mxnet
Here are 593 public repositories matching this topic...
-
Updated
Sep 17, 2021 - JavaScript
-
Updated
Sep 15, 2021 - C
-
Updated
Sep 13, 2021 - Python
Bug Report
Is the issue related to model conversion?
If the ONNX checker reports issues with this model then this is most probably related to the converter used to convert the original framework model to ONNX. Please create this bug in the appropriate converter's GitHub repo (pytorch, tensorflow-onnx, sklearn-onnx, keras-onnx, onnxmltools) to get the best help.
Describe the bug
T
-
Updated
Sep 16, 2021 - Python
-
Updated
Sep 15, 2021 - Python
-
Updated
Jun 23, 2021 - Python
-
Updated
Jan 18, 2021 - Jupyter Notebook
-
Updated
Mar 1, 2021 - Python
Can I know what is the size of the Kinetics 400 dataset used to reproduce the result in this repo?
There are many links in Kinetics that have expired. As as result, everyone might not be using the same Kinetics dataset. As a reference, the statistics of the Kinetics dataset used in PySlowFast can be found here, https://github.com/facebookresearch/video-nonlocal-net/blob/master/DATASET.md. However, I cannot seem to find similar information for gluoncv. Will you guys be sharing the statistics and
-
Updated
Sep 6, 2021 - Jupyter Notebook
When running TabularPredictor.fit(), I encounter a BrokenPipeError for some reason.
What is causing this?
Could it be due to OOM error?
Fitting model: XGBoost ...
-34.1179 = Validation root_mean_squared_error score
10.58s = Training runtime
0.03s = Validation runtime
Fitting model: NeuralNetMXNet ...
-34.2849 = Validation root_mean_squared_error score
43.63s =
-
Updated
Sep 16, 2021 - C++
-
Updated
Apr 7, 2021
-
Updated
Jun 20, 2021
I have the same hardware envs, same network, but I could not get the result as you, almost half as you. Any best practices and experience? thanks very much! for bytePS with 1 instance and 8 GPU, I have similar testing result.
-
Updated
Jan 27, 2021 - Python
-
Updated
Sep 16, 2021 - Python
[Error Message] Improve error message in SentencepieceTokenizer when arguments are not expected.
Description
While using tokenizers.create with the model and vocab file for a custom corpus, the code throws an error and is not able to generate the BERT vocab file
Error Message
ValueError: Mismatch vocabulary! All special tokens specified must be control tokens in the sentencepiece vocabulary.
To Reproduce
from gluonnlp.data import tokenizers
tokenizers.create('spm', model_p
-
Updated
Sep 3, 2021 - Python
Description
(A clear and concise description of what the feature is.)
util.cumsumimplementation https://github.com/awslabs/gluon-ts/blob/master/src/gluonts/mx/util.py#L326 does not scale undermx.ndarraycumsumis 2-5 times slower thannd.cumsumunder bothmx.symandmx.ndarray, and even fails for large 4-dim input
Sample test
Code
# import ...
def test_
Yolo Model
Description
Implement a YOLO model and add it to the DJL model zoo
References
-
Updated
Aug 21, 2021 - Python
-
Updated
Jul 22, 2021 - Java
-
Updated
Jan 11, 2021 - Jupyter Notebook
-
Updated
Sep 17, 2021 - Python
-
Updated
Oct 15, 2020 - C++
Improve this page
Add a description, image, and links to the mxnet topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the mxnet topic, visit your repo's landing page and select "manage topics."
Description
This is a documentation bug. The parameter of API
mxnet.test_utils.check_numeric_gradientis not consistent between signature and Parameter section. There is a parametercheck_epsin the Parameter section, but it is not in the signature.Link to document: https://mxnet.apache.org/versions/1.6/api/python/docs/api/mxnet/test_utils/index.html#mxnet.test_utils.check_numeric_gra