895e6fe41ea7db4785bd9b901dedce77a1514e8b8',
n: 262144,
r: 8,
p: 1 },

mac: 'd2eb068b37e2df55f56fa97a2bf4f55e072bef0dd703bfd917717d9dc54510f0' } }
], 'test');
> Wallet {

0: {...},
1: {...},

(continues on next page)

92 Chapter 8. web3.eth.accounts

web3.js Documentation, Release 1.0.0

(continued from previous page)

"0xF0109fC8DF283027b6285cc889F5aA624EaC1F55": {...},
"0xD0122fC8DF283027b6285cc889F5aA624EaC1d23": {...}
...

}

8.17 wallet.save

web3.eth.accounts.wallet.save(password [, keyName]);

Stores the wallet encrypted and as string in local storage.

Note: Browser only.

8.17.1 Parameters

1. password - String: The password to encrypt the wallet.

2. keyName - String: (optional) The key used for the local storage position, defaults to "web3js_wallet".

8.17.2 Returns

Boolean

8.17.3 Example

web3.eth.accounts.wallet.save('test#!$');
> true

8.18 wallet.load

web3.eth.accounts.wallet.load(password [, keyName]);

Loads a wallet from local storage and decrypts it.

Note: Browser only.

8.18.1 Parameters

1. password - String: The password to decrypt the wallet.

2. keyName - String: (optional) The key used for the localstorage position, defaults to "web3js_wallet".

8.17. wallet.save 93

web3.js Documentation, Release 1.0.0

8.18.2 Returns

Object: The wallet object.

8.18.3 Example

web3.eth.accounts.wallet.load('test#!$', 'myWalletKey');
> Wallet {

0: {...},
1: {...},
"0xF0109fC8DF283027b6285cc889F5aA624EaC1F55": {...},
"0xD0122fC8DF283027b6285cc889F5aA624EaC1d23": {...}
...

}

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

94 Chapter 8. web3.eth.accounts

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 9

web3.eth.personal

The web3-eth-personal package allows you to interact with the Ethereum node’s accounts.

Note: Many of these functions send sensitive information, like password. Never call these functions over a unsecured
Websocket or HTTP provider, as your password will be sent in plain text!

import Web3 from 'web3';
import {Personal} from 'web3-eth-personal';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const personal = new Personal(Web3.givenProvider || 'ws://some.local-or-remote.
→˓node:8546', null, options);

// or using the web3 umbrella package
const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

// -> web3.eth.personal

9.1 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

9.1.1 Module Options

defaultAccount

95

web3.js Documentation, Release 1.0.0

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

9.1.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

9.2 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

96 Chapter 9. web3.eth.personal

web3.js Documentation, Release 1.0.0

9.2.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

9.3 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

9.3.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

9.4 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

9.4.1 Returns

string|number: The current value of the defaultGasPrice property.

9.5 defaultGas

9.3. defaultAccount 97

web3.js Documentation, Release 1.0.0

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

9.5.1 Returns

string|number: The current value of the defaultGas property.

9.6 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

9.6.1 Returns

number: The current value of transactionBlockTimeout

9.7 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

9.7.1 Returns

number: The current value of transactionConfirmationBlocks

9.8 transactionPollingTimeout

98 Chapter 9. web3.eth.personal

web3.js Documentation, Release 1.0.0

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

9.8.1 Returns

number: The current value of transactionPollingTimeout

9.9 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

9.9.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

9.10 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

9.9. transactionSigner 99

web3.js Documentation, Release 1.0.0

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

9.10.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

9.10.2 Returns

Boolean

9.10.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

9.11 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

100 Chapter 9. web3.eth.personal

web3.js Documentation, Release 1.0.0

9.11.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

9.11.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

9.12 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

9.12.1 Returns

Object: The given provider set or false.

9.12.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

9.12. givenProvider 101

web3.js Documentation, Release 1.0.0

9.13 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

9.13.1 Returns

Object: The current provider set.

9.13.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

9.14 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

9.14.1 Parameters

none

9.14.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

9.14.3 Example

102 Chapter 9. web3.eth.personal

web3.js Documentation, Release 1.0.0

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

9.15 newAccount

web3.eth.personal.newAccount(password, [callback])

Create a new account on the node that Web3 is connected to with its provider. The RPC method used is
personal_newAccount. It differs from web3.eth.accounts.create() where the key pair is created only on client
and it’s up to the developer to manage it.

Note: Never call this function over a unsecured Websocket or HTTP provider, as your password will be send in plain
text!

9.15.1 Parameters

1. password - String: The password to encrypt this account with.

9.15.2 Returns

Promise<string> - The address of the newly created account.

9.15.3 Example

web3.eth.personal.newAccount('!@superpassword')
.then(console.log);
> '0x1234567891011121314151617181920212223456'

9.16 sign

web3.eth.personal.sign(dataToSign, address, password [, callback])

Signs data using a specific account. This data is before UTF-8 HEX decoded and enveloped as follows:
"\x19Ethereum Signed Message:\n" + message.length + message.

Note: Sending your account password over an unsecured HTTP RPC connection is highly unsecure.

9.15. newAccount 103

web3.js Documentation, Release 1.0.0

9.16.1 Parameters

1. String - Data to sign. If String it will be converted using web3.utils.utf8ToHex.

2. String - Address to sign data with.

3. String - The password of the account to sign data with.

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

9.16.2 Returns

Promise<string> - The signature.

9.16.3 Example

web3.eth.personal.sign("Hello world", "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe",
→˓"test password!")
.then(console.log);
>
→˓"0x30755ed65396facf86c53e6217c52b4daebe72aa4941d89635409de4c9c7f9466d4e9aaec7977f05e923889b33c0d0dd27d7226b6e6f56ce737465c5cfd04be400
→˓"

// the below is the same
web3.eth.personal.sign(web3.utils.utf8ToHex("Hello world"),
→˓"0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe", "test password!")
.then(console.log);
>
→˓"0x30755ed65396facf86c53e6217c52b4daebe72aa4941d89635409de4c9c7f9466d4e9aaec7977f05e923889b33c0d0dd27d7226b6e6f56ce737465c5cfd04be400
→˓"

9.17 ecRecover

web3.eth.personal.ecRecover(dataThatWasSigned, signature [, callback])

Recovers the account that signed the data.

9.17.1 Parameters

1. String - Data that was signed. If String it will be converted using web3.utils.utf8ToHex.

2. String - The signature.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

9.17.2 Returns

Promise<string> - The account.

104 Chapter 9. web3.eth.personal

web3.js Documentation, Release 1.0.0

9.17.3 Example

web3.eth.personal.ecRecover("Hello world",
→˓"0x30755ed65396facf86c53e6217c52b4daebe72aa4941d89635409de4c9c7f9466d4e9aaec7977f05e923889b33c0d0dd27d7226b6e6f56ce737465c5cfd04be400
→˓").then(console.log);
> "0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe"

9.18 signTransaction

web3.eth.personal.signTransaction(transaction, password [, callback])

Signs a transaction. This account needs to be unlocked.

Note: Sending your account password over an unsecured HTTP RPC connection is highly unsecure.

9.18.1 Parameters

1. Object - The transaction data to sign web3.eth.sendTransaction() for more.

2. String - The password of the from account, to sign the transaction with.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

9.18.2 Returns

Promise<Object> - The RLP encoded transaction. The raw property can be used to send the transaction using
web3.eth.sendSignedTransaction.

9.18.3 Example

web3.eth.signTransaction({
from: "0xEB014f8c8B418Db6b45774c326A0E64C78914dC0",
gasPrice: "20000000000",
gas: "21000",
to: '0x35',
value: "1000000000000000000",
data: ""

}, 'MyPassword!').then(console.log);
> {

raw:
→˓'0xf86c808504a817c8008252089435880de0b6b3a76400008025a04f4c17305743700648bc4f6cd3038ec6f6af0df73e31757007b7f59df7bee88da07e1941b264348e80c78c4027afc65a87b0a5e43e86742b8ca0823584c6788fd0
→˓',

tx: {
nonce: '0x0',
gasPrice: '0x4a817c800',
gas: '0x5208',
to: '0x35',

(continues on next page)

9.18. signTransaction 105

web3.js Documentation, Release 1.0.0

(continued from previous page)

value: '0xde0b6b3a7640000',
input: '0x',
v: '0x25',
r: '0x4f4c17305743700648bc4f6cd3038ec6f6af0df73e31757007b7f59df7bee88d',
s: '0x7e1941b264348e80c78c4027afc65a87b0a5e43e86742b8ca0823584c6788fd0',
hash: '0xda3be87732110de6c1354c83770aae630ede9ac308d9f7b399ecfba23d923384'

}
}

9.19 sendTransaction

web3.eth.personal.sendTransaction(transactionOptions, password [, callback])

This method sends a transaction over the management API.

Note: Sending your account password over an unsecured HTTP RPC connection is highly unsecure.

9.19.1 Parameters

1. Object - The transaction options

2. String - The passphrase for the current account

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

9.19.2 Returns

Promise<string> - The transaction hash.

9.19.3 Example

web3.eth.sendTransaction({
from: "0xEB014f8c8B418Db6b45774c326A0E64C78914dC0",
gasPrice: "20000000000",
gas: "21000",
to: '0x35',
value: "1000000000000000000",
data: ""

}, 'MyPassword!').then(console.log);
> '0xda3be87732110de6c1354c83770aae630ede9ac308d9f7b399ecfba23d923384'

106 Chapter 9. web3.eth.personal

web3.js Documentation, Release 1.0.0

9.20 unlockAccount

web3.eth.personal.unlockAccount(address, password, unlockDuraction [, callback])

Unlocks the given account.

Note: Sending your account password over an unsecured HTTP RPC connection is highly unsecure.

9.20.1 Parameters

1. address - String: The account address.

2. password - String - The password of the account.

3. unlockDuration - Number - The duration for the account to remain unlocked.

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

9.20.2 Returns

Promise<boolean> - True if the account got unlocked successful otherwise false.

9.20.3 Example

web3.eth.personal.unlockAccount("0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe", "test
→˓password!", 600)
.then(console.log('Account unlocked!'));
> "Account unlocked!"

9.21 lockAccount

web3.eth.personal.lockAccount(address [, callback])

Locks the given account.

Note: Sending your account password over an unsecured HTTP RPC connection is highly unsecure.

9.21.1 Parameters

1. address - String: The account address. 4. Function - (optional) Optional callback, returns an error object
as first parameter and the result as second.

9.20. unlockAccount 107

web3.js Documentation, Release 1.0.0

9.21.2 Returns

Promise<boolean>

9.21.3 Example

web3.eth.personal.lockAccount("0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe")
.then(console.log('Account locked!'));
> "Account locked!"

9.22 getAccounts

web3.eth.personal.getAccounts([callback])

Returns a list of accounts the node controls by using the provider and calling the RPC method
personal_listAccounts. Using web3.eth.accounts.create() will not add accounts into this list. For that use
web3.eth.personal.newAccount().

The results are the same as web3.eth.getAccounts() except that calls the RPC method eth_accounts.

9.22.1 Returns

Promise<Array> - An array of addresses controlled by node.

9.22.2 Example

web3.eth.personal.getAccounts()
.then(console.log);
> ["0x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe",
→˓"0xDCc6960376d6C6dEa93647383FfB245CfCed97Cf"]

9.23 importRawKey

web3.eth.personal.importRawKey(privateKey, password)

Imports the given private key into the key store, encrypting it with the passphrase.

Returns the address of the new account.

Note: Sending your account password over an unsecured HTTP RPC connection is highly unsecure.

108 Chapter 9. web3.eth.personal

web3.js Documentation, Release 1.0.0

9.23.1 Parameters

1. privateKey - String - An unencrypted private key (hex string).

2. password - String - The password of the account.

9.23.2 Returns

Promise<string> - The address of the account.

9.23.3 Example

web3.eth.personal.importRawKey(
→˓"cd3376bb711cb332ee3fb2ca04c6a8b9f70c316fcdf7a1f44ef4c7999483295e", "password1234")
.then(console.log);
> "0x8f337bf484b2fc75e4b0436645dcc226ee2ac531"

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

9.23. importRawKey 109

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

110 Chapter 9. web3.eth.personal

CHAPTER 10

web3.eth.ens

The web3.eth.ens functions let you interacting with the Ens smart contracts.

import Web3 from 'web3';
import {Ens} from 'web3-eth-ens';
import {Accounts} from 'web3-eth-accounts';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const eth = new Ens(

Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
null,
options
new Accounts(Web3.givenProvider || 'ws://some.local-or-remote.node:8546', null,

→˓options)
);

// or using the web3 umbrella package

const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

// -> web3.eth.ens

10.1 registry

web3.eth.ens.registry;

Returns the network specific Ens registry.

111

web3.js Documentation, Release 1.0.0

10.1.1 Returns

Registry - The current Ens registry.

10.1.2 Example

web3.eth.ens.registry;
> {

ens: Ens,
resolverContract: Contract | null,
setProvider(provider: provider, net?: net.Socket): boolean,
owner(name: string, callback?: (error: Error, address: string) => void): Promise

→˓<string>,
resolver(name: string): Promise<Contract>,
checkNetwork(): Promise<string>,

}

10.2 resolver

web3.eth.ens.resolver(name);

Returns the resolver contract to an Ethereum address.

10.2.1 Returns

Resolver - The Ens resolver for this name.

10.2.2 Example

web3.eth.ens.resolver('ethereum.eth').then((contract) => {
console.log(contract);

});
> Contract<Resolver>

10.3 supportsInterface

web3.eth.ens.supportsInterface(ENSName, interfaceId, [callback]);

Checks if the current resolver does support the desired interface.

112 Chapter 10. web3.eth.ens

web3.js Documentation, Release 1.0.0

10.3.1 Parameters

1. ENSName - String: The Ens name to resolve.

2. interfaceId - String: A defined ENS interfaceId.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

10.3.2 Returns

Promise<boolean> - Returns true if the given interfaceId is supported by the resolver.

10.3.3 Example

web3.eth.ens.supportsInterface('ethereum.eth', '0xbc1c58d1').then((supportsInterface)
→˓=> {

console.log(supportsInterface);
})
> true

10.4 getAddress

web3.eth.ens.getAddress(ENSName, [callback]);

Resolves an Ens name to an Ethereum address.

10.4.1 Parameters

1. ENSName - String: The Ens name to resolve.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

10.4.2 Returns

Promise<string> - The Ethereum address of the given name.

10.4.3 Example

web3.eth.ens.getAddress('ethereum.eth').then((address) => {
console.log(address);

})
> 0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359

10.4. getAddress 113

web3.js Documentation, Release 1.0.0

10.5 setAddress

web3.eth.ens.setAddress(ENSName, address, options, [callback]);

Sets the address of an Ens name in his resolver.

10.5.1 Parameters

1. ENSName - String: The Ens name.

2. address - String: The address to set.

3. options - Object: The options used for sending.

• from - String: The address the transaction should be sent from.

• gasPrice - String (optional): The gas price in wei to use for this transaction.

• gas - Number (optional): The maximum gas provided for this transaction (gas limit).

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

Emits an AddrChanged event.

10.5.2 Example

web3.eth.ens.setAddress(
'ethereum.eth',
'0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

).then((result) => {
console.log(result.events);

});
> AddrChanged(...)

// Or using the event emitter

web3.eth.ens.setAddress(
'ethereum.eth',
'0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

)
.on('transactionHash', (hash) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('receipt', (receipt) => {

...
})
.on('error', console.error);

(continues on next page)

114 Chapter 10. web3.eth.ens

web3.js Documentation, Release 1.0.0

(continued from previous page)

// Or listen to the AddrChanged event on the resolver

web3.eth.ens.resolver('ethereum.eth').then((resolver) => {
resolver.events.AddrChanged({fromBlock: 0}, (error, event) => {

console.log(event);
})
.on('data', (event) => {

console.log(event);
})
.on('changed', (event) => {

// remove event from local database
})
.on('error', console.error);

});

For further information on the handling of contract events please see here contract-events_.

10.6 getPubkey

web3.eth.ens.getPubkey(ENSName, [callback]);

Returns the X and Y coordinates of the curve point for the public key.

10.6.1 Parameters

1. ENSName - String: The Ens name.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

10.6.2 Returns

Object<String, String> - The X and Y coordinates.

10.6.3 Example

web3.eth.ens.getPubkey('ethereum.eth').then((result) => {
console.log(result)

});
> {

"0": "0x00",
"1": "0x00",
"x": "0x00",
"y": "0x00"

}

10.6. getPubkey 115

web3.js Documentation, Release 1.0.0

10.7 setPubkey

web3.eth.ens.setPubkey(ENSName, x, y, options, [callback]);

Sets the SECP256k1 public key associated with an Ens node

10.7.1 Parameters

1. ENSName - String: The Ens name.

2. x - String: The X coordinate of the public key.

3. y - String: The Y coordinate of the public key.

4. options - Object: The options used for sending.

• from - String: The address the transaction should be sent from.

• gasPrice - String (optional): The gas price in wei to use for this transaction.

• gas - Number (optional): The maximum gas provided for this transaction (gas limit).

5. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

Emits an PubkeyChanged event.

10.7.2 Example

web3.eth.ens.setPubkey(
'ethereum.eth',
'0x00',
'0x00',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

).then((result) => {
console.log(result.events);

});
> PubkeyChanged(...)

// Or using the event emitter

web3.eth.ens.setPubkey(
'ethereum.eth',
'0x00',
'0x00',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

)
.on('transactionHash', (hash) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('receipt', (receipt) => {

(continues on next page)

116 Chapter 10. web3.eth.ens

web3.js Documentation, Release 1.0.0

(continued from previous page)

...
})
.on('error', console.error);

// Or listen to the PubkeyChanged event on the resolver

web3.eth.ens.resolver('ethereum.eth').then((resolver) => {
resolver.events.PubkeyChanged({fromBlock: 0}, function(error, event) {

console.log(event);
})
.on('data', (event) => {

console.log(event);
})
.on('changed', (event) => {

// remove event from local database
})
.on('error', console.error);

});

For further information on the handling of contract events please see here contract-events_.

10.8 getText

web3.eth.ens.getText(ENSName, key, [callback]);

Returns the text by the given key.

10.8.1 Parameters

1. ENSName - String: The Ens name.

2. key - String: The key of the array.

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

10.8.2 Returns

Promise<string>

10.8.3 Example

web3.eth.ens.getText('ethereum.eth', 'key').then((result) => {
console.log(result);

});
> "00"

10.8. getText 117

web3.js Documentation, Release 1.0.0

10.9 setText

web3.eth.ens.setText(ENSName, key, value, options, [callback]);

Sets the content hash associated with an Ens node.

10.9.1 Parameters

1. ENSName - String: The Ens name.

2. key - String: The key. 2. value - String: The value. 3. options - Object: The options used for sending.

• from - String: The address the transaction should be sent from.

• gasPrice - String (optional): The gas price in wei to use for this transaction.

• gas - Number (optional): The maximum gas provided for this transaction (gas limit).

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

Emits an TextChanged event.

10.9.2 Example

web3.eth.ens.setText(
'ethereum.eth',
'key',
'value',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

).then((result) => {
console.log(result.events);

});
> ContentChanged(...)

// Or using the event emitter

web3.eth.ens.setText(
'ethereum.eth',
'key',
'value',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

)
.on('transactionHash', (hash) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('receipt', (receipt) => {

...
})
.on('error', console.error);

(continues on next page)

118 Chapter 10. web3.eth.ens

web3.js Documentation, Release 1.0.0

(continued from previous page)

// And listen to the TextChanged event on the resolver

web3.eth.ens.resolver('ethereum.eth').then((resolver) => {
resolver.events.TextChanged({fromBlock: 0}, (error, event) => {

console.log(event);
})
.on('data', (event) => {

console.log(event);
})
.on('changed', (event) => {

// remove event from local database
})
.on('error', console.error);

});

For further information on the handling of contract events please see here contract-events_.

10.10 getContent

web3.eth.ens.getContent(ENSName, [callback]);

Returns the content hash associated with an Ens node.

10.10.1 Parameters

1. ENSName - String: The Ens name.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

10.10.2 Returns

Promise<string> - The content hash associated with an Ens node.

10.10.3 Example

web3.eth.ens.getContent('ethereum.eth').then((result) => {
console.log(result);

});
> "0x00"

10.11 setContent

10.10. getContent 119

web3.js Documentation, Release 1.0.0

web3.eth.ens.setContent(ENSName, hash, options, [callback]);

Sets the content hash associated with an Ens node.

10.11.1 Parameters

1. ENSName - String: The Ens name.

2. hash - String: The content hash to set.

3. options - Object: The options used for sending.

• from - String: The address the transaction should be sent from.

• gasPrice - String (optional): The gas price in wei to use for this transaction.

• gas - Number (optional): The maximum gas provided for this transaction (gas limit).

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

Emits an ContentChanged event.

10.11.2 Example

web3.eth.ens.setContent(
'ethereum.eth',
'0x00',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

).then((result) => {
console.log(result.events);

});
> ContentChanged(...)

// Or using the event emitter

web3.eth.ens.setContent(
'ethereum.eth',
'0x00',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

)
.on('transactionHash', (hash) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('receipt', (receipt) => {

...
})
.on('error', console.error);

// Or listen to the ContentChanged event on the resolver

(continues on next page)

120 Chapter 10. web3.eth.ens

web3.js Documentation, Release 1.0.0

(continued from previous page)

web3.eth.ens.resolver('ethereum.eth').then((resolver) => {
resolver.events.ContentChanged({fromBlock: 0}, (error, event) => {

console.log(event);
})
.on('data', (event) => {

console.log(event);
})
.on('changed', (event) => {

// remove event from local database
})
.on('error', console.error);

});

For further information on the handling of contract events please see here contract-events_.

10.12 getMultihash

web3.eth.ens.getMultihash(ENSName, [callback]);

Returns the multihash associated with an Ens node.

10.12.1 Parameters

1. ENSName - String: The Ens name.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

10.12.2 Returns

Promise<string> - The associated multihash.

10.12.3 Example

web3.eth.ens.getMultihash('ethereum.eth').then((result) => {
console.log(result);

});
> 'QmXpSwxdmgWaYrgMUzuDWCnjsZo5RxphE3oW7VhTMSCoKK'

10.13 setMultihash

web3.eth.ens.setMultihash(ENSName, hash, options, [callback]);

Sets the multihash associated with an Ens node.

10.12. getMultihash 121

web3.js Documentation, Release 1.0.0

10.13.1 Parameters

1. ENSName - String: The Ens name.

2. hash - String: The multihash to set.

3. options - Object: The options used for sending.

• from - String: The address the transaction should be sent from.

• gasPrice - String (optional): The gas price in wei to use for this transaction.

• gas - Number (optional): The maximum gas provided for this transaction (gas limit).

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

Emits an ‘‘MultihashChanged‘‘event.

10.13.2 Example

web3.eth.ens.setMultihash(
'ethereum.eth',
'QmXpSwxdmgWaYrgMUzuDWCnjsZo5RxphE3oW7VhTMSCoKK',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

).then((result) => {
console.log(result.events);

});
> MultihashChanged(...)

// Or using the event emitter

web3.eth.ens.setMultihash(
'ethereum.eth',
'QmXpSwxdmgWaYrgMUzuDWCnjsZo5RxphE3oW7VhTMSCoKK',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

)
.on('transactionHash', (hash) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('receipt', (receipt) => {

...
})
.on('error', console.error);

For further information on the handling of contract events please see here contract-events_.

122 Chapter 10. web3.eth.ens

web3.js Documentation, Release 1.0.0

10.14 getContenthash

web3.eth.ens.getContenthash(ENSName, [callback]);

Returns the contenthash associated with an Ens node. contenthash encoding is defined in [EIP1577](http://eips.
ethereum.org/EIPS/eip-1577)

10.14.1 Parameters

1. ENSName - String: The Ens name.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

10.14.2 Returns

Promise<string> - The associated contenthash.

10.14.3 Example

web3.eth.ens.getContenthash('pac-txt.eth').then((result) => {
console.log(result);

});
> '0xe30101701220e08ea2458249e8f26aee72b95b39c33849a992a3eff40bd06d26c12197adef16'

10.15 setContenthash

web3.eth.ens.setContenthash(ENSName, hash, options, [callback]);

Sets the contenthash associated with an Ens node.

10.15.1 Parameters

1. ENSName - String: The Ens name.

2. hash - String: The contenthash to set.

3. options - Object: The options used for sending.

• from - String: The address the transaction should be sent from.

• gasPrice - String (optional): The gas price in wei to use for this transaction.

• gas - Number (optional): The maximum gas provided for this transaction (gas limit).

4. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

Emits an ContenthashChanged event.

10.14. getContenthash 123

http://eips.ethereum.org/EIPS/eip-1577
http://eips.ethereum.org/EIPS/eip-1577

web3.js Documentation, Release 1.0.0

10.15.2 Example

web3.eth.ens.setContenthash(
'ethereum.eth',
'0xe301017012208cd82588c4e08268fa0b824caa93847ac843410076eeedc41d65fb52eccbb9e6',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

).then((result) => {
console.log(result.events);

});
> ContenthashChanged(...)

// Or using the event emitter

web3.eth.ens.setContenthash(
'ethereum.eth',
'0xe301017012208cd82588c4e08268fa0b824caa93847ac843410076eeedc41d65fb52eccbb9e6',
{

from: '0x9CC9a2c777605Af16872E0997b3Aeb91d96D5D8c'
}

)
.on('transactionHash', (hash) => {

...
})
.on('confirmation', (confirmationNumber, receipt) => {

...
})
.on('receipt', (receipt) => {

...
})
.on('error', console.error);

For further information on the handling of contract events please see here contract-events_.

10.16 Ens events

The Ens API provides the possibility for listening to all Ens related events.

10.16.1 Known resolver events

1. AddrChanged - AddrChanged(node bytes32, a address)

2. ContentChanged - ContentChanged(node bytes32, hash bytes32)

3. NameChanged - NameChanged(node bytes32, name string)

4. ABIChanged - ABIChanged(node bytes32, contentType uint256)

5. PubkeyChanged - PubkeyChanged(node bytes32, x bytes32, y bytes32)

6. TextChanged - TextChanged(bytes32 indexed node, string indexedKey, string key)

7. ContenthashChanged - ContenthashChanged(bytes32 indexed node, bytes hash)

124 Chapter 10. web3.eth.ens

web3.js Documentation, Release 1.0.0

10.16.2 Example

web3.eth.ens.resolver('ethereum.eth').then((resolver) => {
resolver.events.AddrChanged({fromBlock: 0}, (error, event) => {

console.log(event);
})
.on('data', (event) => {

console.log(event);
})
.on('changed', (event) => {

// remove event from local database
})
.on('error', console.error);

});
> {

returnValues: {
node: '0x123456789...',
a: '0x123456789...',

},
raw: {

data: '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
topics: [

'0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385'

]
},
event: 'AddrChanged',
signature: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
logIndex: 0,
transactionIndex: 0,
transactionHash:

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
blockHash: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
blockNumber: 1234,
address: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'

}

10.16.3 Known registry events

1. Transfer - Transfer(node bytes32, owner address)

2. NewOwner - NewOwner(node bytes32, label bytes32, owner address) 4. NewResolver - NewResolver(node
bytes32, resolver address) 5. NewTTL - NewTTL(node bytes32, ttl uint64)

10.16.4 Example

web3.eth.ens.resistry.then((registry) => {
registry.events.Transfer({fromBlock: 0}, (error, event) => {

console.log(event);
})
.on('data', (event) => {

console.log(event);
})
.on('changed', (event) => {

(continues on next page)

10.16. Ens events 125

web3.js Documentation, Release 1.0.0

(continued from previous page)

// remove event from local database
})
.on('error', console.error);

});
> {

returnValues: {
node: '0x123456789...',
owner: '0x123456789...',

},
raw: {

data: '0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
topics: [

'0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385'

]
},
event: 'Transfer',
signature: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
logIndex: 0,
transactionIndex: 0,
transactionHash:

→˓'0x7f9fade1c0d57a7af66ab4ead79fade1c0d57a7af66ab4ead7c2c2eb7b11a91385',
blockHash: '0xfd43ade1c09fade1c0d57a7af66ab4ead7c2c2eb7b11a91ffdd57a7af66ab4ead7',
blockNumber: 1234,
address: '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe'

}

For further information on the handling of contract events please see here contract-events_.

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

126 Chapter 10. web3.eth.ens

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 11

web3.eth.Iban

The web3.eth.Iban function lets convert Ethereum addresses from and to IBAN and BBAN.

import {Iban} from 'web3-eth-iban';

const iban = new Iban('XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS');

// or using the web3 umbrella package

import Web3 from 'web3';
const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

// -> new web3.eth.Iban('XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS')

11.1 Iban instance

This’s instance of Iban

> Iban { _iban: 'XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS' }

11.2 toAddress

static function

web3.eth.Iban.toAddress(ibanAddress)

127

web3.js Documentation, Release 1.0.0

Singleton: Converts a direct IBAN address into an Ethereum address.

Note: This method also exists on the IBAN instance.

11.2.1 Parameters

1. String: the IBAN address to convert.

11.2.2 Returns

String - The Ethereum address.

11.2.3 Example

web3.eth.Iban.toAddress("XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS");
> "0x00c5496aEe77C1bA1f0854206A26DdA82a81D6D8"

11.3 toIban

static function

web3.eth.Iban.toIban(address)

Singleton: Converts an Ethereum address to a direct IBAN address.

11.3.1 Parameters

1. String: the Ethereum address to convert.

11.3.2 Returns

String - The IBAN address.

11.3.3 Example

web3.eth.Iban.toIban("0x00c5496aEe77C1bA1f0854206A26DdA82a81D6D8");
> "XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS"

static function, return IBAN instance

128 Chapter 11. web3.eth.Iban

web3.js Documentation, Release 1.0.0

11.4 fromAddress

web3.eth.Iban.fromAddress(address)

Singleton: Converts an Ethereum address to a direct IBAN instance.

11.4.1 Parameters

1. String: the Ethereum address to convert.

11.4.2 Returns

Object - The IBAN instance.

11.4.3 Example

web3.eth.Iban.fromAddress("0x00c5496aEe77C1bA1f0854206A26DdA82a81D6D8");
> Iban {_iban: "XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS"}

static function, return IBAN instance

11.5 fromBban

web3.eth.Iban.fromBban(bbanAddress)

Singleton: Converts an BBAN address to a direct IBAN instance.

11.5.1 Parameters

1. String: the BBAN address to convert.

11.5.2 Returns

Object - The IBAN instance.

11.5.3 Example

web3.eth.Iban.fromBban('ETHXREGGAVOFYORK');
> Iban {_iban: "XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS"}

static function, return IBAN instance

11.4. fromAddress 129

web3.js Documentation, Release 1.0.0

11.6 createIndirect

web3.eth.Iban.createIndirect(options)

Singleton: Creates an indirect IBAN address from a institution and identifier.

11.6.1 Parameters

1. Object: the options object as follows:

• institution - String: the institution to be assigned

• identifier - String: the identifier to be assigned

11.6.2 Returns

Object - The IBAN instance.

11.6.3 Example

web3.eth.Iban.createIndirect({
institution: "XREG",
identifier: "GAVOFYORK"

});
> Iban {_iban: "XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS"}

static function, return boolean

11.7 isValid

web3.eth.Iban.isValid(ibanAddress)

Singleton: Checks if an IBAN address is valid.

Note: This method also exists on the IBAN instance.

11.7.1 Parameters

1. String: the IBAN address to check.

11.7.2 Returns

Boolean

130 Chapter 11. web3.eth.Iban

web3.js Documentation, Release 1.0.0

11.7.3 Example

web3.eth.Iban.isValid("XE81ETHXREGGAVOFYORK");
> true

web3.eth.Iban.isValid("XE82ETHXREGGAVOFYORK");
> false // because the checksum is incorrect

11.8 prototype.isValid

method of Iban instance

web3.eth.Iban.prototype.isValid()

Singleton: Checks if an IBAN address is valid.

Note: This method also exists on the IBAN instance.

11.8.1 Parameters

1. String: the IBAN address to check.

11.8.2 Returns

Boolean

11.8.3 Example

const iban = new web3.eth.Iban("XE81ETHXREGGAVOFYORK");
iban.isValid();
> true

11.9 prototype.isDirect

method of Iban instance

web3.eth.Iban.prototype.isDirect()

Checks if the IBAN instance is direct.

11.9.1 Returns

Boolean

11.8. prototype.isValid 131

web3.js Documentation, Release 1.0.0

11.9.2 Example

const iban = new web3.eth.Iban("XE81ETHXREGGAVOFYORK");
iban.isDirect();
> false

11.10 prototype.isIndirect

method of Iban instance

web3.eth.Iban.prototype.isIndirect()

Checks if the IBAN instance is indirect.

11.10.1 Returns

Boolean

11.10.2 Example

const iban = new web3.eth.Iban("XE81ETHXREGGAVOFYORK");
iban.isIndirect();
> true

11.11 prototype.checksum

method of Iban instance

web3.eth.Iban.prototype.checksum()

Returns the checksum of the IBAN instance.

11.11.1 Returns

String: The checksum of the IBAN

11.11.2 Example

const iban = new web3.eth.Iban("XE81ETHXREGGAVOFYORK");
iban.checksum();
> "81"

132 Chapter 11. web3.eth.Iban

web3.js Documentation, Release 1.0.0

11.12 prototype.institution

method of Iban instance

web3.eth.Iban.prototype.institution()

Returns the institution of the IBAN instance.

11.12.1 Returns

String: The institution of the IBAN

11.12.2 Example

const iban = new web3.eth.Iban("XE81ETHXREGGAVOFYORK");
iban.institution();
> 'XREG'

11.13 prototype.client

method of Iban instance

web3.eth.Iban.prototype.client()

Returns the client of the IBAN instance.

11.13.1 Returns

String: The client of the IBAN

11.13.2 Example

const iban = new web3.eth.Iban("XE81ETHXREGGAVOFYORK");
iban.client();
> 'GAVOFYORK'

11.14 prototype.toAddress

method of Iban instance

web3.eth.Iban.prototype.toString()

Returns the Ethereum address of the IBAN instance.

11.12. prototype.institution 133

web3.js Documentation, Release 1.0.0

11.14.1 Returns

String: The Ethereum address of the IBAN

11.14.2 Example

const iban = new web3.eth.Iban('XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS');
iban.toAddress();
> '0x00c5496aEe77C1bA1f0854206A26DdA82a81D6D8'

11.15 prototype.toString

method of Iban instance

web3.eth.Iban.prototype.toString()

Returns the IBAN address of the IBAN instance.

11.15.1 Returns

String: The IBAN address.

11.15.2 Example

const iban = new web3.eth.Iban('XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS');
iban.toString();
> 'XE7338O073KYGTWWZN0F2WZ0R8PX5ZPPZS'

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

134 Chapter 11. web3.eth.Iban

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 12

web3.eth.net

Functions to receive details about the current connected network.

12.1 getId

web3.eth.net.getId([callback])
web3.shh.net.getId([callback])

Gets the current network ID.

12.1.1 Parameters

none

12.1.2 Returns

Promise returns Number: The network ID.

12.1.3 Example

web3.eth.net.getId().then(console.log);
> 1

135

web3.js Documentation, Release 1.0.0

12.2 isListening

web3.eth.net.isListening([callback])
web3.shh.net.isListening([callback])

Checks if the node is listening for peers.

12.2.1 Parameters

none

12.2.2 Returns

Promise returns Boolean

12.2.3 Example

web3.eth.isListening().then(console.log);
> true

12.3 getPeerCount

web3.eth.net.getPeerCount([callback])
web3.shh.net.getPeerCount([callback])

Get the number of peers connected to.

12.3.1 Parameters

none

12.3.2 Returns

Promise returns Number

12.3.3 Example

web3.eth.getPeerCount().then(console.log);
> 25

136 Chapter 12. web3.eth.net

web3.js Documentation, Release 1.0.0

12.4 getNetworkType

web3.eth.net.getNetworkType([callback])

Guesses the chain the node is connected by comparing the genesis hashes.

Note: It’s recommended to use the web3.eth.getChainId method to detect the currently connected chain.

12.4.1 Returns

Promise returns String:

• "main" for main network

• "morden" for the morden test network

• "rinkeby" for the rinkeby test network

• "ropsten" for the ropsten test network

• "kovan" for the kovan test network

• "private" for undetectable networks.

12.4.2 Example

web3.eth.net.getNetworkType().then(console.log);
> "main"

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

12.4. getNetworkType 137

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

138 Chapter 12. web3.eth.net

CHAPTER 13

web3.eth.abi

The web3-eth-abi package allows you to de- and encode parameters from a ABI (Application Binary Interface).
This will be used for calling functions of a deployed smart-contract.

import {AbiCoder} from 'web3-eth-abi';

const abiCoder = new AbiCoder();

// or using the web3 umbrella package

import Web3 from 'web3';

const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);
// -> web3.eth.abi

13.1 encodeFunctionSignature

web3.eth.abi.encodeFunctionSignature(functionName);

Encodes the function name to its ABI signature, which are the first 4 bytes of the sha3 hash of the function name
including types.

13.1.1 Parameters

1. functionName - String|Object: The function name to encode. or the JSON interface object of the function.
If string it has to be in the form function(type,type,...), e.g: myFunction(uint256,uint32[],
bytes10,bytes)

139

web3.js Documentation, Release 1.0.0

13.1.2 Returns

String - The ABI signature of the function.

13.1.3 Example

// From a JSON interface object
web3.eth.abi.encodeFunctionSignature({

name: 'myMethod',
type: 'function',
inputs: [{

type: 'uint256',
name: 'myNumber'

},{
type: 'string',
name: 'myString'

}]
})
> 0x24ee0097

// Or string
web3.eth.abi.encodeFunctionSignature('myMethod(uint256,string)')
> '0x24ee0097'

13.2 encodeEventSignature

web3.eth.abi.encodeEventSignature(eventName);

Encodes the event name to its ABI signature, which are the sha3 hash of the event name including input types.

13.2.1 Parameters

1. eventName - String|Object: The event name to encode. or the JSON interface object of the event. If string
it has to be in the form event(type,type,...), e.g: myEvent(uint256,uint32[],bytes10,bytes)

13.2.2 Returns

String - The ABI signature of the event.

13.2.3 Example

web3.eth.abi.encodeEventSignature('myEvent(uint256,bytes32)')
> 0xf2eeb729e636a8cb783be044acf6b7b1e2c5863735b60d6daae84c366ee87d97

// or from a json interface object
web3.eth.abi.encodeEventSignature({

name: 'myEvent',

(continues on next page)

140 Chapter 13. web3.eth.abi

web3.js Documentation, Release 1.0.0

(continued from previous page)

type: 'event',
inputs: [{

type: 'uint256',
name: 'myNumber'

},{
type: 'bytes32',
name: 'myBytes'

}]
})
> 0xf2eeb729e636a8cb783be044acf6b7b1e2c5863735b60d6daae84c366ee87d97

13.3 encodeParameter

web3.eth.abi.encodeParameter(type, parameter);

Encodes a parameter based on its type to its ABI representation.

13.3.1 Parameters

1. type - String|Object: The type of the parameter, see the solidity documentation for a list of types.

2. parameter - Mixed: The actual parameter to encode.

13.3.2 Returns

String - The ABI encoded parameter.

13.3.3 Example

web3.eth.abi.encodeParameter('uint256', '2345675643');
> "0x008bd02b7b"

web3.eth.abi.encodeParameter('uint256', '2345675643');
> "0x008bd02b7b"

web3.eth.abi.encodeParameter('bytes32', '0xdf3234');
> "0xdf323400"

web3.eth.abi.encodeParameter('bytes', '0xdf3234');
>
→˓"0x002003df323400
→˓"

web3.eth.abi.encodeParameter('bytes32[]', ['0xdf3234', '0xfdfd']);
>
→˓"002002df323400fdfd00
→˓"

13.3. encodeParameter 141

http://solidity.readthedocs.io/en/develop/types.html

web3.js Documentation, Release 1.0.0

13.4 encodeParameters

web3.eth.abi.encodeParameters(typesArray, parameters);

Encodes a function parameters based on its JSON interface object.

13.4.1 Parameters

1. typesArray - Array<String|Object>|Object: An array with types or a JSON interface of a func-
tion. See the solidity documentation for a list of types.

2. parameters - Array: The parameters to encode.

13.4.2 Returns

String - The ABI encoded parameters.

13.4.3 Example

web3.eth.abi.encodeParameters(['uint256','string'], ['2345675643', 'Hello!%']);
>
→˓"0x008bd02b7b00400748656c6c6f212500
→˓"

web3.eth.abi.encodeParameters(['uint8[]','bytes32'], [['34','434'], '0x324567fff']);
> "0x0"

13.5 encodeFunctionCall

web3.eth.abi.encodeFunctionCall(jsonInterface, parameters);

Encodes a function call using its JSON interface object and given parameters.

13.5.1 Parameters

1. jsonInterface - Object: The JSON interface object of a function.

2. parameters - Array: The parameters to encode.

13.5.2 Returns

String - The ABI encoded function call. Means function signature + parameters.

142 Chapter 13. web3.eth.abi

http://solidity.readthedocs.io/en/develop/types.html

web3.js Documentation, Release 1.0.0

13.5.3 Example

web3.eth.abi.encodeFunctionCall({
name: 'myMethod',
type: 'function',
inputs: [{

type: 'uint256',
name: 'myNumber'

},{
type: 'string',
name: 'myString'

}]
}, ['2345675643', 'Hello!%']);
>
→˓"0x24ee0097008bd02b7b00400748656c6c6f212500
→˓"

13.6 decodeParameter

web3.eth.abi.decodeParameter(type, hexString);

Decodes an ABI encoded parameter to its JavaScript type.

13.6.1 Parameters

1. type - String|Object: The type of the parameter, see the solidity documentation for a list of types.

2. hexString - String: The ABI byte code to decode.

13.6.2 Returns

Mixed - The decoded parameter.

13.6.3 Example

web3.eth.abi.decodeParameter('uint256',
→˓'0x0010');
> "16"

web3.eth.abi.decodeParameter('string',
→˓'0x00200848656c6c6f21252100
→˓');
> "Hello!%!"

web3.eth.abi.decodeParameter('string',
→˓'0x00200848656c6c6f21252100
→˓');
> "Hello!%!"

13.6. decodeParameter 143

http://solidity.readthedocs.io/en/develop/types.html

web3.js Documentation, Release 1.0.0

13.7 decodeParameters

web3.eth.abi.decodeParameters(typesArray, hexString);

Decodes ABI encoded parameters to its JavaScript types.

13.7.1 Parameters

1. typesArray - Array<String|Object>|Object: An array with types or a JSON interface outputs
array. See the solidity documentation for a list of types.

2. hexString - String: The ABI byte code to decode.

13.7.2 Returns

Object - The result object containing the decoded parameters.

13.7.3 Example

web3.eth.abi.decodeParameters(['string', 'uint256'],
→˓'0x004000ea000848656c6c6f21252100
→˓');
> Result { '0': 'Hello!%!', '1': '234' }

web3.eth.abi.decodeParameters([{
type: 'string',
name: 'myString'

},{
type: 'uint256',
name: 'myNumber'

}],
→˓'0x004000ea000848656c6c6f21252100
→˓');
> Result {

'0': 'Hello!%!',
'1': '234',
myString: 'Hello!%!',
myNumber: '234'

}

13.8 decodeLog

web3.eth.abi.decodeLog(inputs, hexString, topics);

Decodes ABI encoded log data and indexed topic data.

144 Chapter 13. web3.eth.abi

http://solidity.readthedocs.io/en/develop/types.html

web3.js Documentation, Release 1.0.0

13.8.1 Parameters

1. inputs - Array: A JSON interface inputs array. See the solidity documentation for a list of types.

2. hexString - String: The ABI byte code in the data field of a log.

3. topics - Array: An array with the index parameter topics of the log, without the topic[0] if its a non-
anonymous event, otherwise with topic[0].

13.8.2 Returns

Object - The result object containing the decoded parameters.

13.8.3 Example

web3.eth.abi.decodeLog([{
type: 'string',
name: 'myString'

},{
type: 'uint256',
name: 'myNumber',
indexed: true

},{
type: 'uint8',
name: 'mySmallNumber',
indexed: true

}],

→˓'0x00200748656c6c6f252100
→˓',
['0x00f310',
→˓'0x0010']);
> Result {

'0': 'Hello%!',
'1': '62224',
'2': '16',
myString: 'Hello%!',
myNumber: '62224',
mySmallNumber: '16'

}

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

13.8. decodeLog 145

http://solidity.readthedocs.io/en/develop/types.html
https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

146 Chapter 13. web3.eth.abi

CHAPTER 14

web3.*.net

The web3-net package allows you to interact with the Ethereum nodes network properties.

import Web3 from 'web3';
import {Net} from 'web3-net';

// "Personal.providers.givenProvider" will be set if in an Ethereum supported browser.
const net = new Net(Web3.givenProvider || 'ws://some.local-or-remote.node:8546', null,
→˓ options);

// or using the web3 umbrella package
const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

// -> web3.eth.net
// -> web3.shh.net

14.1 getId

web3.eth.net.getId([callback])
web3.shh.net.getId([callback])

Gets the current network ID.

14.1.1 Parameters

none

147

web3.js Documentation, Release 1.0.0

14.1.2 Returns

Promise returns Number: The network ID.

14.1.3 Example

web3.eth.net.getId().then(console.log);
> 1

14.2 isListening

web3.eth.net.isListening([callback])
web3.shh.net.isListening([callback])

Checks if the node is listening for peers.

14.2.1 Parameters

none

14.2.2 Returns

Promise returns Boolean

14.2.3 Example

web3.eth.isListening().then(console.log);
> true

14.3 getPeerCount

web3.eth.net.getPeerCount([callback])
web3.shh.net.getPeerCount([callback])

Get the number of peers connected to.

14.3.1 Parameters

none

148 Chapter 14. web3.*.net

web3.js Documentation, Release 1.0.0

14.3.2 Returns

Promise returns Number

14.3.3 Example

web3.eth.getPeerCount().then(console.log);
> 25

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

14.3. getPeerCount 149

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

150 Chapter 14. web3.*.net

CHAPTER 15

web3.bzz

The web3-bzz does no longer exists in the web3.js project. Check out the Swarm Docs for seeing possible alterna-
tives to interact with the Swarm API.

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

151

http://swarm-guide.readthedocs.io/en/latest/
https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

152 Chapter 15. web3.bzz

CHAPTER 16

web3.shh

The web3-shh package allows you to interact with the whisper protocol for broadcasting. For more see Whisper
Overview.

import Web3 from 'web3';
import {Shh} import 'web3-shh';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const shh = new Shh(Web3.givenProvider || 'ws://some.local-or-remote.node:8546', null,
→˓ options);

// or using the web3 umbrella package
const web3 = new Web3(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options;

// -> web3.shh

16.1 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

16.1.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

153

https://github.com/ethereum/go-ethereum/wiki/Whisper
https://github.com/ethereum/go-ethereum/wiki/Whisper

web3.js Documentation, Release 1.0.0

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

16.1.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

16.2 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

16.2.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

154 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

16.3 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

16.3.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

16.4 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

16.4.1 Returns

string|number: The current value of the defaultGasPrice property.

16.5 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

16.3. defaultAccount 155

web3.js Documentation, Release 1.0.0

16.5.1 Returns

string|number: The current value of the defaultGas property.

16.6 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

16.6.1 Returns

number: The current value of transactionBlockTimeout

16.7 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

16.7.1 Returns

number: The current value of transactionConfirmationBlocks

16.8 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

156 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

16.8.1 Returns

number: The current value of transactionPollingTimeout

16.9 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

16.9.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

16.10 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

16.10.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

16.9. transactionSigner 157

web3.js Documentation, Release 1.0.0

16.10.2 Returns

Boolean

16.10.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

16.11 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

16.11.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

16.11.2 Example

158 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

16.12 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

16.12.1 Returns

Object: The given provider set or false.

16.12.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

16.13 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

16.12. givenProvider 159

web3.js Documentation, Release 1.0.0

16.13.1 Returns

Object: The current provider set.

16.13.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

16.14 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

16.14.1 Parameters

none

16.14.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

16.14.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

16.15 getId

160 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

web3.eth.net.getId([callback])
web3.shh.net.getId([callback])

Gets the current network ID.

16.15.1 Parameters

none

16.15.2 Returns

Promise returns Number: The network ID.

16.15.3 Example

web3.eth.net.getId().then(console.log);
> 1

16.16 isListening

web3.eth.net.isListening([callback])
web3.shh.net.isListening([callback])

Checks if the node is listening for peers.

16.16.1 Parameters

none

16.16.2 Returns

Promise returns Boolean

16.16.3 Example

web3.eth.isListening().then(console.log);
> true

16.17 getPeerCount

16.16. isListening 161

web3.js Documentation, Release 1.0.0

web3.eth.net.getPeerCount([callback])
web3.shh.net.getPeerCount([callback])

Get the number of peers connected to.

16.17.1 Parameters

none

16.17.2 Returns

Promise returns Number

16.17.3 Example

web3.eth.getPeerCount().then(console.log);
> 25

16.18 getVersion

web3.shh.getVersion([callback])

Returns the version of the running whisper.

16.18.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.18.2 Returns

Promise<string> - The version of the current whisper running.

16.18.3 Example

web3.shh.getVersion()
.then(console.log);
> "5.0"

16.19 getInfo

162 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

web3.shh.getInfo([callback])

Gets information about the current whisper node.

16.19.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.19.2 Returns

Promise<Object> - The information of the node with the following properties:

• messages - Number: Number of currently floating messages.

• maxMessageSize - Number: The current message size limit in bytes.

• memory - Number: The memory size of the floating messages in bytes.

• minPow - Number: The current minimum PoW requirement.

16.19.3 Example

web3.shh.getInfo().then(console.log);
> {

"minPow": 0.8,
"maxMessageSize": 12345,
"memory": 1234335,
"messages": 20

}

16.20 setMaxMessageSize

web3.shh.setMaxMessageSize(size, [callback])

Sets the maximal message size allowed by this node. Incoming and outgoing messages with a larger size will be
rejected. Whisper message size can never exceed the limit imposed by the underlying P2P protocol (10 Mb).

16.20.1 Parameters

1. Number - Message size in bytes.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.20.2 Returns

Promise<boolean> - Returns true on success, error on failure.

16.20. setMaxMessageSize 163

web3.js Documentation, Release 1.0.0

16.20.3 Example

web3.shh.setMaxMessageSize(1234565)
.then(console.log);
> true

16.21 setMinPoW

web3.shh.setMinPoW(pow, [callback])

Sets the minimal PoW required by this node.

This experimental function was introduced for the future dynamic adjustment of PoW requirement. If the node is
overwhelmed with messages, it should raise the PoW requirement and notify the peers. The new value should be set
relative to the old value (e.g. double). The old value can be obtained via web3.shh.getInfo().

16.21.1 Parameters

1. Number - The new PoW requirement.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.21.2 Returns

Promise<boolean> - Returns true on success, error on failure.

16.21.3 Example

web3.shh.setMinPoW(0.9)
.then(console.log);
> true

16.22 markTrustedPeer

web3.shh.markTrustedPeer(enode, [callback])

Marks specific peer trusted, which will allow it to send historic (expired) messages.

Note: This function is not adding new nodes, the node needs to be an existing peer.

164 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

16.22.1 Parameters

1. String - Enode of the trusted peer.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.22.2 Returns

Promise<boolean> - Returns true on success, error on failure.

16.22.3 Example

web3.shh.markTrustedPeer()
.then(console.log);
> true

16.23 newKeyPair

web3.shh.newKeyPair([callback])

Generates a new public and private key pair for message decryption and encryption.

16.23.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.23.2 Returns

Promise<string> - Returns the Key ID on success and an error on failure.

16.23.3 Example

web3.shh.newKeyPair()
.then(console.log);
> "5e57b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f"

16.24 addPrivateKey

web3.shh.addPrivateKey(privateKey, [callback])

Stores a key pair derived from a private key, and returns its ID.

16.23. newKeyPair 165

web3.js Documentation, Release 1.0.0

16.24.1 Parameters

1. String - The private key as HEX bytes to import.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.24.2 Returns

Promise<string> - The Key ID on success and an error on failure.

16.24.3 Example

web3.shh.addPrivateKey(
→˓'0x8bda3abeb454847b515fa9b404cede50b1cc63cfdeddd4999d074284b4c21e15')
.then(console.log);
> "3e22b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f"

16.25 deleteKeyPair

web3.shh.deleteKeyPair(id, [callback])

Deletes the specifies key if it exists.

16.25.1 Parameters

1. String - The key pair ID, returned by the creation functions (shh.newKeyPair and shh.
addPrivateKey).

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.25.2 Returns

Promise<boolean> - Returns true on success, error on failure.

16.25.3 Example

web3.shh.deleteKeyPair(
→˓'3e22b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f')
.then(console.log);
> true

166 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

16.26 hasKeyPair

web3.shh.hasKeyPair(id, [callback])

Checks if the whisper node has a private key of a key pair matching the given ID.

16.26.1 Parameters

1. String - The key pair ID, returned by the creation functions (shh.newKeyPair and shh.
addPrivateKey).

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.26.2 Returns

Promise<boolean> - Returns true on if the key pair exist in the node, false if not. Error on failure.

16.26.3 Example

web3.shh.hasKeyPair('fe22b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f
→˓')
.then(console.log);
> true

16.27 getPublicKey

web3.shh.getPublicKey(id, [callback])

Returns the public key for a key pair ID.

16.27.1 Parameters

1. String - The key pair ID, returned by the creation functions (shh.newKeyPair and shh.
addPrivateKey).

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.27.2 Returns

Promise<string> - Returns the Public key on success and an error on failure.

16.27.3 Example

16.26. hasKeyPair 167

web3.js Documentation, Release 1.0.0

web3.shh.getPublicKey(
→˓'3e22b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f')
.then(console.log);
>
→˓"0x04d1574d4eab8f3dde4d2dc7ed2c4d699d77cbbdd09167b8fffa099652ce4df00c4c6e0263eafe05007a46fdf0c8d32b11aeabcd3abbc7b2bc2bb967368a68e9c6
→˓"

16.28 getPrivateKey

web3.shh.getPrivateKey(id, [callback])

Returns the private key for a key pair ID.

16.28.1 Parameters

1. String - The key pair ID, returned by the creation functions (shh.newKeyPair and shh.
addPrivateKey).

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.28.2 Returns

Promise<string> - Returns the private key on success and an error on failure.

16.28.3 Example

web3.shh.getPrivateKey(
→˓'3e22b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f')
.then(console.log);
> "0x234234e22b9ffc2387e18636e0534534a3d0c56b0243567432453264c16e78a2adc"

16.29 newSymKey

web3.shh.newSymKey([callback])

Generates a random symmetric key and stores it under an ID, which is then returned. Will be used for encrypting and
decrypting of messages where the sym key is known to both parties.

16.29.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

168 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

16.29.2 Returns

Promise<string> - Returns the Key ID on success and an error on failure.

16.29.3 Example

web3.shh.newSymKey()
.then(console.log);
> "cec94d139ff51d7df1d228812b90c23ec1f909afa0840ed80f1e04030bb681e4"

16.30 addSymKey

web3.shh.addSymKey(symKey, [callback])

Stores the key, and returns its ID.

16.30.1 Parameters

1. String - The raw key for symmetric encryption as HEX bytes.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.30.2 Returns

Promise<string> - Returns the key ID on success and an error on failure.

16.30.3 Example

web3.shh.addSymKey('0x5e11b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f
→˓')
.then(console.log);
> "fea94d139ff51d7df1d228812b90c23ec1f909afa0840ed80f1e04030bb681e4"

16.31 generateSymKeyFromPassword

web3.shh.generateSymKeyFromPassword(password, [callback])

Generates the key from password, stores it, and returns its ID.

16.31.1 Parameters

1. String - A password to generate the sym key from.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.30. addSymKey 169

web3.js Documentation, Release 1.0.0

16.31.2 Returns

Promise<String|Error> - Returns the Key ID on success and an error on failure.

16.31.3 Example

web3.shh.generateSymKeyFromPassword('Never use this password - password!')
.then(console.log);
> "2e57b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f"

16.32 hasSymKey

web3.shh.hasSymKey(id, [callback])

Checks if there is a symmetric key stored with the given ID.

16.32.1 Parameters

1. String - The key pair ID, returned by the creation functions (shh.newSymKey, shh.addSymKey or
shh.generateSymKeyFromPassword).

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.32.2 Returns

Promise<boolean> - Returns true on if the symmetric key exist in the node, false if not. Error on failure.

16.32.3 Example

web3.shh.hasSymKey('f6dcf21ed6a17bd78d8c4c63195ab997b3b65ea683705501eae82d32667adc92')
.then(console.log);
> true

16.33 getSymKey

web3.shh.getSymKey(id, [callback])

Returns the symmetric key associated with the given ID.

170 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

16.33.1 Parameters

1. String - The key pair ID, returned by the creation functions (shh.newKeyPair and shh.
addPrivateKey).

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.33.2 Returns

Promise<string> - Returns the raw symmetric key on success and an error on failure.

16.33.3 Example

web3.shh.getSymKey('af33b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f')
.then(console.log);
> "0xa82a520aff70f7a989098376e48ec128f25f767085e84d7fb995a9815eebff0a"

16.34 deleteSymKey

web3.shh.deleteSymKey(id, [callback])

Deletes the symmetric key associated with the given ID.

16.34.1 Parameters

1. String - The key pair ID, returned by the creation functions (shh.newKeyPair and shh.
addPrivateKey).

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

16.34.2 Returns

Promise<boolean> - Returns true on if the symmetric key was deleted, error on failure.

16.34.3 Example

web3.shh.deleteSymKey(
→˓'bf31b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f')
.then(console.log);
> true

16.34. deleteSymKey 171

web3.js Documentation, Release 1.0.0

16.35 post

web3.shh.post(object [, callback])

This method should be called, when we want to post whisper a message to the network.

16.35.1 Parameters

1. Object - The post object:

• symKeyID - String (optional): ID of symmetric key for message encryption (Either symKeyID
or pubKey must be present. Can not be both.).

• pubKey - String (optional): The public key for message encryption (Either symKeyID or
pubKey must be present. Can not be both.).

• sig - String (optional): The ID of the signing key.

• ttl - Number: Time-to-live in seconds.

• topic - String: 4 Bytes (mandatory when key is symmetric): Message topic.

• payload - String: The payload of the message to be encrypted.

• padding - Number (optional): Padding (byte array of arbitrary length).

• powTime - Number (optional)?: Maximal time in seconds to be spent on proof of work.

• powTarget - Number (optional)?: Minimal PoW target required for this message.

• targetPeer - Number (optional): Peer ID (for peer-to-peer message only).

2. callback - Function: (optional) Optional callback, returns an error object as first parameter and the result
as second.

16.35.2 Returns

Promise returns Promise - returns a promise. Upon success, the then function will be passed a string representing
the hash of the sent message. On error, the catch function will be passed a string containing the reason for the error.

16.35.3 Example

const identities = [];

Promise.all([
web3.shh.newSymKey().then((id) => {identities.push(id);}),
web3.shh.newKeyPair().then((id) => {identities.push(id);})

]).then(() => {

// will receive also its own message send, below
const subscription = shh.subscribe("messages", {

symKeyID: identities[0],
topics: ['0xffaadd11']

}).on('data', console.log);

(continues on next page)

172 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

(continued from previous page)

}).then(() => {
web3.shh.post({

symKeyID: identities[0], // encrypts using the sym key ID
sig: identities[1], // signs the message using the keyPair ID
ttl: 10,
topic: '0xffaadd11',
payload: '0xffffffdddddd1122',
powTime: 3,
powTarget: 0.5

}).then(hash => console.log(`Message with hash ${hash} was successfuly sent`))
.catch(err => console.log("Error: ", err));

});

16.36 subscribe

web3.shh.subscribe('messages', options [, callback])

Subscribe for incoming whisper messages.

16.36.1 Parameters

1. "messages" - String: Type of the subscription.

2. Object - The subscription options:

• symKeyID - String: ID of symmetric key for message decryption.

• privateKeyID - String: ID of private (asymmetric) key for message decryption.

• sig - String (optional): Public key of the signature, to verify.

• topics- Array (optional when “privateKeyID” key is given): Filters messages by this topic(s).
Each topic must be a 4 bytes HEX string.

• minPow - Number (optional): Minimal PoW requirement for incoming messages.

• allowP2P - Boolean (optional): Indicates if this filter allows processing of direct peer-to-peer
messages (which are not to be forwarded any further, because they might be expired). This might be
the case in some very rare cases, e.g. if you intend to communicate to MailServers, etc.

3. callback - Function: (optional) Optional callback, returns an error object as first parameter and the result
as second. Will be called for each incoming subscription, and the subscription itself as 3 parameter.

16.36.2 Notification Returns

Object - The incoming message:

• hash - String: Hash of the enveloped message.

• sig - String: Public key which signed this message.

• recipientPublicKey - String: The recipients public key.

• timestamp - String: Unix timestamp of the message genertion.

16.36. subscribe 173

web3.js Documentation, Release 1.0.0

• ttl - Number: Time-to-live in seconds.

• topic - String: 4 Bytes HEX string message topic.

• payload - String: Decrypted payload.

• padding - Number: Optional padding (byte array of arbitrary length).

• pow - Number: Proof of work value.

16.36.3 Example

web3.shh.subscribe('messages', {
symKeyID: 'bf31b9ffc2387e18636e0a3d0c56b023264c16e78a2adcba1303cefc685e610f',
sig:

→˓'0x04d1574d4eab8f3dde4d2dc7ed2c4d699d77cbbdd09167b8fffa099652ce4df00c4c6e0263eafe05007a46fdf0c8d32b11aeabcd3abbc7b2bc2bb967368a68e9c6
→˓',

ttl: 20,
topics: ['0xffddaa11'],
minPow: 0.8,

}, (error, message, subscription) => {

console.log(message);
> {

"hash": "0x4158eb81ad8e30cfcee67f20b1372983d388f1243a96e39f94fd2797b1e9c78e",
"padding":

→˓"0xc15f786f34e5cef0fef6ce7c1185d799ecdb5ebca72b3310648c5588db2e99a0d73301c7a8d90115a91213f0bc9c72295fbaf584bf14dc97800550ea53577c9fb57c0249caeb081733b4e605cdb1a6011cee8b6d8fddb972c2b90157e23ba3baae6c68d4f0b5822242bb2c4cd821b9568d3033f10ec1114f641668fc1083bf79ebb9f5c15457b538249a97b22a4bcc4f02f06dec7318c16758f7c008001c2e14eba67d26218ec7502ad6ba81b2402159d7c29b068b8937892e3d4f0d4ad1fb9be5e66fb61d3d21a1c3163bce74c0a9d16891e2573146aa92ecd7b91ea96a6987ece052edc5ffb620a8987a83ac5b8b6140d8df6e92e64251bf3a2cec0cca
→˓",

"payload": "0xdeadbeaf",
"pow": 0.5371803278688525,
"recipientPublicKey": null,
"sig": null,
"timestamp": 1496991876,
"topic": "0x01020304",
"ttl": 50

}
})
// or
.on('data', (message) => { ... });

16.37 clearSubscriptions

web3.shh.clearSubscriptions()

Resets subscriptions.

Note: This will not reset subscriptions from other packages like web3-eth, as they use their own requestManager.

16.37.1 Parameters

1. Boolean: If true it keeps the "syncing" subscription.

174 Chapter 16. web3.shh

web3.js Documentation, Release 1.0.0

16.37.2 Returns

Boolean

16.37.3 Example

web3.shh.subscribe('messages', {...} , () => { ... });

...

web3.shh.clearSubscriptions();

16.38 newMessageFilter

web3.shh.newMessageFilter(options)

Create a new filter within the node. This filter can be used to poll for new messages that match the set of criteria.

16.38.1 Parameters

1. Object: See web3.shh.subscribe() options for details.

16.38.2 Returns

Promise<string> - Returns the filter ID.

16.38.3 Example

web3.shh.newMessageFilter()
.then(console.log);
> "2b47fbafb3cce24570812a82e6e93cd9e2551bbc4823f6548ff0d82d2206b326"

16.39 deleteMessageFilter

web3.shh.deleteMessageFilter(id)

Deletes a message filter in the node.

16.39.1 Parameters

1. String: The filter ID created with shh.newMessageFilter().

16.38. newMessageFilter 175

web3.js Documentation, Release 1.0.0

16.39.2 Returns

Promise<boolean> - Returns true on success, error on failure.

16.39.3 Example

web3.shh.deleteMessageFilter(
→˓'2b47fbafb3cce24570812a82e6e93cd9e2551bbc4823f6548ff0d82d2206b326')
.then(console.log);
> true

16.40 getFilterMessages

web3.shh.getFilterMessages(id)

Retrieve messages that match the filter criteria and are received between the last time this function was called and now.

16.40.1 Parameters

1. String: The filter ID created with shh.newMessageFilter().

16.40.2 Returns

Promise<Array> - Returns an array of message objects like web3.shh.subscribe() notification returns

16.40.3 Example

web3.shh.getFilterMessages(
→˓'2b47fbafb3cce24570812a82e6e93cd9e2551bbc4823f6548ff0d82d2206b326')
.then(console.log);
> [{

"hash": "0x4158eb81ad8e30cfcee67f20b1372983d388f1243a96e39f94fd2797b1e9c78e",
"padding":

→˓"0xc15f786f34e5cef0fef6ce7c1185d799ecdb5ebca72b3310648c5588db2e99a0d73301c7a8d90115a91213f0bc9c72295fbaf584bf14dc97800550ea53577c9fb57c0249caeb081733b4e605cdb1a6011cee8b6d8fddb972c2b90157e23ba3baae6c68d4f0b5822242bb2c4cd821b9568d3033f10ec1114f641668fc1083bf79ebb9f5c15457b538249a97b22a4bcc4f02f06dec7318c16758f7c008001c2e14eba67d26218ec7502ad6ba81b2402159d7c29b068b8937892e3d4f0d4ad1fb9be5e66fb61d3d21a1c3163bce74c0a9d16891e2573146aa92ecd7b91ea96a6987ece052edc5ffb620a8987a83ac5b8b6140d8df6e92e64251bf3a2cec0cca
→˓",

"payload": "0xdeadbeaf",
"pow": 0.5371803278688525,
"recipientPublicKey": null,
"sig": null,
"timestamp": 1496991876,
"topic": "0x01020304",
"ttl": 50

},{...}]

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

176 Chapter 16. web3.shh

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 17

web3.utils

This package provides utility functions for Ethereum dapps and other web3.js packages.

17.1 randomHex

web3.utils.randomHex(size)

The randomHex library to generate cryptographically strong pseudo-random HEX strings from a given byte size.

17.1.1 Parameters

1. size - Number: The byte size for the HEX string, e.g. 32 will result in a 32 bytes HEX string with 64
characters preficed with “0x”.

17.1.2 Returns

String: The generated random HEX string.

17.1.3 Example

web3.utils.randomHex(32)
> "0xa5b9d60f32436310afebcfda832817a68921beb782fabf7915cc0460b443116a"

web3.utils.randomHex(4)
> "0x6892ffc6"

web3.utils.randomHex(2)

(continues on next page)

177

https://github.com/frozeman/randomHex

web3.js Documentation, Release 1.0.0

(continued from previous page)

> "0x99d6"

web3.utils.randomHex(1)
> "0x9a"

web3.utils.randomHex(0)
> "0x"

17.2 BN

web3.utils.BN(mixed)

The BN.js library for calculating with big numbers in JavaScript. See the BN.js documentation for details.

Note: For safe conversion of many types, incl BigNumber.js use utils.toBN

17.2.1 Parameters

1. value - String|Number: A number, number string or HEX string to convert to a BN object.

17.2.2 Returns

Object: The BN.js instance.

17.2.3 Example

const BN = web3.utils.BN;

new BN(1234).toString();
> "1234"

new BN('1234').add(new BN('1')).toString();
> "1235"

new BN('0xea').toString();
> "234"

17.3 isBN

web3.utils.isBN(bn)

Checks if a given value is a BN.js instance.

178 Chapter 17. web3.utils

https://github.com/indutny/bn.js/
https://github.com/indutny/bn.js/
http://mikemcl.github.io/bignumber.js/
https://github.com/indutny/bn.js/
https://github.com/indutny/bn.js/

web3.js Documentation, Release 1.0.0

17.3.1 Parameters

1. bn - Object: An BN.js instance.

17.3.2 Returns

Boolean

17.3.3 Example

const number = new BN(10);

web3.utils.isBN(number);
> true

17.4 isBigNumber

web3.utils.isBigNumber(bignumber)

Checks if a given value is a BigNumber.js instance.

17.4.1 Parameters

1. BigNumber - Object: A BigNumber.js instance.

17.4.2 Returns

Boolean

17.4.3 Example

const number = new BigNumber(10);

web3.utils.isBigNumber(number);
> true

17.5 keccak256

web3.utils.keccak256(string)
web3.utils.sha3(string) // ALIAS

17.4. isBigNumber 179

https://github.com/indutny/bn.js/
http://mikemcl.github.io/bignumber.js/
http://mikemcl.github.io/bignumber.js/

web3.js Documentation, Release 1.0.0

Will calculate the keccak256 of the input.

Note: To mimic the keccak256 behaviour of solidity use soliditySha3

17.5.1 Parameters

1. string - String: A string to hash.

17.5.2 Returns

String: the result hash.

17.5.3 Example

web3.utils.keccak256('234'); // taken as string
> "0xc1912fee45d61c87cc5ea59dae311904cd86b84fee17cc96966216f811ce6a79"

web3.utils.keccak256(new BN('234'));
> "0xbc36789e7a1e281436464229828f817d6612f7b477d66591ff96a9e064bcc98a"

web3.utils.keccak256(234);
> null // can't calculate the hash of a number

web3.utils.keccak256(0xea); // same as above, just the HEX representation of the
→˓number
> null

web3.utils.keccak256('0xea'); // will be converted to a byte array first, and then
→˓hashed
> "0x2f20677459120677484f7104c76deb6846a2c071f9b3152c103bb12cd54d1a4a"

17.6 soliditySha3

web3.utils.soliditySha3(param1 [, param2, ...])

Will calculate the sha3 of given input parameters in the same way solidity would. This means arguments will be ABI
converted and tightly packed before being hashed.

17.6.1 Parameters

1. paramX - Mixed: Any type, or an object with {type: 'uint', value: '123456'} or {t:
'bytes', v: '0xfff456'}. Basic types are autodetected as follows:

• String non numerical UTF-8 string is interpreted as string.

• String|Number|BN|HEX positive number is interpreted as uint256.

• String|Number|BN negative number is interpreted as int256.

180 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

• Boolean as bool.

• String HEX string with leading 0x is interpreted as bytes.

• HEX HEX number representation is interpreted as uint256.

17.6.2 Returns

String: the result hash.

17.6.3 Example

web3.utils.soliditySha3('234564535', '0xfff23243', true, -10);
// auto detects: uint256, bytes, bool, int256
> "0x3e27a893dc40ef8a7f0841d96639de2f58a132be5ae466d40087a2cfa83b7179"

web3.utils.soliditySha3('Hello!%'); // auto detects: string
> "0x661136a4267dba9ccdf6bfddb7c00e714de936674c4bdb065a531cf1cb15c7fc"

web3.utils.soliditySha3('234'); // auto detects: uint256
> "0x61c831beab28d67d1bb40b5ae1a11e2757fa842f031a2d0bc94a7867bc5d26c2"

web3.utils.soliditySha3(0xea); // same as above
> "0x61c831beab28d67d1bb40b5ae1a11e2757fa842f031a2d0bc94a7867bc5d26c2"

web3.utils.soliditySha3(new BN('234')); // same as above
> "0x61c831beab28d67d1bb40b5ae1a11e2757fa842f031a2d0bc94a7867bc5d26c2"

web3.utils.soliditySha3({type: 'uint256', value: '234'})); // same as above
> "0x61c831beab28d67d1bb40b5ae1a11e2757fa842f031a2d0bc94a7867bc5d26c2"

web3.utils.soliditySha3({t: 'uint', v: new BN('234')})); // same as above
> "0x61c831beab28d67d1bb40b5ae1a11e2757fa842f031a2d0bc94a7867bc5d26c2"

web3.utils.soliditySha3('0x407D73d8a49eeb85D32Cf465507dd71d507100c1');
> "0x4e8ebbefa452077428f93c9520d3edd60594ff452a29ac7d2ccc11d47f3ab95b"

web3.utils.soliditySha3({t: 'bytes', v: '0x407D73d8a49eeb85D32Cf465507dd71d507100c1'}
→˓);
> "0x4e8ebbefa452077428f93c9520d3edd60594ff452a29ac7d2ccc11d47f3ab95b" // same result
→˓as above

web3.utils.soliditySha3({t: 'address', v: '0x407D73d8a49eeb85D32Cf465507dd71d507100c1
→˓'});
> "0x4e8ebbefa452077428f93c9520d3edd60594ff452a29ac7d2ccc11d47f3ab95b" // same as
→˓above, but will do a checksum check, if its multi case

web3.utils.soliditySha3({t: 'bytes32', v: '0x407D73d8a49eeb85D32Cf465507dd71d507100c1
→˓'});
> "0x3c69a194aaf415ba5d6afca734660d0a3d45acdc05d54cd1ca89a8988e7625b4" // different
→˓result as above

(continues on next page)

17.6. soliditySha3 181

web3.js Documentation, Release 1.0.0

(continued from previous page)

web3.utils.soliditySha3({t: 'string', v: 'Hello!%'}, {t: 'int8', v:-23}, {t: 'address
→˓', v: '0x85F43D8a49eeB85d32Cf465507DD71d507100C1d'});
> "0xa13b31627c1ed7aaded5aecec71baf02fe123797fffd45e662eac8e06fbe4955"

17.7 isHex

web3.utils.isHex(hex)

Checks if a given string is a HEX string.

17.7.1 Parameters

1. hex - String|HEX: The given HEX string.

17.7.2 Returns

Boolean

17.7.3 Example

web3.utils.isHex('0xc1912');
> true

web3.utils.isHex(0xc1912);
> true

web3.utils.isHex('c1912');
> true

web3.utils.isHex(345);
> true // this is tricky, as 345 can be a a HEX representation or a number, be
→˓careful when not having a 0x in front!

web3.utils.isHex('0xZ1912');
> false

web3.utils.isHex('Hello');
> false

17.8 isHexStrict

182 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

web3.utils.isHexStrict(hex)

Checks if a given string is a HEX string. Difference to web3.utils.isHex() is that it expects HEX to be prefixed
with 0x.

17.8.1 Parameters

1. hex - String|HEX: The given HEX string.

17.8.2 Returns

Boolean

17.8.3 Example

web3.utils.isHexStrict('0xc1912');
> true

web3.utils.isHexStrict(0xc1912);
> false

web3.utils.isHexStrict('c1912');
> false

web3.utils.isHexStrict(345);
> false // this is tricky, as 345 can be a a HEX representation or a number, be
→˓careful when not having a 0x in front!

web3.utils.isHexStrict('0xZ1912');
> false

web3.utils.isHex('Hello');
> false

17.9 isAddress

web3.utils.isAddress(address, [, chainId])

Checks if a given string is a valid Ethereum address. It will also check the checksum, if the address has upper and
lowercase letters.

17.9.1 Parameters

1. address - String: An address string.

2. chainId - number (optional): Chain id where checksummed address should be valid, defaults to null.
RSKIP-60 <https://github.com/rsksmart/RSKIPs/blob/master/IPs/RSKIP60.md> for details.

17.9. isAddress 183

https://github.com/rsksmart/RSKIPs/blob/master/IPs/RSKIP60.md

web3.js Documentation, Release 1.0.0

17.9.2 Returns

Boolean

17.9.3 Example

web3.utils.isAddress('0xc1912fee45d61c87cc5ea59dae31190fffff232d');
> true

web3.utils.isAddress('c1912fee45d61c87cc5ea59dae31190fffff232d');
> true

web3.utils.isAddress('0XC1912FEE45D61C87CC5EA59DAE31190FFFFF232D');
> true // as all is uppercase, no checksum will be checked

web3.utils.isAddress('0xc1912fEE45d61C87Cc5EA59DaE31190FFFFf232d');
> true

web3.utils.isAddress('0xC1912fEE45d61C87Cc5EA59DaE31190FFFFf232d');
> false // wrong checksum

web3.utils.isAddress('0x5aaEB6053f3e94c9b9a09f33669435E7ef1bEAeD', 30);
> true

17.10 toChecksumAddress

web3.utils.toChecksumAddress(address[, chainId])

Will convert an upper or lowercase Ethereum address to a checksum address.

17.10.1 Parameters

1. address - String: An address string.

2. chainId - number (optional): Chain id where checksummed address should be valid, defaults to null.
RSKIP-60 <https://github.com/rsksmart/RSKIPs/blob/master/IPs/RSKIP60.md> for details.

17.10.2 Returns

String: The checksum address.

17.10.3 Example

web3.utils.toChecksumAddress('0xc1912fee45d61c87cc5ea59dae31190fffff232d');
> "0xc1912fEE45d61C87Cc5EA59DaE31190FFFFf232d"

web3.utils.toChecksumAddress('0XC1912FEE45D61C87CC5EA59DAE31190FFFFF232D');
> "0xc1912fEE45d61C87Cc5EA59DaE31190FFFFf232d" // same as above

(continues on next page)

184 Chapter 17. web3.utils

https://github.com/rsksmart/RSKIPs/blob/master/IPs/RSKIP60.md

web3.js Documentation, Release 1.0.0

(continued from previous page)

web3.utils.toChecksumAddress('0x5aaeb6053f3e94c9b9a09f33669435e7ef1beaed', 30);
> "0x5aaEB6053f3e94c9b9a09f33669435E7ef1bEAeD"

17.11 stripHexPrefix

Removes the prefix 0x from a given hex if it exists.

17.11.1 Parameters

1. hex - String: Hex

17.11.2 Returns

String: Hex without prefix.

17.11.3 Example

17.12 checkAddressChecksum

web3.utils.checkAddressChecksum(address [, chainId])

Checks the checksum of a given address. Will also return false on non-checksum addresses.

17.12.1 Parameters

1. address - String: An address string.

2. chainId - number (optional): Chain id where checksummed address should be valid, defaults to null.
RSKIP-60 <https://github.com/rsksmart/RSKIPs/blob/master/IPs/RSKIP60.md> for details.

17.12.2 Returns

Boolean: true when the checksum of the address is valid, false if its not a checksum address, or the checksum
is invalid.

17.12.3 Example

17.11. stripHexPrefix 185

https://github.com/rsksmart/RSKIPs/blob/master/IPs/RSKIP60.md

web3.js Documentation, Release 1.0.0

web3.utils.checkAddressChecksum('0xc1912fEE45d61C87Cc5EA59DaE31190FFFFf232d');
> true

web3.utils.checkAddressChecksum('0x5aAeb6053F3e94c9b9A09F33669435E7EF1BEaEd', 31);
> true

17.13 toHex

web3.utils.toHex(mixed)

Will auto convert any given value to HEX. Number strings will interpreted as numbers. Text strings will be interpreted
as UTF-8 strings.

17.13.1 Parameters

1. value - String|Number|BN|BigNumber: The input to convert to HEX.

17.13.2 Returns

String: The resulting HEX string.

17.13.3 Example

web3.utils.toHex('234');
> "0xea"

web3.utils.toHex(234);
> "0xea"

web3.utils.toHex(new BN('234'));
> "0xea"

web3.utils.toHex(new BigNumber('234'));
> "0xea"

web3.utils.toHex('I have 100C');
> "0x49206861766520313030e282ac"

17.14 toBN

web3.utils.toBN(number)

186 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

Will safely convert any given value (including BigNumber.js instances) into a BN.js instance, for handling big numbers
in JavaScript.

Note: For just the BN.js class use utils.BN

17.14.1 Parameters

1. number - String|Number|HEX: Number to convert to a big number.

17.14.2 Returns

Object: The BN.js instance.

17.14.3 Example

web3.utils.toBN(1234).toString();
> "1234"

web3.utils.toBN('1234').add(web3.utils.toBN('1')).toString();
> "1235"

web3.utils.toBN('0xea').toString();
> "234"

17.15 hexToNumberString

web3.utils.hexToNumberString(hex)

Returns the number representation of a given HEX value as a string.

17.15.1 Parameters

1. hexString - String|HEX: A string to hash.

17.15.2 Returns

String: The number as a string.

17.15.3 Example

web3.utils.hexToNumberString('0xea');
> "234"

17.15. hexToNumberString 187

http://mikemcl.github.io/bignumber.js/
https://github.com/indutny/bn.js/
https://github.com/indutny/bn.js/
https://github.com/indutny/bn.js/

web3.js Documentation, Release 1.0.0

17.16 hexToNumber

web3.utils.hexToNumber(hex)
web3.utils.toDecimal(hex) // ALIAS, deprecated

Returns the number representation of a given HEX value.

Note: This is not useful for big numbers, rather use utils.toBN instead.

17.16.1 Parameters

1. hexString - String|HEX: A string to hash.

17.16.2 Returns

Number

17.16.3 Example

web3.utils.hexToNumber('0xea');
> 234

17.17 numberToHex

web3.utils.numberToHex(number)
web3.utils.fromDecimal(number) // ALIAS, deprecated

Returns the HEX representation of a given number value.

17.17.1 Parameters

1. number - String|Number|BN|BigNumber: A number as string or number.

17.17.2 Returns

String: The HEX value of the given number.

17.17.3 Example

web3.utils.numberToHex('234');
> '0xea'

188 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

17.18 hexToUtf8

web3.utils.hexToUtf8(hex)
web3.utils.hexToString(hex) // ALIAS
web3.utils.toUtf8(hex) // ALIAS, deprecated

Returns the UTF-8 string representation of a given HEX value.

17.18.1 Parameters

1. hex - String: A HEX string to convert to a UTF-8 string.

17.18.2 Returns

String: The UTF-8 string.

17.18.3 Example

web3.utils.hexToUtf8('0x49206861766520313030e282ac');
> "I have 100C"

17.19 hexToAscii

web3.utils.hexToAscii(hex)
web3.utils.toAscii(hex) // ALIAS, deprecated

Returns the ASCII string representation of a given HEX value.

17.19.1 Parameters

1. hex - String: A HEX string to convert to a ASCII string.

17.19.2 Returns

String: The ASCII string.

17.19.3 Example

web3.utils.hexToAscii('0x4920686176652031303021');
> "I have 100!"

17.18. hexToUtf8 189

web3.js Documentation, Release 1.0.0

17.20 utf8ToHex

web3.utils.utf8ToHex(string)
web3.utils.stringToHex(string) // ALIAS
web3.utils.fromUtf8(string) // ALIAS, deprecated

Returns the HEX representation of a given UTF-8 string.

17.20.1 Parameters

1. string - String: A UTF-8 string to convert to a HEX string.

17.20.2 Returns

String: The HEX string.

17.20.3 Example

web3.utils.utf8ToHex('I have 100C');
> "0x49206861766520313030e282ac"

17.21 asciiToHex

web3.utils.asciiToHex(string)
web3.utils.fromAscii(string) // ALIAS, deprecated

Returns the HEX representation of a given ASCII string. If you would like to transform an ASCII string into a valid
bytes4, bytes8 etc. value then please pass the correct length as the second parameter.

17.21.1 Parameters

1. string - String: A ASCII string to convert to a HEX string.

2. length - Number: The length of the returned hex string. The default size is 32 e.g.: bytes32.

17.21.2 Returns

String: The HEX string.

17.21.3 Example

190 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

web3.utils.asciiToHex('I have 100!');
> "0x492068617665203130302100"

// transforming to a bytes4 value:
web3.utils.asciiToHex('yes', 4);

// transforming to a bytes8 value:
web3.utils.asciiToHex('yes', 8);

//etc.

17.22 hexToBytes

web3.utils.hexToBytes(hex)

Returns a byte array from the given HEX string.

17.22.1 Parameters

1. hex - String|HEX: A HEX to convert.

17.22.2 Returns

Array: The byte array.

17.22.3 Example

web3.utils.hexToBytes('0x000000ea');
> [0, 0, 0, 234]

web3.utils.hexToBytes(0x000000ea);
> [234]

17.23 bytesToHex

web3.utils.bytesToHex(byteArray)

Returns a HEX string from a byte array.

17.23.1 Parameters

1. byteArray - Array: A byte array to convert.

17.22. hexToBytes 191

web3.js Documentation, Release 1.0.0

17.23.2 Returns

String: The HEX string.

17.23.3 Example

web3.utils.bytesToHex([72, 101, 108, 108, 111, 33, 36]);
> "0x48656c6c6f2125"

17.24 toWei

web3.utils.toWei(number [, unit])

Converts any ether value value into wei.

Note: “wei” are the smallest ethere unit, and you should always make calculations in wei and convert only for display
reasons.

17.24.1 Parameters

1. number - String|BN: The value.

2. unit - String (optional, defaults to "ether"): The ether to convert from. Possible units are:

• noether: ‘0’

• wei: ‘1’

• kwei: ‘1000’

• Kwei: ‘1000’

• babbage: ‘1000’

• femtoether: ‘1000’

• mwei: ‘1000000’

• Mwei: ‘1000000’

• lovelace: ‘1000000’

• picoether: ‘1000000’

• gwei: ‘1000000000’

• Gwei: ‘1000000000’

• shannon: ‘1000000000’

• nanoether: ‘1000000000’

• nano: ‘1000000000’

• szabo: ‘1000000000000’

192 Chapter 17. web3.utils

http://ethdocs.org/en/latest/ether.html
http://ethereum.stackexchange.com/questions/253/the-ether-denominations-are-called-finney-szabo-and-wei-what-who-are-these-na

web3.js Documentation, Release 1.0.0

• microether: ‘1000000000000’

• micro: ‘1000000000000’

• finney: ‘1000000000000000’

• milliether: ‘1000000000000000’

• milli: ‘1000000000000000’

• ether: ‘1000000000000000000’

• kether: ‘1000000000000000000000’

• grand: ‘1000000000000000000000’

• mether: ‘1000000000000000000000000’

• gether: ‘1000000000000000000000000000’

• tether: ‘1000000000000000000000000000000’

17.24.2 Returns

String|BN: If a string is given it returns a number string, otherwise a BN.js instance.

17.24.3 Example

web3.utils.toWei('1', 'ether');
> "1000000000000000000"

web3.utils.toWei('1', 'finney');
> "1000000000000000"

web3.utils.toWei('1', 'szabo');
> "1000000000000"

web3.utils.toWei('1', 'shannon');
> "1000000000"

17.25 fromWei

web3.utils.fromWei(number [, unit])

Converts any wei value into a ether value.

Note: “wei” are the smallest ethere unit, and you should always make calculations in wei and convert only for display
reasons.

17.25. fromWei 193

https://github.com/indutny/bn.js/
http://ethereum.stackexchange.com/questions/253/the-ether-denominations-are-called-finney-szabo-and-wei-what-who-are-these-na
http://ethdocs.org/en/latest/ether.html

web3.js Documentation, Release 1.0.0

17.25.1 Parameters

1. number - String|BN: The value in wei.

2. unit - String (optional, defaults to "ether"): The ether to convert to. Possible units are:

• noether: ‘0’

• wei: ‘1’

• kwei: ‘1000’

• Kwei: ‘1000’

• babbage: ‘1000’

• femtoether: ‘1000’

• mwei: ‘1000000’

• Mwei: ‘1000000’

• lovelace: ‘1000000’

• picoether: ‘1000000’

• gwei: ‘1000000000’

• Gwei: ‘1000000000’

• shannon: ‘1000000000’

• nanoether: ‘1000000000’

• nano: ‘1000000000’

• szabo: ‘1000000000000’

• microether: ‘1000000000000’

• micro: ‘1000000000000’

• finney: ‘1000000000000000’

• milliether: ‘1000000000000000’

• milli: ‘1000000000000000’

• ether: ‘1000000000000000000’

• kether: ‘1000000000000000000000’

• grand: ‘1000000000000000000000’

• mether: ‘1000000000000000000000000’

• gether: ‘1000000000000000000000000000’

• tether: ‘1000000000000000000000000000000’

17.25.2 Returns

String: It always returns a string number.

194 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

17.25.3 Example

web3.utils.fromWei('1', 'ether');
> "0.000000000000000001"

web3.utils.fromWei('1', 'finney');
> "0.000000000000001"

web3.utils.fromWei('1', 'szabo');
> "0.000000000001"

web3.utils.fromWei('1', 'shannon');
> "0.000000001"

17.26 unitMap

web3.utils.unitMap

Shows all possible ether value and their amount in wei.

17.26.1 Return value

• Object with the following properties:

– noether: ‘0’

– wei: ‘1’

– kwei: ‘1000’

– Kwei: ‘1000’

– babbage: ‘1000’

– femtoether: ‘1000’

– mwei: ‘1000000’

– Mwei: ‘1000000’

– lovelace: ‘1000000’

– picoether: ‘1000000’

– gwei: ‘1000000000’

– Gwei: ‘1000000000’

– shannon: ‘1000000000’

– nanoether: ‘1000000000’

– nano: ‘1000000000’

– szabo: ‘1000000000000’

– microether: ‘1000000000000’

– micro: ‘1000000000000’

17.26. unitMap 195

http://ethdocs.org/en/latest/ether.html
http://ethereum.stackexchange.com/questions/253/the-ether-denominations-are-called-finney-szabo-and-wei-what-who-are-these-na

web3.js Documentation, Release 1.0.0

– finney: ‘1000000000000000’

– milliether: ‘1000000000000000’

– milli: ‘1000000000000000’

– ether: ‘1000000000000000000’

– kether: ‘1000000000000000000000’

– grand: ‘1000000000000000000000’

– mether: ‘1000000000000000000000000’

– gether: ‘1000000000000000000000000000’

– tether: ‘1000000000000000000000000000000’

17.26.2 Example

web3.utils.unitMap
> {

noether: '0',
wei: '1',
kwei: '1000',
Kwei: '1000',
babbage: '1000',
femtoether: '1000',
mwei: '1000000',
Mwei: '1000000',
lovelace: '1000000',
picoether: '1000000',
gwei: '1000000000',
Gwei: '1000000000',
shannon: '1000000000',
nanoether: '1000000000',
nano: '1000000000',
szabo: '1000000000000',
microether: '1000000000000',
micro: '1000000000000',
finney: '1000000000000000',
milliether: '1000000000000000',
milli: '1000000000000000',
ether: '1000000000000000000',
kether: '1000000000000000000000',
grand: '1000000000000000000000',
mether: '1000000000000000000000000',
gether: '1000000000000000000000000000',
tether: '1000000000000000000000000000000'

}

17.27 padLeft

web3.utils.padLeft(string, characterAmount [, sign])
web3.utils.leftPad(string, characterAmount [, sign]) // ALIAS

196 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

Adds a padding on the left of a string, Useful for adding paddings to HEX strings.

17.27.1 Parameters

1. string - String: The string to add padding on the left.

2. characterAmount - Number: The number of characters the total string should have.

3. sign - String (optional): The character sign to use, defaults to "0".

17.27.2 Returns

String: The padded string.

17.27.3 Example

web3.utils.padLeft('0x3456ff', 20);
> "0x000000000000003456ff"

web3.utils.padLeft(0x3456ff, 20);
> "0x000000000000003456ff"

web3.utils.padLeft('Hello', 20, 'x');
> "xxxxxxxxxxxxxxxHello"

17.28 padRight

web3.utils.padRight(string, characterAmount [, sign])
web3.utils.rightPad(string, characterAmount [, sign]) // ALIAS

Adds a padding on the right of a string, Useful for adding paddings to HEX strings.

17.28.1 Parameters

1. string - String: The string to add padding on the right.

2. characterAmount - Number: The number of characters the total string should have.

3. sign - String (optional): The character sign to use, defaults to "0".

17.28.2 Returns

String: The padded string.

17.28.3 Example

17.28. padRight 197

web3.js Documentation, Release 1.0.0

web3.utils.padRight('0x3456ff', 20);
> "0x3456ff00000000000000"

web3.utils.padRight(0x3456ff, 20);
> "0x3456ff00000000000000"

web3.utils.padRight('Hello', 20, 'x');
> "Helloxxxxxxxxxxxxxxx"

17.29 toTwosComplement

web3.utils.toTwosComplement(number)

Converts a negative numer into a two’s complement.

17.29.1 Parameters

1. number - Number|String|BigNumber: The number to convert.

17.29.2 Returns

String: The converted hex string.

17.29.3 Example

web3.utils.toTwosComplement('-1');
> "0xff"

web3.utils.toTwosComplement(-1);
> "0xff"

web3.utils.toTwosComplement('0x1');
> "0x0001"

web3.utils.toTwosComplement(-15);
> "0xfff1"

web3.utils.toTwosComplement('-0x1');
> "0xff"

17.30 getSignatureParameters

web3.utils.getSignatureParameters(string)

Gets the r, s and v values of an ECDSA signature

198 Chapter 17. web3.utils

web3.js Documentation, Release 1.0.0

17.30.1 Parameters

1. string - String: An ECDSA signature.

17.30.2 Returns

Object: Object containing r,s,v values.

17.30.3 Example

web3.utils.getSignatureParameters(
→˓'0x5763ab346198e3e6cc4d53996ccdeca0c941cb6cb70d671d97711c421d3bf7922c77ef244ad40e5262d1721bf9638fb06bab8ed3c43bfaa80d6da0be9bbd33dc1b
→˓');
> "{ r: '0x5763ab346198e3e6cc4d53996ccdeca0c941cb6cb70d671d97711c421d3bf792', s:
→˓'0x2c77ef244ad40e5262d1721bf9638fb06bab8ed3c43bfaa80d6da0be9bbd33dc', v: 27 }"

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

17.30. getSignatureParameters 199

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

200 Chapter 17. web3.utils

CHAPTER 18

Module API

The Module API gives you the possibility to create your own custom Web3 Module with JSON-RPC methods,
subscriptions, or contracts. The provided modules from the Web3 library are also written with the Module API the
core does provide.

The goal of the Module API is to provide the possibility to extend and customize the JSON-RPC methods, contracts,
and subscriptions to project specific classes with a similar kind of API the DApp developer knows from the Web3.js
library. It’s possible with the Web3 Module API to create complex contract APIs and tools for the development of a
DApp.

These are the core modules which are providing all the classes for the Web3 Module API.

• web3-core

• web3-core-method

• web3-core-subscriptions

• Contract

18.1 Example

import * as Utils from 'web3-utils';
import {formatters} from 'web3-core-helpers';
import {AbstractWeb3Module} from 'web3-core';
import {AbstractMethodFactory, GetBlockByNumberMethod, AbstractMethod} from 'web3-
→˓core-method';

class MethodFactory extends AbstractMethodFactory {
/**
* @param {Utils} utils

* @param {Object} formatters

*
* @constructor

*/
(continues on next page)

201

web3.js Documentation, Release 1.0.0

(continued from previous page)

constructor(utils, formatters) {
super(utils, formatters);

this.methods = {
getBlockByNumber: GetBlockByNumberMethod

};
}

}

class Example extends AbstractWeb3Module {
/**
* @param {AbstractSocketProvider|HttpProvider|CustomProvider|String} provider

* @param {Web3ModuleOptions} options

* @param {Net.Socket} net

*
* @constructor

*/
constructor(provider, net, options) {

super(provider, net, new MethodFactory(Utils, formatters), options;
}

/**
* Executes the eth_sign JSON-RPC method

*
* @method sign

*
* @returns {Promise}

*/
sign() {

const method = new AbstractMethod('eth_sign', 2, Utils, formatters, this);
method.setArguments(arguments)

return method.execute();
}

/**
* Executes the eth_subscribe JSON-RPC method with the subscription type logs

*
* @method logs

*
* @returns {LogSubscription}

*/
logs(options) {

return new LogSubscription(
options,
Utils,
formatters,
this,
new GetPastLogsMethod(Utils, formatters, this)

);
}

}

const example = new Example(provider, net, options);

example.sign('0x0', 'message').then(console.log);
// > "response"

(continues on next page)

202 Chapter 18. Module API

web3.js Documentation, Release 1.0.0

(continued from previous page)

example.sign('0x0', 'message', (error, response) => {
console.log(response);

};
// > "response"

const block = example.getBlockByNumber(1).then(console.log);
// > {}

example.logs(options).subscribe(console.log);
> {}

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

18.1. Example 203

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

204 Chapter 18. Module API

CHAPTER 19

Contract Module API

The Contract Module API does provide to possibility to create project specific contracts with pre-injecting of
the ABI or customizing of the default behaviour of a Web3 contract.

19.1 Contract

The exported class Contract is here to simply pre-inject a contract ABI.

19.1.1 Parameters

1. provider - AbstractSocketProvider | HttpProvider | CustomProvider | String:
A Web3.js provider.

2. abi - Array: Contract ABI

3. accounts - Accounts

4. options - Web3ModuleOptions

19.1.2 Example

import {MyABI, options} from '../folder/file.js';
import {Accounts} from 'web3-eth-accounts';
import {Contract} from 'web3-eth-contract';

export class MyContract extends Contract {
constructor(provider) {

super(provider, MyAbi, new Accounts(...), '0x0', options);
}

}

205

web3.js Documentation, Release 1.0.0

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

206 Chapter 19. Contract Module API

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 20

Core Module

The Core Module does provide the AbstractWeb3Module to implement Web3 compatible modules.

20.1 AbstractWeb3Module

Source: AbstractWeb3Module

The AbstractWeb3Module does have the following constructor parameters:

• provider - AbstractSocketProvider | HttpProvider | CustomProvider | String
The provider class or string.

• options - Web3ModuleOptions These are the default options of a Web3 module. (optional)

• methodFactory - AbstractMethodFactory The AbstractMethodFactory will be used in the module
proxy for the JSON-RPC method calls. (optional)

• net - net.Socket The net.Socket object of the NodeJS net module. (optional)

20.1.1 Example

import {AbstractWeb3Module} from 'web3-core';

class Example extends AbstractWeb3Module {
/**
* @param {AbstractSocketProvider|HttpProvider|CustomProvider|String} provider

* @param {AbstractMethodFactory} methodFactory

* @param {Web3ModuleOptions} options

* @param {Net.Socket} nodeNet

*
* @constructor

*/
constructor(provider, net, methodFactory, options) {

(continues on next page)

207

https://github.com/ethereum/web3.js/tree/1.0/packages/web3-core/src/AbstractWeb3Module.js

web3.js Documentation, Release 1.0.0

(continued from previous page)

super(provider, net, methodFactory, options;
}

}

Interface of the AbstractWeb3Module class:

20.2 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

20.2.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

20.2.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

20.3 defaultBlock

208 Chapter 20. Core Module

web3.js Documentation, Release 1.0.0

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

20.3.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

20.4 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

20.4.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

20.4. defaultAccount 209

web3.js Documentation, Release 1.0.0

20.5 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

20.5.1 Returns

string|number: The current value of the defaultGasPrice property.

20.6 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

20.6.1 Returns

string|number: The current value of the defaultGas property.

20.7 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

20.7.1 Returns

number: The current value of transactionBlockTimeout

210 Chapter 20. Core Module

web3.js Documentation, Release 1.0.0

20.8 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

20.8.1 Returns

number: The current value of transactionConfirmationBlocks

20.9 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

20.9.1 Returns

number: The current value of transactionPollingTimeout

20.10 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

20.8. transactionConfirmationBlocks 211

web3.js Documentation, Release 1.0.0

20.10.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

20.11 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

20.11.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

20.11.2 Returns

Boolean

20.11.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

212 Chapter 20. Core Module

web3.js Documentation, Release 1.0.0

20.12 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

20.12.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

20.12.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

20.13 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

20.12. providers 213

web3.js Documentation, Release 1.0.0

20.13.1 Returns

Object: The given provider set or false.

20.13.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

20.14 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

20.14.1 Returns

Object: The current provider set.

20.14.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

20.15 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

20.15.1 Parameters

none

214 Chapter 20. Core Module

web3.js Documentation, Release 1.0.0

20.15.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

20.15.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

20.15. BatchRequest 215

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

216 Chapter 20. Core Module

CHAPTER 21

Core Method Module

The Core Method Module does provide all method classes and the abstract method factory which will be used in
the AbstractWeb3Module.

21.1 AbstractMethodFactory

Source: AbstractMethodFactory

The AbstractMethodFactory does have the following constructor parameters:

• utils - Utils The Utils object from the web3-utils module.

• formatters - Object The formatters object from the web3-core-helpers module.

21.1.1 Example

import {
AbstractMethodFactory,
GetBlockByNumberMethod,
ListeningMethod,
PeerCountMethod,
VersionMethod

} from 'web3-core-method';

class MethodFactory extends AbstractMethodFactory {
/**
* @param {Utils} utils

* @param {Object} formatters

*
* @constructor

*/
constructor(utils, formatters) {

(continues on next page)

217

https://github.com/ethereum/web3.js/tree/1.0/packages/web3-core-method/lib/factories/AbstractMethodFactory.js

web3.js Documentation, Release 1.0.0

(continued from previous page)

super(utils, formatters);

this.methods = {
getId: VersionMethod,
getBlockByNumber: GetBlockByNumberMethod,
isListening: ListeningMethod,
getPeerCount: PeerCountMethod

};
}

}

21.2 AbstractMethod

Source: AbstractMethod

Because we are always adding new JSON-RPC methods do we just link the methods folder as resource.

Source: Methods

The provided method classes do have the following interface:

The AbstractMethod class does have the following constructor parameters:

• rpcMethod - String The JSON-RPC method name.

• parametersAmount - Number The amount of parameters this JSON-RPC method has.

• utils - Utils

• formatters - Object The formatters object.

• moduleInstance - AbstractWeb3Module

The AbstractMethod class is the base JSON-RPC method class and does provide the basic methods and properties
for creating a Web3.js compatible JSON-RPC method.

You’re able to overwrite these methods:

• execute(): PromiEvent

• afterExecution(response: any): void

• beforeExecution(moduleInstance: AbstractWeb3Module): void

• setArguments(arguments: IArguments): void

• getArguments(arguments: IArguments): {parameters: any[], callback: Function}

This example will show the usage of the setArguments(arguments: IArguments) method.

It’s also possible to set the parameters and callback method directly over the parameters and callback property
of the method class.

21.2.1 Example

218 Chapter 21. Core Method Module

https://github.com/ethereum/web3.js/tree/1.0/packages/web3-core-method/lib/methods/AbstractMethod.js
https://github.com/ethereum/web3.js/tree/1.0/packages/web3-core-method/src/methods/

web3.js Documentation, Release 1.0.0

class Example extends AbstractWeb3Module {
constructor(...) {

// ...
}

sign() {
const method = new AbstractMethod('eth_sign', 2, utils, formatters, this);
method.setArguments(arguments)

return method.execute();
}

}

const example = new Example(...);

const response = await example.sign('0x0', 'message').
// > "response"

example.sign('0x0', 'message', (error, response) => {
console.log(response);

};
// > "response"

The AbstractMethod class interface:

21.3 Type

The static readonly property Type will be used in the AbstractMethodFactory class to determine how the
class should get initiated.

Reserved types:

• observed-transaction-method - AbstractObservedTransactionMethod

• eth-send-transaction-method - EthSendTransactionMethod

21.3.1 Returns

string - Example: observed-transaction-method

21.4 beforeExecution

method.beforeExecution(moduleInstance)

This method will be executed before the JSON-RPC request. It provides the possibility to customize the given param-
eters or other properties of the current method.

21.3. Type 219

web3.js Documentation, Release 1.0.0

21.4.1 Parameters

• moduleInstance - AbstractWeb3Module The current AbstractWeb3Module.

21.5 afterExecution

method.afterExecution(response)

This method will get executed when the provider returns with the response. The afterExecution method does
provide us the possibility to map the response to the desired value.

21.5.1 Parameters

• response - any The response from the provider.

21.5.2 Returns

any

21.6 execute

method.execute()

This method will execute the current method.

21.6.1 Returns

Promise<Object|string>|PromiEvent|string

21.7 rpcMethod

method.rpcMethod

This property will return the rpcMethod string. It will be used for the creation of the JSON-RPC payload object.

21.7.1 Returns

string

220 Chapter 21. Core Method Module

web3.js Documentation, Release 1.0.0

21.8 parametersAmount

method.parametersAmount

This property will return the parametersAmount. It will be used for validating the given parameters length and
for the detection of the callback method.

21.8.1 Returns

number

21.9 parameters

method.parameters

This property does contain the given parameters.

Use the setArguments()method for setting the parameters and the callback method with the given IArguments
object.

21.9.1 Returns

any[]

21.10 callback

method.callback

This property does contain the given callback.

Use the setArguments()method for setting the parameters and the callback method with the given IArguments
object.

21.10.1 Returns

undefined

21.11 setArguments

method.setArguments(arguments)

This method will be used to set the given method arguments. The setArgumentsmethod will set the parameters
and callback property.

21.8. parametersAmount 221

web3.js Documentation, Release 1.0.0

21.11.1 Parameters

• arguments - Array: The arguments of the function call.

21.11.2 Returns

Object

21.12 getArguments

method.getArguments()

This method will be used to get the method arguments. The getArguments method will return a object with the
properties parameters and callback.

21.12.1 Returns

Object

21.13 isHash

method.isHash(value)

This method will check if the given value is a string and starts with 0x. It will be used in several methods for deciding
which JSON-RPC method should get executed.

21.13.1 Parameters

• value - string

21.13.2 Returns

boolean

222 Chapter 21. Core Method Module

web3.js Documentation, Release 1.0.0

21.14 AbstractObservedTransactionMethod

Source: AbstractObservedTransactionMethod

The AbstractObservedTransactionMethod extends from the AbstractMethod <web3-module-abstract-
method and does have the following constructor parameters:

• rpcMethod - String The JSON-RPC method name.

• parametersAmount - Number The amount of parameters this JSON-RPC method has.

• utils - Object The Utils object.

• formatters - Object The formatters object.

• transactionObserver - TransactionObserver The TransactionObserver class which de-
fines the confirmation process of the transaction.

The AbstractObservedTransactionMethod is the base method class for all “send transaction” methods.

Abstract methods:

• afterExecution

• beforeExecution

21.15 Type

The static readonly property Type will be used in the AbstractMethodFactory class to determine how the
class should get initiated.

Reserved types:

• observed-transaction-method - AbstractObservedTransactionMethod

• eth-send-transaction-method - EthSendTransactionMethod

21.15.1 Returns

string - Example: observed-transaction-method

21.16 beforeExecution

method.beforeExecution(moduleInstance)

This method will be executed before the JSON-RPC request. It provides the possibility to customize the given param-
eters or other properties of the current method.

21.16.1 Parameters

• moduleInstance - AbstractWeb3Module The current AbstractWeb3Module.

21.14. AbstractObservedTransactionMethod 223

https://github.com/ethereum/web3.js/tree/1.0/packages/web3-core-method/lib/methods/transaction/AbstractObservedTransactionMethod.js

web3.js Documentation, Release 1.0.0

21.17 afterExecution

method.afterExecution(response)

This method will get executed when the provider returns with the response. The afterExecution method does
provide us the possibility to map the response to the desired value.

21.17.1 Parameters

• response - any The response from the provider.

21.17.2 Returns

any

21.18 execute

method.execute()

This method will execute the current method.

21.18.1 Returns

Promise<Object|string>|PromiEvent|string

21.19 rpcMethod

method.rpcMethod

This property will return the rpcMethod string. It will be used for the creation of the JSON-RPC payload object.

21.19.1 Returns

string

21.20 parametersAmount

method.parametersAmount

This property will return the parametersAmount. It will be used for validating the given parameters length and
for the detection of the callback method.

224 Chapter 21. Core Method Module

web3.js Documentation, Release 1.0.0

21.20.1 Returns

number

21.21 parameters

method.parameters

This property does contain the given parameters.

Use the setArguments()method for setting the parameters and the callback method with the given IArguments
object.

21.21.1 Returns

any[]

21.22 callback

method.callback

This property does contain the given callback.

Use the setArguments()method for setting the parameters and the callback method with the given IArguments
object.

21.22.1 Returns

undefined

21.23 setArguments

method.setArguments(arguments)

This method will be used to set the given method arguments. The setArgumentsmethod will set the parameters
and callback property.

21.23.1 Parameters

• arguments - Array: The arguments of the function call.

21.21. parameters 225

web3.js Documentation, Release 1.0.0

21.23.2 Returns

Object

21.24 getArguments

method.getArguments()

This method will be used to get the method arguments. The getArguments method will return a object with the
properties parameters and callback.

21.24.1 Returns

Object

21.25 isHash

method.isHash(value)

This method will check if the given value is a string and starts with 0x. It will be used in several methods for deciding
which JSON-RPC method should get executed.

21.25.1 Parameters

• value - string

21.25.2 Returns

boolean

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

226 Chapter 21. Core Method Module

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 22

Core Subscriptions Module

The Core Subscriptions Module does provide all the subscriptions classes to extend and execute them.

22.1 AbstractSubscription

Source: AbstractSubscription

The AbstractSubscription class extends from the EventEmitter object and does have the following con-
structor parameters:

• type - String The subscriptions type eth_subscribe or shh_subscribe.

• method - String The subscription method which is the first parameter in the JSON-RPC payload object.

• options - Object The options object of the subscription.

• formatters - Object The formatters object.

• moduleInstance - AbstractWeb3Module An AbstractWeb3Module instance.

The AbstractSubscription class is the base subscription class of all subscriptions.

You’re able to overwrite these methods:

• subscribe

• unsubscribe

• beforeSubscription

• onNewSubscriptionItem

227

https://github.com/ethereum/web3.js/tree/1.0/packages/web3-core-subscriptions/lib/subscriptions/AbstractSubscription.js

web3.js Documentation, Release 1.0.0

22.2 subscribe

subscription.subscribe(callback)

This method will start the subscription.

22.2.1 Parameters

• callback - Function

22.2.2 Returns

AbstractSubscription

22.3 unsubscribe

subscription.unsubscribe(callback)

This method will end the subscription.

22.3.1 Parameters

• callback - Function

22.3.2 Returns

Promise<boolean|Error>

22.4 beforeSubscription

subscription.beforeSubscription(moduleInstance)

This method will be executed before the subscription happens. The beforeSubscription method gives you the
possibility to customize the subscription class before the request will be sent.

22.4.1 Parameters

• moduleInstance - AbstractWeb3Module The current AbstractWeb3Module.

228 Chapter 22. Core Subscriptions Module

web3.js Documentation, Release 1.0.0

22.5 onNewSubscriptionItem

subscription.onNewSubscriptionItem(moduleInstance)

This method will be executed on each subscription item. The onNewSubscriptionItem method gives you the
possibility to map the response.

22.5.1 Parameters

• item - any

22.5.2 Returns

any

22.6 type

subscription.type

The property type does contain the subscription type.

22.6.1 Returns

String - eth_subscribe or shh_subscribe

22.7 method

subscription.method

The property method does contain the subscription method.

22.7.1 Returns

String

22.8 options

subscription.options

The property options does contain the subscription options.

22.5. onNewSubscriptionItem 229

web3.js Documentation, Release 1.0.0

22.8.1 Returns

Object

22.9 id

subscription.id

The property id does contain the subscription id when the subscription is running.

22.9.1 Returns

String

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

230 Chapter 22. Core Subscriptions Module

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 23

Admin Module

The web3-eth-admin package allows you to interact with the Ethereum node’s admin management.

import Web3 from 'web3';
import {Admin} from 'web3-eth-admin';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const admin = new Admin(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

23.1 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

23.1.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

231

web3.js Documentation, Release 1.0.0

23.1.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

23.2 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

23.2.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

232 Chapter 23. Admin Module

web3.js Documentation, Release 1.0.0

23.3 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

23.3.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

23.4 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

23.4.1 Returns

string|number: The current value of the defaultGasPrice property.

23.5 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

23.5.1 Returns

string|number: The current value of the defaultGas property.

23.3. defaultAccount 233

web3.js Documentation, Release 1.0.0

23.6 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

23.6.1 Returns

number: The current value of transactionBlockTimeout

23.7 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

23.7.1 Returns

number: The current value of transactionConfirmationBlocks

23.8 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

23.8.1 Returns

number: The current value of transactionPollingTimeout

234 Chapter 23. Admin Module

web3.js Documentation, Release 1.0.0

23.9 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

23.9.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

23.10 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

23.10.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

23.10.2 Returns

Boolean

23.9. transactionSigner 235

web3.js Documentation, Release 1.0.0

23.10.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

23.11 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

23.11.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

23.11.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

(continues on next page)

236 Chapter 23. Admin Module

web3.js Documentation, Release 1.0.0

(continued from previous page)

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

23.12 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

23.12.1 Returns

Object: The given provider set or false.

23.12.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

23.13 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

23.13.1 Returns

Object: The current provider set.

23.12. givenProvider 237

web3.js Documentation, Release 1.0.0

23.13.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

23.14 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

23.14.1 Parameters

none

23.14.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

23.14.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

23.15 addPeer

admin.addPeer(url, [callback])

Add an admin peer on the node that Web3 is connected to with its provider. The RPC method used is
admin_addPeer.

238 Chapter 23. Admin Module

web3.js Documentation, Release 1.0.0

23.15.1 Parameters

1. url - String: The enode URL of the remote peer.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.15.2 Returns

Promise<boolean> - True if peer added successfully.

23.15.3 Example

admin.addPeer("enode://
→˓a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968de0e3bec910127f134779fbcb0cb6d3331163c@52.
→˓16.188.185:30303")
.then(console.log);
> true

23.16 getDataDirectory

admin.getDataDirectory([, callback])

Provides absolute path of the running node, which is used by the node to store all its databases. The RPC method used
is admin_datadir.

23.16.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.16.2 Returns

Promise<string> - The path.

23.16.3 Example

admin.getDataDirectory()
.then(console.log);
> "/home/ubuntu/.ethereum"

23.17 getNodeInfo

23.16. getDataDirectory 239

web3.js Documentation, Release 1.0.0

admin.getNodeInfo([, callback])

This property can be queried for all the information known about the running node at the networking granularity. The
RPC method used is admin_nodeInfo.

23.17.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.17.2 Returns

Promise<object> - The node information array.

• enode - string: Enode address of the node.

• id - string: Node Id.

• listenAddr - string: lister host and port address.

• name - string: Name of the node, including client type, version, OS, custom data

• discovery - number: UDP listening port for discovery protocol

• listener - number: TCP listening port for RLPx

• difficulty - number: Difficulty level applied during the nonce discovering of this block.

• genesis - string: Very first block hash.

• head - string: Current block hash.

• network - number: currently used Ethereum networks ids.

23.17.3 Example

admin.getNodeInfo().then(console.log);
> {

enode: "enode://
→˓44826a5d6a55f88a18298bca4773fca5749cdc3a5c9f308aa7d810e9b31123f3e7c5fba0b1d70aac5308426f47df2a128a6747040a3815cc7dd7167d03be320d@[::]:30303
→˓",

id:
→˓"44826a5d6a55f88a18298bca4773fca5749cdc3a5c9f308aa7d810e9b31123f3e7c5fba0b1d70aac5308426f47df2a128a6747040a3815cc7dd7167d03be320d
→˓",

ip: "::",
listenAddr: "[::]:30303",
name: "Geth/v1.5.0-unstable/linux/go1.6",
ports: {

discovery: 30303,
listener: 30303

},
protocols: {

eth: {
difficulty: 17334254859343145000,
genesis: "0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3",
head: "0xb83f73fbe6220c111136aefd27b160bf4a34085c65ba89f24246b3162257c36a",
network: 1
}

(continues on next page)

240 Chapter 23. Admin Module

web3.js Documentation, Release 1.0.0

(continued from previous page)

}
}

23.18 getPeers

admin.getPeers([, callback])

This will provide all the information known about the connected remote nodes at the networking granularity. The RPC
method used is admin_peers.

23.18.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.18.2 Returns

Promise<Object> - List of all connected peers.

• caps - Array: Protocols advertised by this peer.

• id - string: Peer node Id.

• name - string: Peer name of the node, including client type, version, OS, custom data

• localAddress - string: Local endpoint of the TCP data connection.

• remoteAddress - string: Remote endpoint of the TCP data connection.

• difficulty - number: Difficulty level applied during the nonce discovering of this block.

• head - string: Peer’s current block hash.

• version - number: Version number of the protocol.

23.18.3 Example

admin.getPeers().then(console.log);
> [{

caps: ["eth/61", "eth/62", "eth/63"],
id:

→˓"08a6b39263470c78d3e4f58e3c997cd2e7af623afce64656cfc56480babcea7a9138f3d09d7b9879344c2d2e457679e3655d4b56eaff5fd4fd7f147bdb045124
→˓",

name: "Geth/v1.5.0-unstable/linux/go1.5.1",
network: {

localAddress: "192.168.0.104:51068",
remoteAddress: "71.62.31.72:30303"

},
protocols: {

eth: {
difficulty: 17334052235346465000,
head:

→˓"5794b768dae6c6ee5366e6ca7662bdff2882576e09609bf778633e470e0e7852",
(continues on next page)

23.18. getPeers 241

web3.js Documentation, Release 1.0.0

(continued from previous page)

version: 63
}

}
}, /* ... */ {

caps: ["eth/61", "eth/62", "eth/63"],
id:

→˓"fcad9f6d3faf89a0908a11ddae9d4be3a1039108263b06c96171eb3b0f3ba85a7095a03bb65198c35a04829032d198759edfca9b63a8b69dc47a205d94fce7cc
→˓",

name: "Geth/v1.3.5-506c9277/linux/go1.4.2",
network: {

localAddress: "192.168.0.104:55968",
remoteAddress: "121.196.232.205:30303"

},
protocols: {
eth: {

difficulty: 17335165914080772000,
head: "5794b768dae6c6ee5366e6ca7662bdff2882576e09609bf778633e470e0e7852",
version: 63

}
}

}]

23.19 setSolc

admin.setSolc(string, [, callback])

Sets the Solidity compiler path to be used by the node when invoking the eth_compileSolidity RPC method The RPC
method used is admin_setSolc.

23.19.1 Parameters

1. String - The path of the solidity compiler.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.19.2 Returns

Promise<string> - A message.

23.19.3 Example

admin.setSolc("/usr/bin/solc").then(console.log);
> "solc, the solidity compiler commandline interface\nVersion: 0.3.2-0/Release-Linux/
→˓g++/Interpreter\n\npath: /usr/bin/solc"

242 Chapter 23. Admin Module

web3.js Documentation, Release 1.0.0

23.20 startRPC

admin.startRPC(host, port, cors, apis [, callback])

It starts an HTTP based JSON RPC API webserver to handle client requests. All the parameters are optional. The
RPC method used is admin_startRPC.

23.20.1 Parameters

1. host - String - (optional) The network interface to open the listener socket on (defaults to “localhost”).

2. port - number - (optional) The network port to open the listener socket on (defaults to 8545).

3. cors - string - (optional) Cross-origin resource sharing header to use (defaults to “”).

4. apis - string - (optional) API modules to offer over this interface (defaults to “eth,net,web3”).

5. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.20.2 Returns

Promise<boolean> - True if Remote Procedure Call (RPC) got started.

23.20.3 Example

admin.startRPC("127.0.0.1", 8545)
.then(console.log('RPC Started!'));
> "RPC Started!"

23.21 startWS

admin.startWS(host, port, cors, apis [, callback])

It starts an WebSocket based JSON RPC API webserver to handle client requests. All the parameters are optional. The
RPC method used is admin_startWS.

23.21.1 Parameters

1. host - String - (optional) The network interface to open the listener socket on (defaults to “localhost”).

2. port - number - (optional) The network port to open the listener socket on (defaults to 8545).

3. cors - string - (optional) Cross-origin resource sharing header to use (defaults to “”).

4. apis - string - (optional) API modules to offer over this interface (defaults to “eth,net,web3”).

5. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.20. startRPC 243

web3.js Documentation, Release 1.0.0

23.21.2 Returns

Promise<boolean> - True if Web socket (WS) got started.

23.21.3 Example

admin.startRPC("127.0.0.1", 8546)
.then(console.log('WS Started!'));
> "WS Started!"

23.22 stopRPC

admin.stopRPC([, callback])

This method closes the currently open HTTP RPC endpoint. As the node can only have a single HTTP endpoint
running, this method takes no parameters, returning a boolean whether the endpoint was closed or not. The RPC
method used is admin_stopRPC.

23.22.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

23.22.2 Returns

Promise<boolean> - True if Remote Procedure Call (RPC) successfully stopped.

23.22.3 Example

admin.stopRPC().then(console.log);
> true

23.23 stopWS

admin.stopWS([, callback])

This method closes the currently open WebSocket RPC endpoint. As the node can only have a single WebSocket
endpoint running, this method takes no parameters, returning a boolean whether the endpoint was closed or not. The
RPC method used is admin_stopWS.

23.23.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

244 Chapter 23. Admin Module

web3.js Documentation, Release 1.0.0

23.23.2 Returns

Promise<boolean> - True if Web Socket (WS) successfully stopped.

23.23.3 Example

admin.stopWS().then(console.log);
> true

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

23.23. stopWS 245

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

246 Chapter 23. Admin Module

CHAPTER 24

Debug Module

The web3-eth-debug module allows you to interact with the Ethereum node’s debug methods.

import Web3 from 'web3';
import {Debug} from 'web3-eth-debug';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const debug = new Debug(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

24.1 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

24.1.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

247

web3.js Documentation, Release 1.0.0

24.1.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

24.2 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

24.2.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

248 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

24.3 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

24.3.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

24.4 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

24.4.1 Returns

string|number: The current value of the defaultGasPrice property.

24.5 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

24.5.1 Returns

string|number: The current value of the defaultGas property.

24.3. defaultAccount 249

web3.js Documentation, Release 1.0.0

24.6 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

24.6.1 Returns

number: The current value of transactionBlockTimeout

24.7 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

24.7.1 Returns

number: The current value of transactionConfirmationBlocks

24.8 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

24.8.1 Returns

number: The current value of transactionPollingTimeout

250 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

24.9 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

24.9.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

24.10 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

24.10.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

24.10.2 Returns

Boolean

24.9. transactionSigner 251

web3.js Documentation, Release 1.0.0

24.10.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

24.11 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

24.11.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

24.11.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

(continues on next page)

252 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

(continued from previous page)

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

24.12 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

24.12.1 Returns

Object: The given provider set or false.

24.12.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

24.13 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

24.13.1 Returns

Object: The current provider set.

24.12. givenProvider 253

web3.js Documentation, Release 1.0.0

24.13.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

24.14 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

24.14.1 Parameters

none

24.14.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

24.14.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

24.15 setBackTraceAt

debug.setBackTraceAt(location, [callback])

Sets the logging backtrace location.

254 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

24.15.1 Parameters

1. location - String: The location is specified as <filename>:<line>.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.15.2 Returns

Promise<null>

24.15.3 Example

admin.setBackTraceAt('filename.go:200').then(console.log);

24.16 blockProfile

debug.blockProfile(file, seconds, [, callback])

Turns on block profiling for the given duration and writes profile data to disk. If a custom rate is desired, set the rate
and write the profile manually using debug.writeBlockProfile.

24.16.1 Parameters

1. file - String 1. seconds - Number|String The seconds as Hex string or number. 2. Function -
(optional) Optional callback, returns an error object as first parameter and the result as second.

24.16.2 Returns

Promise<null>

24.16.3 Example

debug.blockProfile('file', 100).then(console.log);
> null

24.17 cpuProfile

debug.cpuProfile(file, seconds, [, callback])

Turns on CPU profiling for the given duration and writes profile data to disk.

24.16. blockProfile 255

web3.js Documentation, Release 1.0.0

24.17.1 Parameters

1. file - String 1. seconds - Number | String The seconds as Hex string or number. 2. Function -
(optional) Optional callback, returns an error object as first parameter and the result as second.

24.17.2 Returns

Promise<null>

24.17.3 Example

debug.cpuProfile('file', 100).then(console.log);
> null

24.18 dumpBlock

debug.dumpBlock(blockNumber, [, callback])

Retrieves the state that corresponds to the block number and returns a list of accounts (including storage and code).

24.18.1 Parameters

1. blockNumber - Number | String The block number as Hex string or number.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.18.2 Returns

Promise<Object>

24.18.3 Example

debug.dumpBlock('file', 100).then(console.log);
{

root: "19f4ed94e188dd9c7eb04226bd240fa6b449401a6c656d6d2816a87ccaf206f1",
accounts: {

fff7ac99c8e4feb60c9750054bdc14ce1857f181: {
balance: "49358640978154672",
code: "",
codeHash:

→˓"c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
nonce: 2,
root: "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
storage: {}

},
fffbca3a38c3c5fcb3adbb8e63c04c3e629aafce: {

(continues on next page)

256 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

(continued from previous page)

balance: "3460945928",
code: "",
codeHash:

→˓"c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
nonce: 657,
root: "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
storage: {}

}
},

}

24.19 getGCStats

debug.getGCStats([, callback])

Returns GC statistics. See https://golang.org/pkg/runtime/debug/#GCStats for information about the fields of the
returned object.

24.19.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.19.2 Returns

Promise<Object>

24.19.3 Example

debug.getGCStats().then(console.log);

24.20 getBlockRlp

debug.getBlockRlp(number, [, callback])

Retrieves and returns the RLP encoded block by number.

24.20.1 Parameters

1. number - Number | String The block number as hex string or number.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.19. getGCStats 257

https://golang.org/pkg/runtime/debug/#GCStats

web3.js Documentation, Release 1.0.0

24.20.2 Returns

Promise<string>

24.20.3 Example

debug.getBlockRlp(100).then(console.log);
> '0x0'

24.21 goTrace

debug.goTrace(file, seconds, [, callback])

Turns on Go runtime tracing for the given duration and writes trace data to disk.

24.21.1 Parameters

1. file - String 1. seconds - Number | String The seconds as Hex string or number. 2. Function -
(optional) Optional callback, returns an error object as first parameter and the result as second.

24.21.2 Returns

Promise<null>

24.21.3 Example

debug.goTrace('file', 100).then(console.log);
> null

24.22 getMemStats

debug.getMemStats([, callback])

Returns detailed runtime memory statistics.

24.22.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.22.2 Returns

Promise<Object>

258 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

24.22.3 Example

debug.getMemStats().then(console.log);
> MemStats // MemStats object from Go

24.23 getSeedHash

debug.getSeedHash(number, [, callback])

Fetches and retrieves the seed hash of the block by number

24.23.1 Parameters

1. number - Number | String The block number as Hex string or number. 1. Function - (optional) Optional
callback, returns an error object as first parameter and the result as second.

24.23.2 Returns

Promise<string>

24.23.3 Example

debug.getSeedHash().then(console.log);
> '0x0'

24.24 setBlockProfileRate

debug.setBlockProfileRate(rate, [, callback])

Sets the rate (in samples/sec) of goroutine block profile data collection. A non-zero rate enables block profiling, setting
it to zero stops the profile. Collected profile data can be written using debug.writeBlockProfile.

24.24.1 Parameters

1. number - Number | String The block profile rate as number or Hex string.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.24.2 Returns

Promise<null>

24.23. getSeedHash 259

web3.js Documentation, Release 1.0.0

24.24.3 Example

debug.setBlockProfileRate().then(console.log);
> null

24.25 setHead

debug.setHead(number, [, callback])

Sets the current head of the local chain by block number. Note, this is a destructive action and may severely damage
your chain. Use with extreme caution.

24.25.1 Parameters

1. number - Number | String The block number as Hex string or number.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.25.2 Returns

Promise<null>

24.25.3 Example

debug.setHead(100).then(console.log);
> null

24.26 getStacks

debug.getStacks([, callback])

Returns a printed representation of the stacks of all goroutines.

24.26.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.26.2 Returns

Promise<string>

260 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

24.26.3 Example

debug.getStacks().then(console.log);

24.27 startCPUProfile

debug.startCPUProfile(file, [, callback])

Turns on CPU profiling indefinitely, writing to the given file.

24.27.1 Parameters

1. file - String

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.27.2 Returns

Promise<null>

24.27.3 Example

debug.startCPUProfile().then(console.log);
> null

24.28 stopCPUProfile

debug.stopCPUProfile([, callback])

Stops an ongoing CPU profile.

24.28.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.28.2 Returns

Promise<null>

24.28.3 Example

24.27. startCPUProfile 261

web3.js Documentation, Release 1.0.0

debug.stopCPUProfile().then(console.log);
> null

24.29 startGoTrace

debug.startGoTrace(file, [, callback])

Turns on CPU profiling indefinitely, writing to the given file.

24.29.1 Parameters

1. file - String

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.29.2 Returns

Promise<null>

24.29.3 Example

debug.startGoTrace('file').then(console.log);
> null

24.30 stopGoTrace

debug.stopGoTrace([, callback])

Stops writing the Go runtime trace.

24.30.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.30.2 Returns

Promise<null>

24.30.3 Example

262 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

debug.stopGoTrace().then(console.log);
> null

24.31 getBlockTrace

debug.getBlockTrace(blockRlp, options, [, callback])

The traceBlock method will return a full stack trace of all invoked opcodes of all transaction that were included
included in this block. Note, the parent of this block must be present or it will fail.

24.31.1 Parameters

1. blockRlp - String RLP encoded block

2. options - Object The block trace object

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.31.2 Returns

Promise<Object>

24.31.3 Example

debug.getBlockTrace('0x0', {}).then(console.log);
> {

gas: 85301,
returnValue: "",
structLogs: [{...}]

}

24.32 getBlockTraceByNumber

debug.getBlockTraceByNumber(number, options, [, callback])

The traceBlockByNumber method accepts a block number and will replay the block that is already present in the
database.

24.32.1 Parameters

1. number - Number | String The block number as Hex string or number.

2. options - Object The block trace object

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.31. getBlockTrace 263

web3.js Documentation, Release 1.0.0

24.32.2 Returns

Promise<Object>

24.32.3 Example

debug.getBlockTraceByNumber(100, {}).then(console.log);
> {

gas: 85301,
returnValue: "",
structLogs: [{...}]

}

24.33 getBlockTraceByHash

debug.getBlockTraceByHash(hash, options, [, callback])

The traceBlockByHash accepts a block hash and will replay the block that is already present in the database.

24.33.1 Parameters

1. hash - String The block hash

2. options - Object The block trace object

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.33.2 Returns

Promise<Object>

24.33.3 Example

debug.getBlockTraceByHash('0x0', {}).then(console.log);
> {

gas: 85301,
returnValue: "",
structLogs: [{...}]

}

24.34 getBlockTraceFromFile

debug.getBlockTraceFromFile(fileName, options, [, callback])

The traceBlockFromFile accepts a file containing the RLP of the block.

264 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

24.34.1 Parameters

1. fileName - String The file name

2. options - Object The block trace object

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.34.2 Returns

Promise<Object>

24.34.3 Example

debug.getBlockTraceFromFile('filename', {}).then(console.log);
> {

gas: 85301,
returnValue: "",
structLogs: [{...}]

}

24.35 getTransactionTrace

debug.getTransactionTrace(txHash, options, [, callback])

The traceTransaction debugging method will attempt to run the transaction in the exact same manner as it was executed
on the network. It will replay any transaction that may have been executed prior to this one before it will finally attempt
to execute the transaction that corresponds to the given hash.

In addition to the hash of the transaction you may give it a secondary optional argument, which specifies the options
for this specific call.

The possible options are:

1. disableStorage - boolean Setting this to true will disable storage capture (default = false). 1.
disableMemory - boolean Setting this to true will disable memory capture (default = false). 1. disableStack
- boolean Setting this to true will disable stack capture (default = false). 1. tracer - string Setting this will
enable JavaScript-based transaction tracing, described below. If set, the previous four arguments will be ignored. 1.
timeout - string Overrides the default timeout of 5 seconds for JavaScript-based tracing calls

JSON-RPC specification for debug_traceTransaction

24.35.1 Parameters

1. txHash - String The transaction hash

2. options - Object The block trace object

3. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

24.35. getTransactionTrace 265

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

24.35.2 Returns

Promise<Object>

24.35.3 Example

debug.getTransactionTrace('0x0', {}).then(console.log);
> {

gas: 85301,
returnValue: "",
structLogs: [{...}]

}

24.36 setVerbosity

debug.setVerbosity(level, [, callback])

Sets the logging verbosity ceiling. Log messages with level up to and including the given level will be printed. The
verbosity of individual packages and source files can be raised using debug.setVerbosityPattern.

24.36.1 Parameters

1. level - Number | String The verbosity level as Hex string or number. 1. Function - (optional) Optional
callback, returns an error object as first parameter and the result as second.

24.36.2 Returns

Promise<null>

24.36.3 Example

debug.setVerbosity(1).then(console.log);
> null

24.37 setVerbosityPattern

debug.setVerbosityPattern(pattern, [, callback])

Sets the logging verbosity pattern.

266 Chapter 24. Debug Module

web3.js Documentation, Release 1.0.0

24.37.1 Parameters

1. pattern - String The verbosity pattern 1. Function - (optional) Optional callback, returns an error object as
first parameter and the result as second.

24.37.2 Returns

Promise<null>

24.37.3 Example

// If you want to see messages from a particular Go package (directory) and all
→˓subdirectories, use:
debug.setVerbosityPattern('eth/*=6').then(console.log);
> null

// If you want to restrict messages to a particular package (e.g. p2p) but exclude
→˓subdirectories, use:
debug.setVerbosityPattern('p2p=6').then(console.log);
> null

// If you want to see log messages from a particular source file, use:
debug.setVerbosityPattern('server.go=6').then(console.log);
> null

// You can compose these basic patterns. If you want to see all output from peer.go
→˓in a package below eth
// (eth/peer.go, eth/downloader/peer.go) as well as output from package p2p at level
→˓<= 5, use:
debug.setVerbosityPattern('eth/*/peer.go=6,p2p=5').then(console.log);
> null

24.38 writeBlockProfile

debug.writeBlockProfile(file, [, callback])

Writes a goroutine blocking profile to the given file.

24.38.1 Parameters

1. file - String The file 1. Function - (optional) Optional callback, returns an error object as first parameter
and the result as second.

24.38.2 Returns

Promise<null>

24.38. writeBlockProfile 267

web3.js Documentation, Release 1.0.0

24.38.3 Example

debug.writeBlockProfile('file').then(console.log);
> null

24.39 writeMemProfile

debug.writeMemProfile(file, [, callback])

Writes an allocation profile to the given file.

24.39.1 Parameters

1. file - String The file 1. Function - (optional) Optional callback, returns an error object as first parameter
and the result as second.

24.39.2 Returns

Promise<null>

24.39.3 Example

debug.writeBlockProfile('file').then(console.log);
> null

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

268 Chapter 24. Debug Module

https://github.com/ethereum/wiki/wiki/JavaScript-API

CHAPTER 25

Miner Module

The web3-eth-miner package allows you to remote control the node’s mining operation and set various mining
specific settings.

import {Miner} from 'web3-eth-miner';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const miner = new Miner(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓null, options);

25.1 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

25.1.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

269

web3.js Documentation, Release 1.0.0

25.1.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

25.2 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

25.2.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

270 Chapter 25. Miner Module

web3.js Documentation, Release 1.0.0

25.3 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

25.3.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

25.4 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

25.4.1 Returns

string|number: The current value of the defaultGasPrice property.

25.5 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

25.5.1 Returns

string|number: The current value of the defaultGas property.

25.3. defaultAccount 271

web3.js Documentation, Release 1.0.0

25.6 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

25.6.1 Returns

number: The current value of transactionBlockTimeout

25.7 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

25.7.1 Returns

number: The current value of transactionConfirmationBlocks

25.8 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

25.8.1 Returns

number: The current value of transactionPollingTimeout

272 Chapter 25. Miner Module

web3.js Documentation, Release 1.0.0

25.9 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

25.9.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

25.10 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

25.10.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

25.10.2 Returns

Boolean

25.9. transactionSigner 273

web3.js Documentation, Release 1.0.0

25.10.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

25.11 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

25.11.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

25.11.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

(continues on next page)

274 Chapter 25. Miner Module

web3.js Documentation, Release 1.0.0

(continued from previous page)

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

25.12 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

25.12.1 Returns

Object: The given provider set or false.

25.12.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

25.13 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

25.13.1 Returns

Object: The current provider set.

25.12. givenProvider 275

web3.js Documentation, Release 1.0.0

25.13.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

25.14 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

25.14.1 Parameters

none

25.14.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

25.14.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

25.15 setExtra

miner.setExtra(extraData, [, callback])

This method allows miner to set extra data during mining the block. The RPC method used is miner_setExtra.

276 Chapter 25. Miner Module

web3.js Documentation, Release 1.0.0

25.15.1 Parameters

1. extraData - String: Extra data which is to be set.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

25.15.2 Returns

Promise<boolean> - True if successful.

25.15.3 Example

miner.setExtra('Hello').then(console.log);
> true

25.16 setGasPrice

miner.setGasPrice(gasPrice, [, callback])

This method allows to set minimal accepted gas price during mining transactions. Any transactions that are below
this limit will get excluded from the mining process. The RPC method used is miner_setGasPrice. ———-
Parameters ———-

1. Number | String - Gas price.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

25.16.1 Returns

Promise<boolean> - True if successful.

25.16.2 Example

miner.setGasPrice("0x4a817c800").then(console.log);
> true

miner.setGasPrice(20000000000).then(console.log);
> true

25.17 setEtherBase

miner.setEtherBase(address, [, callback])

Sets etherbase, where mining reward will go. The RPC method used is miner_setEtherbase.

25.16. setGasPrice 277

web3.js Documentation, Release 1.0.0

25.17.1 Parameters

1. String - address where mining reward will go.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

25.17.2 Returns

Promise<boolean> - True if successful.

25.17.3 Example

miner.setEtherBase("0x3d80b31a78c30fc628f20b2c89d7ddbf6e53cedc").then(console.log);
> true

25.18 startMining

miner.startMining(miningThread, [, callback])

Start the CPU mining process with the given number of threads. The RPC method used is miner_start.

25.18.1 Parameters

1. Number | String - Mining threads.

2. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

25.18.2 Returns

Promise<boolean> - True if successful.

25.18.3 Example

miner.startMining('0x1').then(console.log);
> true

miner.startMining(1).then(console.log);
> true

25.19 stopMining

miner.stopMining([callback])

Stop the CPU mining process. The RPC method used is miner_stop.

278 Chapter 25. Miner Module

web3.js Documentation, Release 1.0.0

25.19.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

25.19.2 Returns

Promise<boolean> - True if successful.

25.19.3 Example

miner.stopMining().then(console.log);
> true

Note: This documentation is under construction and the web3.js 1.0 stable version isn’t released. If you’re using a
version v0.x.x of web3.js then please have a look at github.com/ethereum/wiki/wiki/JavaScript-API.

25.19. stopMining 279

https://github.com/ethereum/wiki/wiki/JavaScript-API

web3.js Documentation, Release 1.0.0

280 Chapter 25. Miner Module

CHAPTER 26

TxPool Module

The web3-eth-txpool package gives you access to several non-standard RPC methods to inspect the contents of
the transaction pool containing all the currently pending transactions as well as the ones queued for future processing.

import Web3 from 'web3';
import {TxPool} from 'web3-eth-txpool';

// "Web3.givenProvider" will be set if in an Ethereum supported browser.
const txPool = new TxPool(Web3.givenProvider || 'ws://some.local-or-remote.node:8546',
→˓ null, options);

26.1 options

An Web3 module does provide several options for configuring the transaction confirmation worklfow or for defining
default values. These are the currently available option properties on a Web3 module:

26.1.1 Module Options

defaultAccount

defaultBlock

defaultGas

defaultGasPrice

transactionBlockTimeout

transactionConfirmationBlocks

transactionPollingTimeout

transactionSigner

281

web3.js Documentation, Release 1.0.0

26.1.2 Example

import Web3 from 'web3';

const options = {
defaultAccount: '0x0',
defaultBlock: 'latest',
defaultGas: 1,
defaultGasPrice: 0,
transactionBlockTimeout: 50,
transactionConfirmationBlocks: 24,
transactionPollingTimeout: 480,
transactionSigner: new CustomTransactionSigner()

}

const web3 = new Web3('http://localhost:8545', null, options);

26.2 defaultBlock

web3.defaultBlock
web3.eth.defaultBlock
web3.shh.defaultBlock
...

The default block is used for all methods which have a block parameter. You can override it by passing the block
parameter if a block is required.

Example:

• web3.eth.getBalance()

• web3.eth.getCode()

• web3.eth.getTransactionCount()

• web3.eth.getStorageAt()

• web3.eth.call()

• new web3.eth.Contract() -> myContract.methods.myMethod().call()

26.2.1 Returns

The defaultBlock property can return the following values:

• Number: A block number

• "genesis" - String: The genesis block

• "latest" - String: The latest block (current head of the blockchain)

• "pending" - String: The currently mined block (including pending transactions)

Default is "latest"

282 Chapter 26. TxPool Module

web3.js Documentation, Release 1.0.0

26.3 defaultAccount

web3.defaultAccount
web3.eth.defaultAccount
web3.shh.defaultAccount
...

This default address is used as the default "from" property, if no "from" property is specified.

26.3.1 Returns

String - 20 Bytes: Any Ethereum address. You need to have the private key for that address in your node or keystore.
(Default is undefined)

26.4 defaultGasPrice

web3.defaultGasPrice
web3.eth.defaultGasPrice
web3.shh.defaultGasPrice
...

The default gas price which will be used for a request.

26.4.1 Returns

string|number: The current value of the defaultGasPrice property.

26.5 defaultGas

web3.defaultGas
web3.eth.defaultGas
web3.shh.defaultGas
...

The default gas which will be used for a request.

26.5.1 Returns

string|number: The current value of the defaultGas property.

26.3. defaultAccount 283

web3.js Documentation, Release 1.0.0

26.6 transactionBlockTimeout

web3.transactionBlockTimeout
web3.eth.transactionBlockTimeout
web3.shh.transactionBlockTimeout
...

The transactionBlockTimeout will be used over a socket based connection. This option does define the
amount of new blocks it should wait until the first confirmation happens. This means the PromiEvent rejects with a
timeout error when the timeout got exceeded.

26.6.1 Returns

number: The current value of transactionBlockTimeout

26.7 transactionConfirmationBlocks

web3.transactionConfirmationBlocks
web3.eth.transactionConfirmationBlocks
web3.shh.transactionConfirmationBlocks
...

This defines the number of blocks it requires until a transaction will be handled as confirmed.

26.7.1 Returns

number: The current value of transactionConfirmationBlocks

26.8 transactionPollingTimeout

web3.transactionPollingTimeout
web3.eth.transactionPollingTimeout
web3.shh.transactionPollingTimeout
...

The transactionPollingTimeout will be used over a HTTP connection. This option does define the amount
of polls (each second) it should wait until the first confirmation happens.

26.8.1 Returns

number: The current value of transactionPollingTimeout

284 Chapter 26. TxPool Module

web3.js Documentation, Release 1.0.0

26.9 transactionSigner

web3.eth.transactionSigner
...

The transactionSigner property does provide us the possibility to customize the signing process of the Eth
module and the related sub-modules.

The interface of a TransactionSigner:

interface TransactionSigner {
sign(txObject: Transaction): Promise<SignedTransaction>

}

interface SignedTransaction {
messageHash: string,
v: string,
r: string,
s: string,
rawTransaction: string

}

26.9.1 Returns

TransactionSigner: A JavaScript class of type TransactionSigner.

26.10 setProvider

web3.setProvider(myProvider)
web3.eth.setProvider(myProvider)
web3.shh.setProvider(myProvider)
...

Will change the provider for its module.

Note: When called on the umbrella package web3 it will also set the provider for all sub modules web3.eth,
web3.shh, etc.

26.10.1 Parameters

1. Object|String - provider: a valid provider

2. Net - net: (optional) the node.js Net package. This is only required for the IPC provider.

26.10.2 Returns

Boolean

26.9. transactionSigner 285

web3.js Documentation, Release 1.0.0

26.10.3 Example

import Web3 from 'web3';

const web3 = new Web3('http://localhost:8545');

// or
const web3 = new Web3(new Web3.providers.HttpProvider('http://localhost:8545'));

// change provider
web3.setProvider('ws://localhost:8546');
// or
web3.setProvider(new Web3.providers.WebsocketProvider('ws://localhost:8546'));

// Using the IPC provider in node.js
const net = require('net');
const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path

// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

26.11 providers

Web3.providers
Eth.providers
...

Contains the current available providers.

26.11.1 Value

Object with the following providers:

• Object - HttpProvider: The HTTP provider is deprecated, as it won’t work for subscriptions.

• Object - WebsocketProvider: The Websocket provider is the standard for usage in legacy browsers.

• Object - IpcProvider: The IPC provider is used node.js dapps when running a local node. Gives the most
secure connection.

26.11.2 Example

const Web3 = require('web3');
// use the given Provider, e.g in Mist, or instantiate a new websocket provider
const web3 = new Web3(Web3.givenProvider || 'ws://localhost:8546');
// or
const web3 = new Web3(Web3.givenProvider || new Web3.providers.WebsocketProvider('ws:/
→˓/localhost:8546'));

(continues on next page)

286 Chapter 26. TxPool Module

web3.js Documentation, Release 1.0.0

(continued from previous page)

// Using the IPC provider in node.js
const net = require('net');

const web3 = new Web3('/Users/myuser/Library/Ethereum/geth.ipc', net); // mac os path
// or
const web3 = new Web3(new Web3.providers.IpcProvider('/Users/myuser/Library/Ethereum/
→˓geth.ipc', net)); // mac os path
// on windows the path is: '\\\\.\\pipe\\geth.ipc'
// on linux the path is: '/users/myuser/.ethereum/geth.ipc'

26.12 givenProvider

Web3.givenProvider
web3.eth.givenProvider
web3.shh.givenProvider
...

When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser.
Will return the given provider by the (browser) environment, otherwise null.

26.12.1 Returns

Object: The given provider set or false.

26.12.2 Example

web3.setProvider(Web3.givenProvider || 'ws://localhost:8546');

26.13 currentProvider

web3.currentProvider
web3.eth.currentProvider
web3.shh.currentProvider
...

Will return the current provider.

26.13.1 Returns

Object: The current provider set.

26.12. givenProvider 287

web3.js Documentation, Release 1.0.0

26.13.2 Example

if (!web3.currentProvider) {
web3.setProvider('http://localhost:8545');

}

26.14 BatchRequest

new web3.BatchRequest()
new web3.eth.BatchRequest()
new web3.shh.BatchRequest()
...

Class to create and execute batch requests.

26.14.1 Parameters

none

26.14.2 Returns

Object: With the following methods:

• add(request): To add a request object to the batch call.

• execute(): Will execute the batch request.

26.14.3 Example

const contract = new web3.eth.Contract(abi, address);

const batch = new web3.BatchRequest();
batch.add(web3.eth.getBalance.request('0x00',
→˓'latest'));
batch.add(contract.methods.balance(address).call.request({from:
→˓'0x00'}));
batch.execute().then(...);

26.15 getContent

txPool.getContent([callback])

This API can be used to list the exact details of all the transactions currently pending for inclusion in the next block(s),
as well as the ones that are being scheduled for future executions. The RPC method used is txpool_content.

288 Chapter 26. TxPool Module

web3.js Documentation, Release 1.0.0

26.15.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

26.15.2 Returns

Promise<Object> - The list of pending as well as queued transactions.

• pending - Object: List of pending transactions with transaction details.

• queued - Object: List of queued transactions with transaction details.

– hash 32 Bytes - String: Hash of the transaction.

– nonce - Number: The number of transactions made by the sender prior to this one.

– blockHash 32 Bytes - String: Hash of the block where this transaction was in. null when its
pending.

– blockNumber - Number: Block number where this transaction was in. null when its pending.

– transactionIndex - Number: Integer of the transactions index position in the block. null when its
pending.

– from - String: Address of the sender.

– to - String: Address of the receiver. null when its a contract creation transaction.

– value - String: Value transferred in wei.

– gasPrice - String: The wei per unit of gas provided by the sender in wei.

– gas - Number: Gas provided by the sender.

– input - String: The data sent along with the transaction.

26.15.3 Example

txPool.getContent().then(console.log);
> {

pending: {
0x0216d5032f356960cd3749c31ab34eeff21b3395: {
806: [{

blockHash:
→˓"0x00",

blockNumber: null,
from: "0x0216d5032f356960cd3749c31ab34eeff21b3395",
gas: "0x5208",
gasPrice: "0xba43b7400",
hash: "0xaf953a2d01f55cfe080c0c94150a60105e8ac3d51153058a1f03dd239dd08586

→˓",
input: "0x",
nonce: "0x326",
to: "0x7f69a91a3cf4be60020fb58b893b7cbb65376db8",
transactionIndex: null,
value: "0x19a99f0cf456000"

}]
},
0x24d407e5a0b506e1cb2fae163100b5de01f5193c: {

(continues on next page)

26.15. getContent 289

web3.js Documentation, Release 1.0.0

(continued from previous page)

34: [{
blockHash:

→˓"0x00",
blockNumber: null,
from: "0x24d407e5a0b506e1cb2fae163100b5de01f5193c",
gas: "0x44c72",
gasPrice: "0x4a817c800",
hash: "0xb5b8b853af32226755a65ba0602f7ed0e8be2211516153b75e9ed640a7d359fe

→˓",
input:

→˓"0xb61d27f600000000000000000000000024d407e5a0b506e1cb2fae163100b5de01f5193c0053444835ec58006000
→˓",

nonce: "0x22",
to: "0x7320785200f74861b69c49e4ab32399a71b34f1a",
transactionIndex: null,
value: "0x0"

}]
}

},
queued: {

0x976a3fc5d6f7d259ebfb4cc2ae75115475e9867c: {
3: [{

blockHash:
→˓"0x00",

blockNumber: null,
from: "0x976a3fc5d6f7d259ebfb4cc2ae75115475e9867c",
gas: "0x15f90",
gasPrice: "0x4a817c800",
hash:

→˓"0x57b30c59fc39a50e1cba90e3099286dfa5aaf60294a629240b5bbec6e2e66576",
input: "0x",
nonce: "0x3",
to: "0x346fb27de7e7370008f5da379f74dd49f5f2f80f",
transactionIndex: null,
value: "0x1f161421c8e0000"

}]
},
0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a: {

2: [{
blockHash:

→˓"0x00",
blockNumber: null,
from: "0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a",
gas: "0x15f90",
gasPrice: "0xba43b7400",
hash:

→˓"0x3a3c0698552eec2455ed3190eac3996feccc806970a4a056106deaf6ceb1e5e3",
input: "0x",
nonce: "0x2",
to: "0x24a461f25ee6a318bdef7f33de634a67bb67ac9d",
transactionIndex: null,
value: "0xebec21ee1da40000"

}]
}

}
}

290 Chapter 26. TxPool Module

web3.js Documentation, Release 1.0.0

26.16 getInspection

txPool.getInspection([, callback])

The property can be queried to list a textual summary of all the transactions currently pending for inclusion in
the next block(s), as well as the ones that are being scheduled for future executions. The RPC method used is
txpool_inspect.

26.16.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

26.16.2 Returns

Promise<Object> - The List of pending and queued transactions summary.

• pending - Object: List of pending transactions with transaction details.

• queued - Object: List of queued transactions with transaction details.

26.16.3 Example

txPool.getInspection().then(console.log);
> {

pending: {
0x26588a9301b0428d95e6fc3a5024fce8bec12d51: {
31813: ["0x3375ee30428b2a71c428afa5e89e427905f95f7e: 0 wei + 500000 ×

→˓20000000000 gas"]
},
0x2a65aca4d5fc5b5c859090a6c34d164135398226: {
563662: ["0x958c1fa64b34db746925c6f8a3dd81128e40355e: 1051546810000000000 wei

→˓+ 90000 × 20000000000 gas"],
563663: ["0x77517b1491a0299a44d668473411676f94e97e34: 1051190740000000000 wei

→˓+ 90000 × 20000000000 gas"],
563664: ["0x3e2a7fe169c8f8eee251bb00d9fb6d304ce07d3a: 1050828950000000000 wei

→˓+ 90000 × 20000000000 gas"],
563665: ["0xaf6c4695da477f8c663ea2d8b768ad82cb6a8522: 1050544770000000000 wei

→˓+ 90000 × 20000000000 gas"],
563666: ["0x139b148094c50f4d20b01caf21b85edb711574db: 1048598530000000000 wei

→˓+ 90000 × 20000000000 gas"],
563667: ["0x48b3bd66770b0d1eecefce090dafee36257538ae: 1048367260000000000 wei

→˓+ 90000 × 20000000000 gas"],
563668: ["0x468569500925d53e06dd0993014ad166fd7dd381: 1048126690000000000 wei

→˓+ 90000 × 20000000000 gas"],
563669: ["0x3dcb4c90477a4b8ff7190b79b524773cbe3be661: 1047965690000000000 wei

→˓+ 90000 × 20000000000 gas"],
563670: ["0x6dfef5bc94b031407ffe71ae8076ca0fbf190963: 1047859050000000000 wei

→˓+ 90000 × 20000000000 gas"]
},
0x9174e688d7de157c5c0583df424eaab2676ac162: {
3: ["0xbb9bc244d798123fde783fcc1c72d3bb8c189413: 30000000000000000000 wei +

→˓85000 × 21000000000 gas"]
},

(continues on next page)

26.16. getInspection 291

web3.js Documentation, Release 1.0.0

(continued from previous page)

0xb18f9d01323e150096650ab989cfecd39d757aec: {
777: ["0xcd79c72690750f079ae6ab6ccd7e7aedc03c7720: 0 wei + 1000000 ×

→˓20000000000 gas"]
},
0xb2916c870cf66967b6510b76c07e9d13a5d23514: {
2: ["0x576f25199d60982a8f31a8dff4da8acb982e6aba: 26000000000000000000 wei +

→˓90000 × 20000000000 gas"]
},
0xbc0ca4f217e052753614d6b019948824d0d8688b: {
0: ["0x2910543af39aba0cd09dbb2d50200b3e800a63d2: 1000000000000000000 wei +

→˓50000 × 1171602790622 gas"]
},
0xea674fdde714fd979de3edf0f56aa9716b898ec8: {
70148: ["0xe39c55ead9f997f7fa20ebe40fb4649943d7db66: 1000767667434026200 wei

→˓+ 90000 × 20000000000 gas"]
}

},
queued: {

0x0f6000de1578619320aba5e392706b131fb1de6f: {
6: ["0x8383534d0bcd0186d326c993031311c0ac0d9b2d: 9000000000000000000 wei +

→˓21000 × 20000000000 gas"]
},
0x5b30608c678e1ac464a8994c3b33e5cdf3497112: {
6: ["0x9773547e27f8303c87089dc42d9288aa2b9d8f06: 50000000000000000000 wei +

→˓90000 × 50000000000 gas"]
},
0x976a3fc5d6f7d259ebfb4cc2ae75115475e9867c: {
3: ["0x346fb27de7e7370008f5da379f74dd49f5f2f80f: 140000000000000000 wei +

→˓90000 × 20000000000 gas"]
},
0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a: {
2: ["0x24a461f25ee6a318bdef7f33de634a67bb67ac9d: 17000000000000000000 wei +

→˓90000 × 50000000000 gas"],
6: ["0x6368f3f8c2b42435d6c136757382e4a59436a681: 17990000000000000000 wei +

→˓90000 × 20000000000 gas", "0x8db7b4e0ecb095fbd01dffa62010801296a9ac78:
→˓16998950000000000000 wei + 90000 × 20000000000 gas"],

7: ["0x6368f3f8c2b42435d6c136757382e4a59436a681: 17900000000000000000 wei +
→˓90000 × 20000000000 gas"]

}
}

}

26.17 getStatus

txPool.getStatus([, callback])

This will provide the number of transactions currently pending for inclusion in the next block(s), as well as the ones
that are being scheduled for future executions. The RPC method used is txpool_status.

26.17.1 Parameters

1. Function - (optional) Optional callback, returns an error object as first parameter and the result as second.

292 Chapter 26. TxPool Module

web3.js Documentation, Release 1.0.0

26.17.2 Returns

Promise<Object> - A list of number of pending and queued transactions.

• pending - number: Number of pending transactions.

• queued - number: Number of queued transactions.

26.17.3 Example

txPool.getStatus().then(console.log);
> {

pending: 10,
queued: 7

}

26.17. getStatus 293

web3.js Documentation, Release 1.0.0

294 Chapter 26. TxPool Module

Index

C
contract deploy, 64

J
JSON interface, 61

N
npm, 3

295

	Getting Started
	Adding web3.js

	Callbacks Promises Events
	Glossary
	Specification
	Example

	Web3
	Initiating of Web3
	Web3.modules
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	version

	web3.eth
	Note on checksum addresses
	subscribe
	Contract
	Iban
	personal
	accounts
	ens
	abi
	net
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	getProtocolVersion
	isSyncing
	getCoinbase
	isMining
	getHashrate
	getGasPrice
	getAccounts
	getBlockNumber
	getBalance
	getStorageAt
	getCode
	getBlock
	getBlockTransactionCount
	getUncle
	getTransaction
	getPendingTransactions
	getTransactionFromBlock
	getTransactionReceipt
	getTransactionCount
	sendTransaction
	sendSignedTransaction
	sign
	signTransaction
	call
	estimateGas
	getPastLogs
	getWork
	submitWork
	requestAccounts
	getChainId
	getNodeInfo
	getProof

	web3.eth.subscribe
	subscribe
	clearSubscriptions
	subscribe(“pendingTransactions”)
	subscribe(“newBlockHeaders”)
	subscribe(“syncing”)
	subscribe(“logs”)

	web3.eth.Contract
	web3.eth.Contract
	= Properties =
	options
	address
	jsonInterface
	= Methods =
	clone
	deploy
	methods
	methods.myMethod.call
	methods.myMethod.send
	methods.myMethod.estimateGas
	methods.myMethod.encodeABI
	= Events =
	once
	events
	events.allEvents
	getPastEvents

	web3.eth.accounts
	create
	privateKeyToAccount
	signTransaction
	recoverTransaction
	hashMessage
	sign
	recover
	encrypt
	decrypt
	wallet
	wallet.create
	wallet.add
	wallet.remove
	wallet.clear
	wallet.encrypt
	wallet.decrypt
	wallet.save
	wallet.load

	web3.eth.personal
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	newAccount
	sign
	ecRecover
	signTransaction
	sendTransaction
	unlockAccount
	lockAccount
	getAccounts
	importRawKey

	web3.eth.ens
	registry
	resolver
	supportsInterface
	getAddress
	setAddress
	getPubkey
	setPubkey
	getText
	setText
	getContent
	setContent
	getMultihash
	setMultihash
	getContenthash
	setContenthash
	Ens events

	web3.eth.Iban
	Iban instance
	toAddress
	toIban
	fromAddress
	fromBban
	createIndirect
	isValid
	prototype.isValid
	prototype.isDirect
	prototype.isIndirect
	prototype.checksum
	prototype.institution
	prototype.client
	prototype.toAddress
	prototype.toString

	web3.eth.net
	getId
	isListening
	getPeerCount
	getNetworkType

	web3.eth.abi
	encodeFunctionSignature
	encodeEventSignature
	encodeParameter
	encodeParameters
	encodeFunctionCall
	decodeParameter
	decodeParameters
	decodeLog

	web3.*.net
	getId
	isListening
	getPeerCount

	web3.bzz
	web3.shh
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	getId
	isListening
	getPeerCount
	getVersion
	getInfo
	setMaxMessageSize
	setMinPoW
	markTrustedPeer
	newKeyPair
	addPrivateKey
	deleteKeyPair
	hasKeyPair
	getPublicKey
	getPrivateKey
	newSymKey
	addSymKey
	generateSymKeyFromPassword
	hasSymKey
	getSymKey
	deleteSymKey
	post
	subscribe
	clearSubscriptions
	newMessageFilter
	deleteMessageFilter
	getFilterMessages

	web3.utils
	randomHex
	BN
	isBN
	isBigNumber
	keccak256
	soliditySha3
	isHex
	isHexStrict
	isAddress
	toChecksumAddress
	stripHexPrefix
	checkAddressChecksum
	toHex
	toBN
	hexToNumberString
	hexToNumber
	numberToHex
	hexToUtf8
	hexToAscii
	utf8ToHex
	asciiToHex
	hexToBytes
	bytesToHex
	toWei
	fromWei
	unitMap
	padLeft
	padRight
	toTwosComplement
	getSignatureParameters

	Module API
	Example

	Contract Module API
	Contract

	Core Module
	AbstractWeb3Module
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest

	Core Method Module
	AbstractMethodFactory
	AbstractMethod
	Type
	beforeExecution
	afterExecution
	execute
	rpcMethod
	parametersAmount
	parameters
	callback
	setArguments
	getArguments
	isHash
	AbstractObservedTransactionMethod
	Type
	beforeExecution
	afterExecution
	execute
	rpcMethod
	parametersAmount
	parameters
	callback
	setArguments
	getArguments
	isHash

	Core Subscriptions Module
	AbstractSubscription
	subscribe
	unsubscribe
	beforeSubscription
	onNewSubscriptionItem
	type
	method
	options
	id

	Admin Module
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	addPeer
	getDataDirectory
	getNodeInfo
	getPeers
	setSolc
	startRPC
	startWS
	stopRPC
	stopWS

	Debug Module
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	setBackTraceAt
	blockProfile
	cpuProfile
	dumpBlock
	getGCStats
	getBlockRlp
	goTrace
	getMemStats
	getSeedHash
	setBlockProfileRate
	setHead
	getStacks
	startCPUProfile
	stopCPUProfile
	startGoTrace
	stopGoTrace
	getBlockTrace
	getBlockTraceByNumber
	getBlockTraceByHash
	getBlockTraceFromFile
	getTransactionTrace
	setVerbosity
	setVerbosityPattern
	writeBlockProfile
	writeMemProfile

	Miner Module
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	setExtra
	setGasPrice
	setEtherBase
	startMining
	stopMining

	TxPool Module
	options
	defaultBlock
	defaultAccount
	defaultGasPrice
	defaultGas
	transactionBlockTimeout
	transactionConfirmationBlocks
	transactionPollingTimeout
	transactionSigner
	setProvider
	providers
	givenProvider
	currentProvider
	BatchRequest
	getContent
	getInspection
	getStatus

	Index

