Postgres Pro Standard 11.13.1 Documentation

Postgres Professional
https://postgrespro.com

https://postgrespro.com

Postgres Pro Standard 11.13.1 Documentation
Postgres Professional
Copyright © 2016-2021 The Postgres Professional company

Legal Notice
This documentation is intended solely for the use with the Postgres Pro DBMS and for users of this DBMS.

It is not allowed to use the documentation for third-party products or as part of documentation for other
products.

Other terms of use of the documentation are given in the User Agreement.
Postgres Pro is Copyright © 2016-2021 by Postgres Professional.

IN NO EVENT SHALL THE POSTGRES PROFESSIONAL COMPANY BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST
PROFITS, ARISING OUT OF THE USE OF POSTGRES PRO DBMS IN ALL VERSIONS AND ITS
DOCUMENTATION, EVEN IF THE POSTGRES PROFESSIONAL COMPANY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE POSTGRES PROFESSIONAL COMPANY SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE POSTGRES PRO DBMS IN ALL VERSIONS AND
ITS DOCUMENTATION PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE POSTGRES
PROFESSIONAL COMPANY HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Distribution of this documentation or its parts that are not contained in the PostgreSQL documentation,
in the original or modified form, requires an explicit written permission from the Postgres Professional
company.

Postgres Pro DBMS documentation is based on the PostgreSQL documentation, which is
distributed under the following license:

PostgreSQL is Copyright © 1996-2021 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

| 24 =Y = o <SPPI xxi

1. What is Postgres Pro Standard?ccoiuiiiiiiiiiiie e e et e e e ae e e et e et e e e e e eaaas xxi
2. Difference between Postgres Pro Standard and PostgreSQLc.coovviiiiiiiiiiiiiniineeeee e, xxi
3. A Brief History of POStgTeSQLciuuiiiiiiiiiiii et e et e e e et e e e e e et e et e e s e eaneeaneeanns xxiii
3.1. The Berkeley POSTGRES PIOJECT ...cccuuiiiniiiiiiieiiie e e et e e et e e et e et e e e e saeeann e xxiii
I oo 1] 10 =11 1S TP PRUPNt xxiii

G TR TR o 1] o 1 ar =1 | PP XxXiv

4. CONVEINETIONS «.euiiiiiiieiie ittt ettt et e et e et et e et e eta e eta s eeuaetaa e ten s eannatuaaasasesnseeneenneeenerenneen xxiv
5. Bug Reporting GUIAELNESuiiiiiiiiieiiieii et e e et e et e et e e e et e et e e e e ea e et eaaeseneenns XXiv
5.1. TAentifyiNg BUGS ..oouniiiiiiiiiie ettt e et e e et e et e e et e et e et e et e e e et e et aanaaaannes XXiv
oIV AV o P) A o T 2 U)o 1o) o P XXV
5.3. Where t0 REPOTE BUGS ..uiiuiiiiiiieiiiei ettt et e et e et e et e et e e e e st e et e ean e aeesanaeannees XXVi

| B I 01 o) i T 1 RO OP PR PPRRPTRRRPR 1
I LY o o o S =Y =T 2
I T 5T =Y < L o) s OO TPPOTR PPN 2
1.2. Architectural FUNAamentalsccoouuiiiiiiiiiii ettt et e et e e e e 2
1.3. Creating @ Dat@basec..ciiuiiiiiiiieiiie e e et e et e et e et e e e et e et e e e e et aanaas 2
1.4. AccesSing @ Data@basecouiiiiiiiiiii i a e eaans 4

N N T 1@] I - oo 1D =Y [T S 6
P20 I § 01 0 1o L1 (o o) o KOOSR PPNt 6
W 00 1 1o1<] o] %SO 6
2.3. Creating @ NEeW Tableccuiiiiiiiii et e et e e e e e et e e e e saneeaneeaaaaannaes 6
2.4. Populating a Table With ROWSccuiiiiiiiiiii e e e ee e e et e e a e e e aees 7
S T O 0 1Y v o o = T = o] LSRN 7
2.6. JOINS BEtWEEN TaDIESccuniiiiiiiiiii et e e e e et e et e et e et e et e e e e ean e et eaae e e aaens 9
2.7. Aggregate FUNCEIONS ...t et e et e e et et e e e e e e e e eans 10
PR & T U o Y b= 1 - SN 12
P8 B B 1= (<] 5 L) o T T OO OPPRUUPPRPRt 12

3. AdVANCEA FEATUTESoiiiiiiiiiiiii ettt e et e et e et e ett e e et e e et s e et e eetnneaananas 13
G 700 I § 0 1 0 1o 11 (o v o) + KPP PP 13
32, VB ittt ittt et ettt et et e et e e e et e et e et et e et e et e th e th et a et et e eha e et et e th e taeeanaaneanes 13

G TR T a0 o= To o N 05) 2= S RN 13
3.4, TTANSACEIONS ..eeniiiiiiiieiiie ittt ettt ettt e et e et e et eta e et e et s ean e etneeraeeeaneennaaneaarasesnaennnns 14
3.5. WINAOW FUNCEIONS ...iiiiiiiiiieiii ettt et e et e et e et e e et e e eeaa s e et s eeeaeseaennes 15
3.6, INNETIEATICE ..euiiiiiiiie ettt e et e et e e et e e et e e et e e aba e e et s eeebaaees 18
I 00 s Tod 11 153 (o) s KSR PP 19

L TSR T I I o U 1 - Vo £SO 20
T 1 0) I 4 01 - - QPPN 21
7 R =) Lo 1 S w (o 1 o SRR 21
V£ T LT b q o) =TT 0) o - SNt 29
G T OF-Y 15 Vo B Vs Lod [0 F= SN 41

5. Data DEfINITION civuuiiiiiiiii ettt et e et et et e et e et e et e et e eaaans 44
5.1, TADIE BASICS .uuiiiiuiiiiiieii ettt ettt ettt ettt e et e et e et e et e e aaaeeaaas 44
5.2, DEfAUll VALUES ..couniiiiiiiieee e ettt e et e e et e e et e e et e e e e e ebeeees 45
5.3, COMSITAINES .eueiiiiiieii et ettt et et e et et e et e et e et e et e eaneeaneeneeanaaananas 46
5.4, SYSEEIM COIUITIIIS ...cvuniiiiiiiiiii it et e e et e et e et et e et e et e tt e st eetneatanesnnasenasanasanssnnessnsssnnssnneeen 53
TR T\ (oo b7 b Vo B =] 1Y S 54
N T o 7 1 (=T £ 56
5.7. ROW SECUTILY POLICIES ..cvuiiiiiiiiiiiiiie et e et e e et e e e et e et e e aaeeaeeeanaeanns 57
RS T o 1 1< o < 1< SO OTPTRTPTPPPR 63
5.9, INNETILATICE «.euiiiiii ettt e et e et e e et s e et s e et e e eba e e et s eeebaaaes 66

T O =Y o) (T =N w10 1o Yo 70

o A O o) 4 =) o 1 s B D = - PN 82
5.12. Other Database ODJECES ...ccuuiiiiii e e e et e e e e et e e e eaneeaans 82
ST G T D 1= oY= o [=3 0 Lo VA I = Yod L« 1 o o N 82

6. Data ManipuUlationcoiuiiiiiie e e et e et e et e et et e et e et e et e et e et et e e raaaas 84
6.1, INSETTING DAt cuuivniiniiiiii ettt et et et st te et e e s e et et seneeaaanaaneeaaenns 84
ST U o Yo k= h Vo B D 1<) - 85

iii

Postgres Pro Standard
11.13.1 Documentation

LS TC T B TCY =] o Yo D - 1 - Nt 85
6.4. Returning Data From Modified ROWSiiiniiiiiiii e e e eaas 86
0 1§ 1<) o 1Y SN 87
A T O)7/ 2 T RO 87
7.2. Table EXPIESSIONS ..ivuuiiiiiiiieiiieiie e et et et e et e ete e et e et e et e et e st estnaaannaannesenasanasanassnnassnnsrnnns 87
RS T 1= [=To) Al I £ U TPT 100
7.4. Combining QUETIESiiuniiiiiiiiie e et e e et e et e et e et e e e e et e st eanaeaenasenassnaarnnaeen 102
AR T o) v a Lo J 20) 2SN 102
7.6. LIMIT @ILA OF FSET ttutttuettuneeuneeuneernreunsesnsesnaesuessunsssnsesnsssnssssnsssnessnnssnssnssesnessnsesssrsneesnessnnses 103
7.7, VALUES LISES ittt ettt e et e et e et s et s et e et s eanseaaeeaneaaneannnas 103
7.8. WITH Queries (Common Table EXPreSSions)cccueiiiiiiiiiiiieiiie et e e e e 104
T D F 1 = T 4 01T SN 110
o T IR A A 01 s 0 =) o (o 7 o 1= T T 111
I LY o) aTc) =1 oy A 7 1= T N 116
LT T O o ¥ = Toa =Y i 4 1= PRSPt 116
8.4. BINATY Data T e coniiniiiiiiiiiiiie ettt et et e et et et e et et e e e et et e e e et e e aaaas 118
8.5. DAte/TIINE TYPES eueiuiiiiiieii ettt ettt et et et e et et e ea e et e etteeteeeta et etnneenneeeneeenns 120
I T S To o L= 1 B 74 o 1= TN 129
8.7. ENUMETAtEA TIPS .ueiniiiiiiiii et e et e et e et e et e e ae e st e st e eae e st e st estneasnesenasenesannees 130
8.8, GEOMEITIC T PES ciuiniiiiiiiii ittt ettt et et e et et et e et e it et e eae et aanaaneaansenaanasannnnns 131
8.9. NetWOTK AAATESS THPES ..iiuiiiiiiiiiiiieiiie ettt ee et e et e et e et e e et e et e et e st e st e eaneesnaaannasranns 133
o T O = L s w1 a Lo B I 01T S 136
8.11. TEXt SEATCR T PES .iiiiiiiiiie ittt e et e et e et e e e e et e et e et e et e st esaneeaneaenasrnasnanns 137
B.12. TUUID THPE tuuitiinttiiieeiineetie ettt ettt e ettt e eett s e ettaeetttnseetanaesaneatunersnnsersnnsessnnsersnnseesnnseenneees 139
TR T €1 I 74 oY TSRO 139
B.14. JSON TYPDES -ueeetuetiiinietiiiteetie ettt ettt e ettsettaeetta ettt eatsaseatanseatunseattnseaennsersnnsessnnsersnnsensnnees 141
T TR AN o = 7/~ SN 147
8.16. COMPOSITE TYPES «euniuniiniiiiiieiiieiie ettt ettt et e tete et et et et et et et eaneanasaaseneenesnesenssnsenesnns 155
T A S ¥ a o (= 74 0 1= TP 160
8.18. DOMAIN TYPES tuituiiiiiiiiiie ettt e et e e e et et e ete et et e e et etaetaaaanstnaaneetasansenaenaeenaanns 165
8.19. ODbject TAeNtIfiET TYPES .uivniiiiiiieeiie ettt e e e e e e et e et e e s e st e et e saneeaneannnns 166
LT I o o J 13 N 4 o 1 T PO 167
oI I Y=Y Lo Lo Rl 74 o Y= N 168
S R VE o Toa o) a FoR= NaTe M@ o1=Y = 1 o) =S 170
1S BRI o Yo Tot= Y B @ oY) i<} o) =S URRNt 170
9.2. Comparison Functions and OPeratorscccc.eeiieiiiiiiiieiiieeiie e ee et e e e e e e esaaaas 170
9.3. Mathematical Functions and OpPeratorsccc.ceiiiiiiieiiiiiiie et e e aeeeane e 173
9.4. String Functions and OPETatorsc.ciiieiiiiiiiieii e et e e et e e e e e eaeeaaeeaans 176
9.5. Binary String Functions and OPeratorsccccueiiiiiiiiiiiieiieeee e e e e e e aens 190
9.6. Bit String Functions and OPeratorscccuuieiiiiiiiiiiieiiie et e e e e e e et e e e eaanaes 192
9.7. Pattern MatChingccouiiiiiiii e e et e e e et e et e e e e et e ea e et e aaaaaas 193
9.8. Data Type Formatting FUNCLIONScouiiiiiiii et e eeeaeaaas 208
9.9. Date/Time Functions and OPeTratorscccuueiiiiiiiiiiiiieiie et e e e e e et e e e e aanas 214
9.10. Enum SUuppOrt FUNCEIONS ..cvuiieiiiiiii et e e e e et e e e e e e e e eaneans 227
9.11. Geometric Functions and OPeratorsccccuiiiiiiiiiiiieiiieece e e e e er e e e e e eens 227
9.12. Network Address Functions and Operatorsccceiueeiiiiiiiiiiiieiiieeiie e ee e e e eaaes 231
9.13. Text Search Functions and OPeTatorsc...ceeieiiiiiiiiieiiieeiie e e e e e e ae e e e aeaaes 234
.14, XML FUINCEIONIS .uituiiiiiiiiiiieii ettt et et et e et e et e et e et e eaueettnetteeetasetanetuneenneeenseaneeenneennns 239
9.15. JSON Functions and OPETratorsScecuueiiiieiiieiiieeiieeiiee e ete et e et eeaeereertestneranaesnaasnnns 251
9.16. Sequence Manipulation FUNCLIONSoiiiiiiiiiiiiiie e 259
9.17. Conditional EXPIreSSIONS ..ccuuiiiuiiiiiiiiiiiiie et et e ee et e e e teete e e e st e st e eaneesaesaneeanaeanns 261
9.18. Array Functions and OPETatorsc..ciiuiiiiiiiiieiiee et e e eeree e e et e e ae e e eeresraaeees 264
9.19. Range Functions and OPETatorsSceiuueiiiiiiieiiieeiiieeieeteeie e et eeteeteeeaeestaesaeernaernnaees 267
9.20. Aggregate FUNCEIONSc.ciiiiiiiii ettt et et e et et e e e et et e e e et eanaenaaanns 269
9.21. WINAOW FUNCEIONS ..eevuniiiiiiiiii ittt s et s et e et s e et s e et s e et s easnsaasnaenannaes 276
9.22. SUDQUETY EXPIESSIONS . cvuiiiiiiiiiiieiieiiie et et e et eete et e et e ete et e st e st estaaaseaeatessnassnaesnnasens 277
9.23. RoW and Array COMPATISOIS ...uiiuuiiiiieiieeieeineeteetieetieetnestaettestaesrnesrnaernaessnessaesseesnnesens 280
9.24. Set Returning FUNCTIONScuiiiiiiii e et e e et et e e e e e e e aaeeanas 282

iv

Postgres Pro Standard
11.13.1 Documentation

9.25. System Information FUNCEIONSccuniiiiiiiiii e e eae e 285
9.26. System Administration FUNCLIONSccuniiiiiiiiii e e e 301

1 727NN b o [0 £ ol 21 0B o] 1 (o) o < SRS 317
9.28. Event Trigger FUNCEIONS ...c.iiiiiiii ettt et e e e e e e e e e e e e eans 318
O 74 o TR 0] 1177 /= 0) o PP 321
[T O 172 o V4 = T 321
IO @) 013 =1 Mo) o PP 322
IO NG TR 1 U o Vo (o) o - ST 325
LR V=Y L TR) i Lo £ SRS 329
10.5. UNTON, CASE, and Related COnStIUCESccivviiiiiiiiiiiccie e e e e e e 329
10.6. SELECT OULPUL COIUIMINS ..ouiiiiiiiiiiici et e et e e e it e e e e et e s e eaeans 331
R s Lo 1= =1 T ORI 332
TR R B /o Yo 6 Lo T) APPSR OPR PP PRRTPRt 332
[e =5 G 7 o 1= T S PP PR ST PTPRN 333
11.3. MUltiCOlUIMN INAEXES ..cvuiiiiiiiiiiiiii et ettt e et et e et s et e et e et s etneeaaeaaaneannnas 334
11.4. INdeXES ANA ORDER BY .iittuurttuueetuueetiuneeeuneeeeunseesunseriunsestunsersnssessnssessneemmssrmmssersnsersnsees 335
11.5. Combining Multiple INAEXESccouiiiniiiiiiiei e e e e e et eea e e e e e eeans 336
L T U ok o O TR Y0 (o) (- U 337
11.7. IndeXeS ON EXPIESSIONS ..ccuuiiiniiiieiiieeiieeiieeeiie et et et e ete et e et estestnassnaesanessnessneesnaesenasnnnns 337
11.8. Partial INAEXES ...uiiieniiiiiiiiiiie ettt ettt ettt e et e e et e e et s e et s e et e eaeaseetaneeataneearneeannnns 338
11.9. Index-Only Scans and Covering INAEXESc..oeiieiiiiiiieeiieiie et e e et e e e e eaeeaanas 340
11.10. Operator Classes and Operator Familiesccooueiiiiiiiiiiiiiiiieiie e 342
11.11. Indexes and COllatiONSccuuviiiiieiiiieiii ettt e e etis e eeieeeet e eeaanseananeeasnnss 344
11.12. Examining INAEX USAQE ...ccuuiiiniiiiiiiiiiiiieiiieete et et e e tee et e e et e et e et eetnesaneeaneeanaesenasannns 344
12, FUIl TEXE SEATCR ..utiiiiiiiiie ettt e et e et e e eae e e et s e eean s e et s eannnseaannns 346
D200 I a1 (o 1o 1 Toa v (o) s S PR 346
12.2. Tables @nd INAEXES ...cccuuiiiiiieiiee ettt ettt e et e et e et e e et e eataneeetneeaaanseasnnseaennns 349
12.3. Controlling TeXt SEATCRciuiiii e e e e et e e eaeeaanas 351
12.4. Additional FEATUTES ..i.uiiiiiiiiiiiiiiiee et e et e e et s e et s e et s e et s e aaaseanaeeasaneees 357
12,5, PATSETS ..ttt ettt et e ettt e et e et s et e ta e et e et et e et et et et e ea e aaneaannes 362
12.6. DICTIOTIATIES .ueruniiinieiieiiieeiie ettt et e e et e et e et e te e et e et etteeataeetasetaetnneesnesenseennetnnsasnsesnnenns 363
12.7. Configuration EXAMPLEccouiiiiiiiiiiiiiiiiie et e e et e et e e e et e et e et et e e aaanas 372
12.8. Testing and Debugging TeXt SEATCRccuiiiiiiiiiii e ea e 373
12.9. GIN and GiST INAEX TYPES .uiiuniiiniiiieiiieeieeieeeiie et et e e e e te e et e st e saeeaeaeatesanasrnaernaesenaeen 376

1 O o T=To | U o] o Yo o ATt 377
12,17, LIMIEAETIONS .euniiiiiiiiiiiee ettt ettt e et et e et e et e et e eaa s eaneeat e et e et eaaeens 379
IRCTR 70} Toi ¥ by =Y o Loyt 00} 11 1 '] EEUUS N 381
R 00 I a1 oo 7o 10 Toa v (o) s S PR 381
13.2. Transaction ISOLATIONceiiiiiiiiiiiiii et et s et s e eee e e ee s eaaaneees 381
(RGO TN 55 ¢ o] § (o3 | A o Yo -« 1 o Vo [Nt 386
13.4. Data Consistency Checks at the Application Levelccoooiiiiiiiiiiiiiiiiiceeeee e, 392
13,0, CAVEALS ettt ettt ettt et et et et et ettt et e e et et e aaeeaaeen 393
13.6. LoCKING @Nd INAEXES ...uiiiniiiiiiiiiiieeie ettt et e e et e et e e et e et e e e e et e st esaneeseaesnnasenneen 393
I oY o 0] 0 0 N Lo SR) o =SS 395
14.1. USING EXPLATN ituttuntunttnttneetetneeneeuaetstnseuattsenstnestasensenstsastnstnsssesessenstsestasensenmrnerensensrnerenns 395
14.2. Statistics Used Dy the PLannercccuiiiiiiiiiiii e et e e e e e ea e eanaas 405
14.3. Controlling the Planner with Explicit JOIN ClauSescc.ceeeiueiiiiiiiiiiiiiiiiciieeceieeeeeee 408
14.4. Populating @ Databasecccuiiiiiiiiiiiiiii e a e eas 410
14.5. NON-DUTable SEeTTINQS ..ccuuiiiiiiiiiiiiiie et e e e et s et e e e e e s eaaeaeieeeans 412
15, PAT@llE] QUETTY ..euniiiiiiiiiiie ettt et et e e et e et et et eete et e et e et e esaseaanseansasnaaneestnsarnsasnsesnnesen 414
15.1. How Parallel QUETY WOTKSc.uiiiiiiiiiiiiiiiiiiiie sttt et e ete et e e s et e eaie e e e et sennaaees 414
15.2. When Can Parallel Query Be USEA?coiuniiiiiiiiiiiiiii ettt ei e eaeeaanees 415
15.3. PArT@lle]l PLANS ..ccuuiiiiiiiiiie et e et et e e e et e et et e e e et et e e et e aaaaanas 416
15.4. Paralle] Safely ...couniiiiiiiiii et e e e ae e e 417
ITI. Server AdmMINISTIAtIONciiuiiii ittt et e e e et e e tae e et s et e et aetneatnsatnsasnnaenneeanseen 419
16. Binary INSTAllationoiuiiiiiiiii ettt e et et e et e e e e e e et e et e e e aans 420
16.1. Installing Postgres Pro Standard on LiNUXccoceeviiiiiiiiiiiniiineieie e eeieeieeneeeineens 420

Postgres Pro Standard
11.13.1 Documentation

16.2. Installing Postgres Pro Standard on WIindOWScccuiiiiiiiiiiiiiiiie e 426
16.3. Installing Additional Supplied MOAUIESeeiuniiiiiiieiiie e e e e e eaas 430
16.4. Migrating £t0 POSEGTES PrO ..ot 430
17. Server Setup and OPETAtionccciuiiiiiiiiiiiiii e e e et e et e et e e e et e eaae e s e st e saneesaaees 432
17.1. The Postgres Pro USEr ACCOUNLccuuiiiiiiiiiiiie et ee et e e et e e e e e e st e eaeeaeeeenaees 432
17.2. Creating a Database ClUSLETiiiiiiiiii et e e e e e e e eaaaea 432
17.3. Starting the Database SEIVET ... et e e e eaa e 434
17.4. Managing Kernel RESOUICESc..ciiuiiiiiiiiiie et ee e e e e e e e e e et e et e e aeesaneeannees 436
17.5. Shutting DOWN the SETVETciniiiiii e e e e e e e et e e e e s e eanaas 445
17.6. Upgrading a Postgres Pro CIUSEETciiuiiiiiiii ettt e e e e e e e e 445
17.7. Preventing Server SPOOTIIIG ...oiuuiiiiiiii e e e et e e et e e e et e et e e e e e e eaneeanns 448
I T 25 s Lol oy 74 01w 10} A B @] o] 10} s 1~ SN 448
17.9. Secure TCP/IP Connections wWith SSL ..o e 449
17.10. Secure TCP/IP Connections with SSH Tunnelsccccooiiiiiiiiiiiiiiie e 452
17.11. Registering Event Log 0N WINAOWSceiuiiiiiiiiiiiiiie et er e e e e e e e 453
18. Server ConfiguIationociiiiiiiii et e et e et e et e e ae e e e et e st e e e aaeeaaaannas 454
18.1. Setting ParaIELerScu.iiniiiiiiiiiiiii et e et et et et e et et e e s et et senseneaanaansanaeanns 454
[T w1 T T I Yok= 1 (o) s 1= Nt 457
18.3. Connections and Authenticationoooiiiiiiiii i e 458
18.4. ResSoOUICe CONSUIMPEIOTL tuuivuiiniiiiiiitie ittt te e et et e te et et et et et eaneeneesnsaneeneenneenernesnneensens 463
[T T4 L AN Y=Y o B o Yo Tt 470
[T T A V=Y o) Tok=1 L) o P 475
R T @10 1Y oy v o F a1 o o PR 480
18.8. Error Reporting and LOGQingccuceiieiiiiiiiieiiie et e e et et e e e et e et e et e et e et e e s aannnas 486
18.9. RUN-TIME STATISTICS Luiniiiiiiiiie e et e et e e e e e e e ee et e e e eneenaanaens 495
18.10. AUtOmMAtIiC VACUUINIIIQ «.uivniiniiiiiiie it e e et et e et et e et et e e et eaneaneeneaneanasnesnneeneens 496
18.11. Client Connection Defaultsccoouiiiiiiiiii e e e eeaas 498
ST D2 o o LY, K- N = Vo 1= 00 =Y o N 506
18.13. Version and Platform Compatibilityccccceiiiiiiiiiiiiiii e 507
RS 700 7 S 5 v oo 3 ol = o 1 0 o P 509
RS T B TR o 4 T Y A) o] o) o - S PN 510
18.16. CUStOMIZEA OPLIONIS ..vvniiiiiiiiie et e et e et e et e e e e een e st e eaneeansennesanaennnns 511
18.17. DEVEIOPET OPEIONIS ..iiuniiiiiieiiie ittt et e et e et e et e e e e et e et e e s e st eeanasanaasnnssenassnaerneeen 512
TR R T o o) it A) o] T) o TSNt 515
19. Client AUthentiCationoouiiiiii e et e e e et e et e e e e et e ea e e e eaenaas 516
19.1. The pg_hba.cont Fill ..ttt enes 516
19.2. USET NAME MAPS itiiniinitiiiiiiiieiieieee et e e et e tee e st et etastetaetastesnstastesnstassernstastesnstastesnerassnsens 522
19.3. Authentication Methodsooiiiiiiiiii et 523
19.4. Trust AUthentiCationco.iiiiiiiii ettt e e e 524
19.5. Password AuthentiCationocciiiiiiiiiiii et 524
19.6. GSSAPI AUthentiCationc..coiiuiiiiiiiii et e 525
19.7. SSPI AUthentiCationc..oiiiuiiiiii et ettt ee e 526
19.8. Ident AULhentiCation ... oo ettt eaa e 527
19.9. Peer AUthentiCationc.. ittt e e e e 528
19.10. LDAP AUthentiCationcccuuiiiiiiiiiiieie ettt eeaas 528
19.11. RADIUS AUthentiCationoieuuiiiiiiiiie ettt e e e e 530
19.12. Certificate AUthentiCationc.oooiiuiiiiiiiii e 531
19.13. PAM AUThentiCatION ..cc.uiiiiiiii et 532
19.14. BSD AULhentiCatiON ...c..uiiiiiiiii et 532
19.15. Authentication Problems ... 532
20. DAtabase ROLES ...ttt ettt ettt e e e e eaans 534
20.1. DAtabase ROLEScouuiiiiieii ettt ettt eeeas 534
20.2. ROLE ATITIDULES ...ttt et et eee e eaa e 535
20.3. ROIE MEMDETISIID «.oiiiiiii e e et e e et et e e st et e et st e e aeaneas 536
20.4. DIOPPING ROLES . .ouiiiiiiiiiiiii et e e e e et e e te e et e et e et et e ea e et e aaaaaanes 537
20.5. Default ROLES ... ettt et e e e et et e eea e 538
20.6. FUNCEION SECUTILY ..iutiiniiiiiiiiiiiii ettt et et e et et et et e it e e s et et eansaae et eaneannans 539
21. Managing DatabasEsccuiiiiiiiiiii et e et e e et aaa e raaaaas 540

vi

Postgres Pro Standard
11.13.1 Documentation

210, OVEIVIEW ettt ittt ettt et e e et et e et et e et s et s et eeaa e ebasean s eanneeraetaaeannaanaeananesnnennnns 540
21.2. Creating @ Databasecccuuiiiiiiiiiie e e e e e et e e e 540
21.3. Template Databasesc..ciiuiiiiiiiii et et e e e e et e e e et aaaaaan 541
21.4. Database Configurationc.ciiiiiiiiiiiiiie e e e e et e e a e e e e e eaans 542
21.5. Destroying @ Databasecoouiiiiiiiiiieii e et e et aaaaas 542

B B T =Y o] (=T o ¥ Yo =X RNt 543
AV o Tot-1 kb 21 n o) o EE PR 545
P T o Yo 1 (I 10} o) 10) o PSRt 545
A OFo) 1 - 1w (o) T AU o] o Yo o AU 547
22.3. Character St SUPPOTT ... e et e e et e e e et e e e e e e e saeeaneeraaenes 552
23. Routine Database Maintenance TasSKScveiuuiiiiiiiiiiiieiiin ettt e e e 559
23.1. ROULINE VACUUINIIIG t.uitniiniiiiiiiiiitie et ettt e et et et et e eae et et e ene et aansanseuneensanssnneaneenesnnees 559
23.2. RoOUtine ReEINAEXING ...oivniiiiiiiiiiicie et e et e e e e et e et e s e et e e e e eanasenns 566
23.3. Log File MaiNtENANCEccvuiiiniiiiiieeiie et et e et e e e et e et e et e st e et e e s e et esaneeanaeenneenns 566
24. BacKup and RESEOTEcuuiiiiiiiiiiii et e et e e e et e et e et e et e et e e s e aan e et e saneeannesnnasrnaannnns 568
Y 10) I D 11 0} o LR 568
24.2. File System Level BAaCKUDcivuiiiiiii ettt e e e e e et e e e aan s 570
24.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccceviiiiiiiiiiiiiniieeeeeee, 571
25. High Availability, Load Balancing, and Replicationc.ccoeiiiiiiiiiiiiii e, 582
25.1. Comparison of Different SOIULIONSccouiiiiiiiiiii e 582
25.2. Log-Shipping Standby SEIVETSc..ciiiiiiiiieiie e e et e et et e e e e e e aeeannas 585
25.3. FAIlOVET ..ottt ettt e e et e et e et et b e et e et e aba e 593
25.4. Alternative Method for Log Shippingcceeeiiiiiiiiiie e 594
A T T (o) = Lo I o7t 595
26. Recovery ConfiguTrationccc.iiiiiiiiiiiii e e et e e et e et e et e et e et e s eranaeanns 603
26.1. Archive ReCOVETY SELLINQS .uuiiiniiiiiiiiieiiie et e et e e e et e e e et e e e e eaneaaenas 603
26.2. Recovery Target Settings ..ottt et e e e e e e ans 604
26.3. Standby Server SEettiNgScccoeiiiiiiiiiiie e et e e e e e e aans 605
27. Monitoring Database ACEIVILYcccuuiiiiiiiiiiii e e e e e e e et e e e eaans 607
27.1. Standard UnNix TOOLSiiiiiiiiiiiiiie e ettt e et e e e e s e et e e et e eana e 607
27.2. The StatistiCs COllECTOT ...iiiuiiiii e ettt e et e e e e eeeas 608
ARG T VA T=Y T4 b o O o Yo < J S 638
27.4. ProgresS REPOTTIIIQ t.uiuniiiiiiiiiieii ettt et et e et et e e e et et e e e et eaneenseaaaanaansannns 639
28. Monitoring DiSK USAQGE ...cuuiiiuiiiiiiiiiiie ettt e et e e e te et e et e et e eaeaeaanesenesaneeanassnnesenaernnns 641
28.1. Determining DiSK USAQE c.uuiiuuiiiiiiiiiiiieiiie it et et e e et e et e et eeae et esanesaaeeeaesanasrnaannnns 641
28.2. DiSK FUIl FAIIUTE ...uuiiiiiiiiiiii ettt e e et e et s e et e e eai e eeaa e 642
29. Reliability and the Write-Ahead LGccouiiieiiiiiieie e e e et e e e e e e eaaes 643
20,1, REHADIIEY ceuuniiiiiiiiie ettt ettt e et e e et e et e et e e e e ea e eenaees 643
29.2. Write-Ahead Logging (WAL) ...couuiiiiiiieii et e e e e e et e e et e st e eaneeaasennesanaannnas 644
29.3. AsSynchronous COMIMILuiiiiiiiiiii e e e e e et e et e e e e et e san e et eseesnnesanaennnns 645
A I S VIVZAN IR @) a N (o 10 Niar=1 1o) o NSNS 646
20.5. WAL INEEITIALS ...ttt ettt et e e e et e e et e e e et e e et s e et s e etaeeaanneeennn e 649
G0 I o To 1 (o1 B AU=] o) k=1 v o) o NN 651
G0 TR IO =4 1 o) ToF= 1 o) o E PPN 651
GO IOZ 11 o 1= 0l a1 o w10) o PSSt 652

T 0 IR T 070 o i o1 - S PP OP PR 653
30.4. RESETICEIONS ..eeiiiiiiiiiiiiie ittt ettt ettt e et et e et e et e et eea e eeaeeeneeeneeenaeesasennnaens 653
30.5. ATCRITECIUTE ...iiiniiiiee et e et e et e e e e e et e e et e eenanes 654
G0N G A% [o) s B o] a1 T PN 654
GO 1= To1 | 1 RPN 655
30.8. Configuration SEttiNgsc.iiiiiiiiii e e et e et e et e e e et e e e ea e e aeen 655
30.9. QUICK SBEUD ttuiiiiiiiiiiiie et e et e et e et e et e et e et e et e eaan e et e sanaeanaanneaenesrnaannnns 655
31. Just-in-Time Compilation (JIT)ceuiiiiiiiiiieii e e e e e et e e r e e e e ea e et e e s e eeesanaernnas 657
31.1. What is JIT compilation?cciuiiiiiiiiii et e et e e e e et e e e e s e saneeaaaeannas 657

G L 1= o B o T PP 657

G IGO0 a i T 11 = 1 (o) o RN 658
N 5 =Y o 153 1 o 1 1 658

IV, CLIENE INEETTACES ..uuieiiiiiiiei ettt e et e et e et s e e et e e eea s e et s eetnseaaaneaanannns 660

vii

Postgres Pro Standard
11.13.1 Documentation

32.

33.

34.

35.

o) o Yo IR O I 1) o= 1 oy 2PN

32.1. Database Connection CoONtrol FUNCEIONS ..o.iuivnininieiiieiiiie ettt e e e eeenenns

32.2. Connection Status FUNCEIONSouiiieiiiiii e eenens

32.3. Command Execution FUNCLIONSuoiiiniiiiiie e e e e e e e eaa e
32.4. Asynchronous Command PrOCESSINGccuuiiuniiinieiieeiiieiie et et e e e et e eteereeeeeraesaneeaneenns

32.5. Retrieving Query Results ROW-BY-ROWciiuiiiiiiiiiiiii et eaeas

32.6. Canceling QUETIES IN PrOQgTESS ..ciuuiiiiiiiiiiieeiieeii et et ee e et et e ete et e st e st eernaeaeaeeenasennees

32.7. The Fast-Path INLEITACEcuvuiinieiii et e e en e
32.8. Asynchronous NOtIfiCAtionccccueiiiiiiiiii e e e e
32.9. Functions Associated with the COPY Commandccovevieiiiiiiiiiiiiie e
32.10. Control FUNCEIONS ..ouiiniiiiiiie ettt e e e eneaeas
32.11. MiscellaneoUus FUNCLIONScuiiniiiii et e e eaeens

32.12. NOTICE PrOCESSINIQ ..euuiiniiiiiiiiii ittt et e e et et s e et et e et e et e e eansesneaneannenneens

32.13. EVENT SYSTEIN L.ttt et e e et et et et e e et et e e e e b e e eans
32.14. Environment Variablescoooiiiiiiiiiiiiie ettt et e e e e eaa s
32.15. The PasSWOTA Fileccuuiiiiiiiiiiii it e e e e et e e ae e e e ea e eane e e aeans
32.16. The Connection ServiCe Fileciiuiiiiiiiiiiiii et ea e e e aaaas
32.17. LDAP Lookup of Connection Parameterscc..ciuiiiiiiiiiiiieieeeeeeee e
G I/ I S TS T) I 1 o] o 1o) ot AP
32.19. Behavior in Threaded PrOgramscciiuiiiiiieiieeii e eeie et e eieete et e et e et e eeneeaneeanaees
32.20. Building libpg PTOQTAIMScuuiiiiiiiiiiiiii et e e et e e e e e e e e e e e e e e eaeesneeenanns
YRRV I =5 & V0] o) (ST o0 o Yo 1=V 4 - S PP
I o (ST @) o) =Y ol S PTN
G762 IR § a1 o o 16 Toa v o) o SO P
33.2. Implementation FEAtUTIESoouiiiii e e e e e e e e e ans
G 6 J0C T O 1= o L 511 =) o ir= o -1 S PR
33.4. Server-side FUNCEIONSoiiiiiiiiiiie it e et e e e et e et e e e ea e e e e e anaaaannes
TG T TN 5= 100} o] (T 26 o o 1 = 11 s KRR
ECPG - Embedded SQL QN € ..ottt ettt ettt et et et e e e et e eneanenenes
7 N O I s LI 00)1 1o <) o] AP
34.2. Managing Database CONNECLIONScocuiiiiiiiiiiii e e e e e e e eanes
34.3. Running SQL COMIMANAS ...cvuuiiuniiiieiieeiieeii et eeie et eete et eeteeettaseteetneetneesnneeeneenneesnesrnnees
34.4. Using HOSt Variablesccouiiiiiiii ettt e e et e et e e e e e e e e anns
34.5. DynamiC SQL ..ottt ettt et a e et e e et e e e aaaean
34.6. POEYPES LIDTATTY ..ovniiiiiiiiiiie et e e et e e et e et e et e e e ea e e e e e e e e e e e aanaas
34.7. USING DESCIIPTOT ATEAS .oeuiiuiiiiiniiiieiieeii ettt tie et et et e e e s ee et e ene et et eaneanseaneaneenanns
G2 < TR 5w /o) alll & 1o 1 2 o 1PNt
34.9. PreproCeSSOT DITECTIVES ...vuiiiiiiiiiiiiei et e e e e e e e et e e et e te s et et snaaeanens

34.10. Processing Embedded SQL PrOgramsceiiuiiineiiieeiieeeieeieeieeeieeieeieesneseneseneennaeens

34.11. Library FUNCEIONS ..ccuuiiiiiiiiiiie st e et e e et et e et e et e et e e eaeeaneeaneeennaeens
34.12. Large ODJECES ..ivuiiiiiiiiiiiiie ettt e e e et e et e e e et e e it et et et e e e e aaans
34.13. CH 4 APPLCALIONS ..eniiiiiiiiiiie e e e e et et e e et et e e et et e e e aaaas
34.14. Embedded SQL COMINATNIAS ..ouiuiiinininieeiiie ettt ettt et ae et ea et eneneaeteeneaeeaenens
34.15. Informix Compatibility MOAeccuiiiniiiiiiiei e e e e aaes

G S TR B 11 <) oy = 1 £
The INformation SCREINIA ...c.ouiriiii ettt ettt e et e e e e e e eneaens

1S T R I V=T Yo7 1<) 1 o = N
1o T B L= 1 = B 4 o 1= SOOI

35.3. information_schema_ CAtalog TAME ..iuieiirireenirnerernernerernernerernernerernerererserserersertereenerenns

35.4. administrable role_ aUthorizZations .iiviviiiieiiiiieiiiieeie et erererenenereenens
K1 s =Y o) N R ot=1 o KT ot o N == RO PPN
G 1o T O T N o o B o1 L ot = Y= SN

1 T) - E - Yo o= b =T S o= N

35.8. check _constraint _ rOULINE _TUSAGE tiiiiiriiiiiieteineteteeneteeteeneeeteenetnetaenernrtaeresnerassesnesassnees
R 1o S el s T=Yo) Sl ele) s Tk uhar= 1 5 o} o= S OTTTPR
1o T N R T B RN o Ko o = S O
35.11. collation_character_set_appPliCabilify iiiviieiiiiiiieeiiiiereeieiiereeerereenerereenesesesneenes

viii

Postgres Pro Standard
11.13.1 Documentation

35.1 2. COLUMN_ QOMAIN . USAGE tttuiritieiineniteetenenenerereneneresarnenesesarnesesesernenesesersnesesesasseseserasnesesesnes 841
3. 13, COL UMM OP T A OMNS ttuitiitiiniieiteitite ettt et ettt eternereterneresernesesernerssernernesersernesesnesnesasnernesaees 841
G 1o T I T TR Rt oWl o F o A R =Y =Y USRS 842
G 1 T B TR TR R} T U Ye Ll T Yo = PP PPN 842
o T N O T TR 111 o = E 843
35.17. CONStraint_COLUMN_USEGE tuitirerrernernenernerererneraeserneraesesnesssesneseresnessesersesaesessessesnesesnens 847
T T R S TNGTeY o ¥l ok =0 sk ol =1 o Y b= T= Y 1= S 848
1o T NS G R = 74 o 1= T o b o A U B =Y 1= = N 848
G 1o T4 G 1o =T e Ml oTo Yo F=] ub ar= 10 o ol = R P 849
G 1o IV G 1)« FoR S oW Yo L ol b E=T=Ye = SR 849
1 TG o)1 =T B o R PP 850
1 TN TN =S (1=} oL ol w14 o 1= Y= S PP 852
G I Y o) SN e B oy I =Y = N 855
35.25. foreign_data_WrapPer 0Pt iOMNS tiiiiiiiiiieeeieeteeteieetetneteeteeneteeteenetastesneenetasnesaetasnasnesnses 855
1o I] ST R =5 Ko s o lie - N ut=N 4 o= o) 1= of - SN 855
TSIV o3 -5 Ko b o M=1=b a4 =3 ol o) o ok N) o Y= ENUUNU N U U TP 856
T INA S T el ar= R e oo M1 b v =5 ot RSSOt 856
KIS TVAS IR el o= Ko 1ol of=1 SN R= Yo} o hul e s £ RN P PPN 857
TG O oY R e oo W o= 1 < 1 K== R PP R 857
35,3 L. Ke Y COLUMN_ LSBT tttnttetuernerernerneraenerneraesernesaesesnesesessesnssestesnesessessesessesnesassesnesnesessesnesnses 857
G J TR J A o B ar=t 1Y =Y af = S 858
35,33, T rent 1Al COMSE LA IS tntnttttte ettt ettt e e e e e et et e e eaea e e e eeaeeeareneaenanenans 860
35.34. L0l _COLUMN_GIANTES tttrerntrnerernernerersernerernernerssesnesaesesseresessesesessesaesessesesessesseseeresnesnenns 861
CTSIRC 1o T ot R RSYIE afe YR uli B s Y=Y e 5ol oL it S 862
1o TRC 1S T XN Y o=V o B =T 5 o=V o L o - R PRSPPI 862
TG W T R oY Sl Ll b =0 o} o - R U O U PP Ut 863
TG T T R oY D E=ToYe 1= Mo £ =% o} of - HEU T USPNN 863
TS TNC 1S IR Yo DRl B o Y=Y o T ok A v R =Y 1= Y= SO 864
o R L B oYY ol B o Y=F - RPNt 865
1S R B I =o' s Y= 1 = RPNt 869
K Jo I LYo (b =Y o Lot=Y = TR 870
1o IR 3 =T B B =T} o o= - 871
35.44. sql_implementation_dNFO wiirieieiiieieieie ettt ee et e et ettt r et ea et etereaaerereraaaeraean 871
G T I 3 =T NN I=Y o Ve 1 Yo 1Y R TP 872
1T XS =T M oY= Yol ¥= e 1= - R P PPN 872
G Jo I T B B o F- o o - RO TSP 873
T ST A N E 5 I o U U 873
TR 3¢ ICYC MIN=E I B oo B o % ole B I L =Y= HU 874
3. 00, LAl COMSE T AIIIE S ttttttttntn ettt ettt et e e e e e e et e e e aea e e e e e et e aaaaanaaanan 874
T NN R o=t o B T <% o RV K=Y 1= Y- R U OO 875
G 1 e Y oY N Y= T PP 875
T TNS 16 TR o =0 o ¥ i o} o 1= S PPN 876
35.54. triggered_UpPdat e COLUMNS .ivitirtrreenirernernerernernereenernereesernerrnerneraeserseraerernerseseenerseneenes 877
G T TS 1o TR o o Ne fe 1= o EU O PR URN 877
1o TNo 1S FRT e il o % ok AV M =Y 1= Y- HU PPN 879
I N WA E-F-Yo T <% o AV B K=Y (Y- SR 879
C T IO TR DE-T-0 allie [=3 sk B o T=To ML w74 o 1= Y- RUUUUU O U UUUORPINt 880
C1o Je 1 MEPEETES ol (1T o) X B a¥e e} o) ol e} o = RN PPNt 881
G O L T E=T=F 1 F=h o) B o L 1= R PPN 882
3.0 L. ViOW _ COLUMN_ USETE ttuittinitnerernernerernernerernernesernerneserneresessernesassesnesesserneraesernereesernernesernens 882
GO S YR VA RS L e YR ul B s Y=Y DR Yo 1= S TRt 883
G O TR = =Y o B =T T Yo 1= R PP PPN 883
o T O 4 =L 2= TN 884
AVARRS =) v/ ol o o Yo 5 =N 1010 B Yo NN PP 886
G IO =5« = e b s Lo S 1 O IR PSPPI 887
36.1. How ExXtensibility WOTKSc.viiiiiiiiiiiiiie ittt et e e et e et e e e e a e e e e aane e 887

ix

Postgres Pro Standard
11.13.1 Documentation

37.

38.

39.

40.

41.

42.

36.2. The Postgres Pro TYPE SYSLEIMN ...c.uiiiuiiiiiii e e et e e e e e eaaas 887
36.3. User-defined FUNCLIONSoiiuniiiiiiiii et et e et e et e et e e e e e eaaeanaeannas 889
36.4. User-defined PrOCEAUTIESccvueiiiiiiieiiiie i eetee et et et et e e e et e e te e e e et e st e eanaesnnaannnns 889
36.5. Query Language (SQL) FUNCLIONS ...cvuiiiiiiiiiiiiiiie et e e e e e e e e e eanes 890
36.6. FUNCtion OVETIOadingccuiiuniiiiiiiiiii e e e e et et e e e et e et e e et e st e st eaaesenesanaannnns 903
36.7. Function Volatility Cat@goTiesciiuiiiiiiiiiiii et e et e e e e e et e e e e aanas 904
36.8. Procedural Language FUNCLIONSciiiiiiiiiiii et e e aeas 905
ICTORNe T §a) =Y =1 B U o 0) o T 905
36.10. C-Language FUNCEIONSc.ciiiiiiiiiiii ittt e e e et e e e et et e e e eae st eaneaneaanaenns 906
36.11. User-defined AQQTegatesc.uiiiiiiiiiiiee et e e et e e et e et e s e et e ean e e s eaenaees 924
36.12. USEr-defiNEd TYPES couneiuniiiiiiiiiiieeie et e et et et e et e et e e e e et e et e et e s e st esanearnnernnesnnaeanns 931
36.13. User-defined OPETatorsccuuiiiiiiiiiiiiie et e et e et e et e e e et e s ae s s e sanesanaaanaannnns 935
36.14. Operator Optimization INformationc.ceiiiiiiiiiiiii e 935
36.15. Interfacing Extensions TO INAEXEScc.eiiiiiiiiiiiiiiieiie e e e e e et e e e e e eaaaas 939
36.16. Packaging Related Objects into an EXtensioncccooeeeeiiiiiiiiiiiiiii e, 951
36.17. Extension Building INfrastruCtureooiiiiiiiiiiii e e 959
B L 10 =) oS TPPR 963
37.1. Overview of Trigger Behaviorc.ceiiiiiiiiii e e e e e e e e e e eens 963
37.2. Visibility of Data CRANQEScoivuiiiiiiiieiie e e e e e et e et e e e e e e eaneeanns 965
37.3. Writing Trigger FUNCEIONS 1IN C ..ot et e e e e e e e e e e e eans 966
37.4. A Complete Trigger EXAMPLEcouniiiiiiiiiiii et e et e e e e ea e e e eaens 968
|V L 5 0 o [0 [SRR 972
38.1. Overview of Event Trigger BEhaviorc.ccviiiiiiiiiiiiiie e 972
38.2. Event Trigger FiliNg MatTiXcc.oiieiiiiiiiiie e e et e et ete e e e ee et eanseaeeaeeansaneeanaes 973
38.3. Writing Event Trigger FUnctions in Cccciiiiiiiiiiiiiiiin et ev e e e e 977
38.4. A Complete Event Trigger EXampleooouiiiiiiiiiiiiieiee et e e e e e eees 978
38.5. A Table Rewrite Event Trigger EXamplecocveiiiiiiiiiiiieeiiece e e e 979
The RULE SYSEEIM .ouuiiiiiiiii et e et e et e et e e e e et e et e et e st e st sanesnnaesnaarnaannnns 981
39.1. The QUETY TIEE ..ouiiuiiiiiiieeiie ettt et e et e et e e te et e et e et e st e st e stnaernnesenasanaeanaesnnasnnnns 981
39.2. Views and the Rule SYStEIMcouiiiiniiiiiii et e e e e e e e aeaes 982
39.3. MaAterialiZed VIEWS ...ceuiiiiiiiiiie et e e et e et e e et e et e e e e et e et e eaaeeaanesenesaneesnnaeen 989
39.4. Rules on INSERT, UPDATE, QN0 DELETE .eceuuttttuuttttuuteetunaeetunaeetuneeeuuneeeenneeeeneetmnneeeseeeennaees 991
39.5. Rules and PriVIIEgesccuuiiiiiiiiiie et e e e e e e et e et e e it e e e e e aaa s 1000
39.6. Rules and Command STAtUsccoeuuiiiiiiiiii ettt e e 1002
39.7. RULES VETSUS TTIGGETS t.uiruiiiiiieiiieeiieeiie ettt e et e et et e etae et e e eeansesnsatneaaneennseaneeeneeenns 1003
Procedural LanQUagESccuuiiuiiieiiieiiiee e eie et et e et e et e et e et e et et eeanseensasnsaeneennsesneeanaernnaes 1005
40.1. Installing Procedural LanguUagescccueeiuiiiuiiineiieeiieeeieeeie et et eenneenneeenesenseraesnneeens 1005
PL/pgSQL - SQL Procedural LanguUagec..oeeeeuuiiiimiiiiieii ettt et e e e 1007
1.0 OVEIVIEW .ttt ettt ettt ettt ettt e e et e e et e e et e e eta e e taa e e taa e etaa e eeaa e eena s eeanaseetnaeeeenans 1007
41.2. Structure Of PL/PGSQL ...t et e e e et e et e et e et e et e et e e e e e e eanaaen 1008
41.3. DECIATATIONS ...ueiniiiiie ittt et e e et e et e e et e et e e eaa e eaa e 1009
R ' 0} =113 10) o 1= S 1014
41.5. BaSIC STat@mMEITS ..c.uiiiiiiiiii et et et eena e 1015
41.6. CONLIOl SETUCTUTESciiiiiiiiiee ettt et e e e e e e e eeaans 1021
1.7, CUTSOTS ..ttt ettt ettt ettt e et et e et e et e etn e taa e taa e eaneeneeanaeeaa s etneanseenaeenneaneanneenes 1034
41.8. Transaction ManNageIMENTccuuiiiiiriiii ettt e e e e e e e e ets et eeneaneanneenens 1039
41.9. ETT0TS @A MESSAGES ivuuiirniiiniiiieiiieetiaetteetneetneettetueeteetnestnsensasnsasnssenasesnsesnerrneesnnsenns 1040
41.10. Trigger FUNCEIONS ..ovuiiiiiiiiiiiiit ettt ettt et e e et et s et et e e s ane et et sanseaneansanaannns 1042
41.11. PL/pgSQL Under the HOOAcouiiiiiiiiiiieie ettt e et e e e e ee e e e e e ean s 1050
41.12. Tips for Developing in PL/PGSQL ...ouniiiiiiieiiieie et e et e e e e ea e e e eees 1054
41.13. Porting from Oracle PL/SQLcoiuiiiiiiiiiiiiieeiie e et e et e et e e e ea e e ane e s aeanaas 1056
PL/Tcl - Tcl Procedural LanQuUagecccuuieiuiiiiniiiie ettt ettt e e e et e e eeaeeeens 1065
2.1, OVETVIEW ..ttt ettt ettt ettt e e et e e et e e tta e e eaa e e taa e e taa e etba e etba e eena e eeana s eetnaeeennans 1065
42.2. PL/Tcl Functions and ATQUITIENITSoiiuuiiiiiieiiiee ittt ettt e e et e et e et eeee 1065
42.3. Data Values In PLITCLo.u ettt et 1067
42.4. Global Data in PL/TCL ...ttt e e e e eeaane 1067
42.5. Database Access from PL/TCLcouuiiiiiiiiii et 1067
42.6. Trigger Functions in PL/TCLiiiiii et 1070

Postgres Pro Standard
11.13.1 Documentation

42.7. Event Trigger Functions in PL/TCLcoouuiiiiiiiiie e 1071
42.8. Error Handling in PL/TClcouniiiiiiii st e et e e e e e e e e e e e e e eens 1072
42.9. Explicit Subtransactions in PL/TClcccoiiiiiiiiii e e e 1072
42.10. Transaction Managementccoviieiiiiiiiiie et et e e e et ea e e eaeaneannees 1073

22 /0% 100 R o IV ¥ o R0) o o 1 = 1 o) o T 1074
42.12. TCl ProCedUre NAINEScievuuiiiiiiiii ettt e et et e e et e e tie e et e e et s e et s e etteeaenneeeannaes 1074
43. PL/Perl - Perl Procedural LanQUagecccuueiiuiiiiiiieiie et e eeeete et et e saneeanesannesenasanaesnneees 1075
43.1. PL/Per]l Functions and ATQUIMENTESceeiuiiiiiiiiiiiieeiie et eie e e et e e e e e e ea e ea e e e eeens 1075
43.2. Data Values In PL/PETLcoouiiiiiiiiie ettt et e e et e e e e e ea e 1079
43.3. BUilt-In FUNCEIONS ..iiiiiiiiiiieiiii ettt s e et e e et e e eae e e eaneeaaeees 1079
43.4. Global Values in PL/PETLoiiiiiiiiiiiiiii ettt et e e e et e e e e eeen 1083
43.5. Trusted and Untrusted PL/PeTLcoouuiiiiiiiiiii et e e e 1084
G I T = IV == ol B o T o =3 = 1085
43.7. PL/Per] EVENt TTIGUETS ..uuiiuiiiiiiiiiiieeiie et et e et e ete et e et e eae e st e st e st e sansaenessnasanaaannasnnnes 1086
43.8. PL/Per]l Under the HOOQooiiiiiiiei ettt e e e e eeeas 1087
44, PL/Python - Python Procedural LanQUAagEceeeuniiuniiinieiieeiiieiieeie et eeieeteeaeereeseneeanaennns 1089
44.1. Python 2 vs. PYLRON 3 .oeiieiiiii et e et e e e e e e an e aans 1089
44.2. PL/PYthon FUNCLIONS ...ivvniiiiiiiie ettt e e e et e e e et e e ae e et e et e et e e s eeenaeen 1090
44.3. DAtA VAIUES ...iiiiieiiie ettt ettt et e et e et e ea e aanas 1091
L S ¥= Y oo o J D - - N 1096
44.5. AnNonymous Code BIOCKScuuiiiiiiiiiiiie et e e e e e e et e e a e e e eas 1096
44.6. TTIgQET FUNCEIONS ...ttt et et et e e e et et e e e et et eaneeaaanaanaaanns 1096
4.7, DAtADASE ACCESS ..uuiiiuniiiiieeii ettt ettt et e et et et e et e et e et e e et e ta e et e eaaaees 1097

44 .8. EXplicit SUDLTANSACTIONS ...vveiiiiiiiiei et e e e e e e e e e e e e e e eraeeaanas 1100
44.9. Transaction ManageIMENTc.ciiiiieiiiiiiiiie e e e et e ee et e e e e e et eeneeneenaennaenaens 1102

2 7 O TR v 1 7 V0 o o o) £ IS 1102
44.11. Environment Variables ... 1103
45. Server Programming INEETTACEccouniiiniiiiii e e e e e 1105
45.1. Interface FUNCEIONS ...cuuuiiiiiiiiiii ettt e e e et et s e et e e aaa e eeaens 1105
45.2. Interface SUPPOTt FUNCLIONScouiieiiie e e e e e 1138

S RCTLY (=Y 0 aTo) VN =N a o Yo o3 4 0 1<) o | AP 1147
45.4. Transaction ManageIMENTcc.iiiiiiiiiiiie et et et e ee et e e e e e et eaneeneeneennaenaens 1157
45.5. Visibility of Data Changescc.ciiiuiiiiiiiiiiiieee et e et e e e et e e ae e e e e e eaaeeees 1160
S T b ¢V 1]) [N 1160
46. Background WOTKET PTOCESSESc.uiiiuiiiiiiiiiiiieiee et e et et et e et e ete e e eean e et e sanssnnasanasrnneees 1164
22 /A o Yo s o= B D 1= ToTo Yo i hia Vo S 1167
47.1. Logical Decoding EXamPIEScccuiiiuiiiiiiiiiiiiiee et e et e e e et e et e e eaeeae e s e saaeannas 1167
47.2. Logical Decoding CONCEPESuiiuniiiieiiieiii et e e e et e et e e e et e et e e e e aaneeannees 1169
47.3. Streaming Replication Protocol Interfacec.cccoeviiiiiiiiiiiie e, 1170
47.4. Logical Decoding SQL INterfacecccuoiiiuiiiiiiiiiiii e e e 1170
47.5. System Catalogs Related to Logical Decodingcccoeveiiiiiiiiiiiieiiieie e, 1170
47.6. Logical Decoding Output PIUGINSccoiiniiiiiiiiie e e 1171
47.7. Logical Decoding Output WIILETScuuiiiiiiiiii e e e 1174
47.8. Synchronous Replication Support for Logical Decodingccceeviiviiiiieiieiinnennnnnnn. 1174
48. Replication Progress TTaCKITIgciuueiiiiiieiiieeiie e et e tee et e e ete et e st e et eeaeeeranasenasanaeanesnnnns 1176
VI, REIETEIICE ..ouniiiiiiiii ettt et e et e et e et e e et s e e et s e et s eataseeaaeeaaaneeasanaaes 1177
| ST) I O} 01 00 T< 1 s Lo - JUTPRN 1178
FN 20)24 TSP PRUPPRN 1179
ALTER AGGREGATE ...ttt ettt e e e e et e e et e e et s e et s e et e eaaaneeaannaees 1180
ALTER COLLATION ...ttt ettt e ettt e ettt e e et e e et e e et s e et s e et eetta s eeaaaseeataeeasaneeennaes 1182
ALTER CONVERSION ...ttt ettt ettt et e tiee ettt e e et e e et s e et s e et e eetaeeeenaseetnaseenaans 1184
ALTER DATABASE .ottt ettt e et e et e e et s e et s e et e e et s e et s eebaneeesaeaanaaas 1185
ALTER DEFAULT PRIVILEGES ...ttt ettt ettt e e et s e et e et s e et e eenae s 1187
ALTER DOMALIN ..ttt ettt ettt e et e e et e e et s e et e e eta e e et s e et s eatan s easanaeasneeesasaersanaaes 1190
ALTER EVENT TRIGGERoutiiiiiiiiitii ettt e et e et e e et e e et s e et e eenaeas 1193
ALTER EXTENSTION ..ouiiiiitiiiieii ettt ettt et e e te e et e e et e e et e e et e e et s e et e eana e eeeanseenanseesanss 1194
ALTER FOREIGN DATA WRAPPER ...ttt ettt st e et e e e e e e 1197
ALTER FOREIGN TABLE ..ottt ettt ettt e et et e e et e e e e s e et s e et s eabaeeeannaas 1199

xi

Postgres Pro Standard
11.13.1 Documentation

ALTER FUNCTION ..ottt ettt et et e e et et e et e s e eaa e e eaa e e raaeennneennns 1204
ALTER GROURP ..ottt ettt e e e e e e e e e ene e ennan e 1207
ALTER INDEX .ttt ettt ettt e et e et e et e e ea e eeaeeenaa e eenns 1208
ALTER LANGUAGE ...t et ettt et e e e e e ean e eean e 1211
ALTER LARGE OBJECT ...ttt ettt ettt e e e e e e e e e e e 1212
ALTER MATERIALIZED VIEW ...ttt ettt st et e e e e e e e 1213
ALTER OPERATOR ...ttt ettt et e et e et e et e een e e ren e eeen e 1215
ALTER OPERATOR CLASS ittt ettt e e e e e et e e en e 1217
ALTER OPERATOR FAMILY ...ttt ettt ettt e e e e e e eaaees 1218
ALTER POLICY .ottt e et e et e e et e e tan e e ean e eraaeeenaeeees 1222
ALTER PROCEDURE ...ttt ettt ettt e e et e et e et e et e e eaaeeennaeees 1223
ALTER PUBLICATTION ..ottt ettt et e e et e et e e e et e eene e eeaaes 1226
ALTER ROLE .ottt e e e et et e e et e s e e an e e e e e eaneeeens 1228
ALTER ROUTINE ...ttt ettt et e e e e et e et e e eae e e eaa e ennaeees 1231
ALTER RULE ...ttt ettt ettt et e e et e et e et et e e e e e e enn e eenees 1232
ALTER SCHEMA L.ttt ettt e e e et et e e e e e e e e e e eennans 1233
ALTER SEQUENRCE ...ttt et e et e e e e e e e ean e eaa e eenaees 1234
ALTER SERVER ...t ettt et e e e et e e e e e eeneeeans 1237
ALTER STATISTICS ..ottt ettt ettt e e et e e et e et e e eaa e eeaaeees 1238
ALTER SUBSCRIPTION ...ttt et ettt ee e et e eee e ean e eeanes 1239
ALTER SYSTEM ..ottt ettt ettt et e e et e et e e tae e e eaa e eeaa e eenaeeees 1241
ALTER TABLE .ottt ettt et e et et e e e e et e e eaa e e raa e e ran e ennaeees 1243
ALTER TABLESPAQCE ...ttt et ettt e e e e e e et e e eaa e enaae 1258
ALTER TEXT SEARCH CONFIGURATTIONcoitiiiiiiiiiiiiiieiie ettt eeen e 1259
ALTER TEXT SEARCH DICTIONARY ..ottt ettt e e e 1261
ALTER TEXT SEARCH PARSER ...t 1263
ALTER TEXT SEARCH TEMPLATEcooiiiiiiiiiie ettt 1264
ALTER TRIGGER ... ottt ettt et ettt e e et et e et e e eee e ena e eenaes 1265
ALTER TYPE .ottt ettt ettt e e e e et e tae e e tae e e e e e na e eenaeees 1266
ALTER USER ... ittt ettt ettt e e e et e et e e ea e eena e eena e eana s 1269
ALTER USER MAPPING ...ttt ettt et et et e e e e e e e ne e e reaeeeens 1270
ALTER VIEW Lottt ettt et e e ettt e e et e e e e e e eaa e e eaaeeraaeeenns 1271
ANALYZE ..ottt ettt ettt ettt et e ea et e e 1273
BEGIN ottt ettt et ettt ettt ea et e e e e ea e ean e naas 1276
(O I PR PSPRT PP 1278
CHECKPOINT ...ttt ettt et s e et e e et e et e e e taa e e taa e eenaeeenaeranaeeenaees 1279
CLIOSE o ettt ettt ettt et et e e et e e e naans 1280
CLUSTER ..ottt ettt et e et e et e et et e et e s eeana e eenae e eenaeennannen 1281
COMMENT ..ttt ettt et e e e et et ea et ea e et e s eenne e eenneenanenes 1283
COMMIT ..ttt ettt ettt et e et e e eee e e eae e e e e e e e e anaeeanaenens 1287
COMMIT PREPARED ..ottt ettt et e e e een e eenees 1288
(10 = USROS 1289
CREATE ACCESS METHOD ..ottt e e e 1298
CREATE AGGREGATE ...ttt ettt et e e e et e et e e e e e e ran e eane e 1299
CREATE CAST ittt ettt ettt ettt e e te e et e e e e e ene e een e rena e eeana s 1306
CREATE COLLATION ...ttt ittt ettt et et e e et e e tea e et e e e eaa e eena e eena e eena e eanaees 1310
CREATE CONVERSION ...ttt ettt et ettt e et e et e e e e e et e eeneeeena e 1312
CREATE DATABASE ..ottt ettt ettt e e et et e et e e e e enna e eanaes 1314
CREATE DOMALIN ...ttt ettt ettt et e et e e et e e e e e raa e e rea e eeaa e ennaeeeenanes 1317
CREATE EVENT TRIGGER ...ttt ettt e e e e e e 1320
CREATE EXTENSION ..ottt ettt et e e e e e e e e e ren e rena e 1322
CREATE FOREIGN DATA WRAPPER ...ttt ettt 1325
CREATE FOREIGN TABLEouiiiiiiiiiiie ettt ettt et e e et et e e e e e een e eenaeeeee 1327
CREATE FUNCTION ..ottt ettt ettt et e et e et e e et e e een e e rana e eranneennanees 1331
CREATE GROURP ...ttt ettt et e e e et e e eae e e ean e eeaaes 1338
CREATE INDEX ...ttt ettt ettt et e et et e e e et e e eaa e e tan e e eaneennaeeees 1339
CREATE LANGUAGE ...ttt ettt s e e e e eanees 1346
CREATE MATERIALIZED VIEW ..ottt ettt e e e e 1349

xii

Postgres Pro Standard
11.13.1 Documentation

CREATE OPERATOR ...ttt ettt et e e e e s e e e e e eaneeeens 1351
CREATE OPERATOR CLASS ottt ettt et et e et e e e e e e e 1354
CREATE OPERATOR FAMILY ..ottt ettt st et e e e e e e 1357
CREATE POLICY .ottt ettt ettt ettt e et et e et e et e e eaa e e eae e e eaa e eenns 1358
CREATE PROCEDURE ...ttt ettt ettt e e e e e e e e 1363
CREATE PUBLICATTON ..ottt et ettt et e e e et et e e e e eeaaes 1366
CREATE ROLE ...ttt et e et e et e et e et e e e e ran e eeanaees 1368
CREATE RULE ...ttt et ettt et e e et e e et e ena e ran e eeana e 1372
CREATE SCHEMA ..ttt ettt e e et e e e et e e e e e e e eenaeenens 1375
CREATE SEQUENRCEE ...ttt ettt et e e et e e et e e e e e ran e eeaneees 1377
CREATE SERVER ...ttt ettt e e e e et e e e e ran e eeana e 1380
CREATE STATISTICS ...ttt ettt e e e e e e e eeaa e enaees 1382
CREATE SUBSCRIPTION ...ttt ettt ettt e e e e e e e e enneees 1384
CREATE TABLE .ottt ettt et e et e et e et e e e e eeaa e ennae e eenaees 1387
CREATE TABLE AS ittt et et e e et e et e e e e een e eana s 1406
CREATE TABLESPACE ...ttt ettt ettt et e e et et e e e e e e e eenaes 1409
CREATE TEXT SEARCH CONFIGURATION ...c.ouitiiiiiiiiiiiiiiei ettt e 1411
CREATE TEXT SEARCH DICTIONARYcouiiiiiiiiiiiii ittt e ee e 1412
CREATE TEXT SEARCH PARSER ..ottt e 1414
CREATE TEXT SEARCH TEMPLATE ..ottt 1416
CREATE TRANSFORM ...ttt ettt ettt ettt e e et e et e e e eenaees 1417
CREATE TRIGGER ...ttt ettt et e et e et e et e et e eeneeeena e 1419
CREATE TYPE .ottt ettt ettt e e et e et ta e e e e e ea e eenaeeenaees 1425
CREATE USER ...ttt ettt et et e e e et e et e e e e e eaa s e een e eeneeeens 1433
CREATE USER MAPPING ..ottt ettt ettt e et e een e een e eena e 1434
CREATE VIEW Lottt ettt et e ettt et e e et e e et s e eat e e tan e eranneeenneeees 1435
DEALLOGCATE ...ttt ettt ettt et e et e et e e et e et eeeaa e e e eennaeeanaenens 1439
DECLARE ...ttt ettt ettt et et et eea e eeaeee 1440
DELETE ..ottt ettt e et e et e et e et e et e e e e e e et e en e e eaa e 1443
DISCARD .ttt ettt e et e et ettt et e et et et a et e e ran e eeaas 1446
| L PPN 1447
DROP ACCESS METHOD ..ottt ettt et e e e e e e eaa e eees 1448
DROP AGGREGATE ...ttt ettt ettt e et e et e et e e e e eeaa e eenaees 1449
DROP CAST .ottt ettt ettt ettt e et e et e et e e e e et e e e ran e e raneeenaeees 1451
DROP COLLATTON ...eiiiiiiiie ettt ettt ettt e et e et e et e et e enn e e rana e ranaeeennaees 1452
DROP CONVERSION ...ttt ettt et ettt e e et e e et e eea e e raa e erana e 1453
DROP DATABASE ...ttt ettt ettt et et e s e e e e ea e eeaaes 1454
DROP DOMALIN ..ottt ettt ettt e et e et e et et ea e et e s eeaa s eenaeeeenaeennannes 1455
DROP EVENT TRIGGER ..ottt ettt et e e e e e e eees 1456
DROP EXTENSION ...ttt ettt et e et e et et et et e e et e s e et e eena e e raaeeraneenaneens 1457
DROP FOREIGN DATA WRAPPER ...ttt et 1458
DROP FOREIGN TABLE ...ttt ettt et s e e e e e e e ean e eens 1459
DROP FUNCTION ..ottt et ettt e e s e et e et e e e e e ea e eena e eenaeeenanes 1460
DROP GROUP ...ttt ettt et e e e e et e et e et e e ea e eena e eenans 1462
DROP INDEX ...ttt ettt et ettt e et e et e et e e ta e et e een e tana e ranaeeennneennaeeens 1463
DROP LANGUAGE ...ttt ettt et e e et e e e e ena e eenaees 1464
DROP MATERIALIZED VIEW ..ottt et ettt e e e e e ee e 1465
DROP OPERATOR ...ttt ettt ettt e et et e e et e et e e eaeeeena e eenas 1466
DROP OPERATOR CLASS ...ttt et et ettt e e e ean e ea e eaaees 1468
DROP OPERATOR FAMILY ..ottt ettt et e e e et e e e e eenaeeee 1469
DROP OWNED ...ttt ettt et e e ettt e et e et e e e e e enn e ran e eanaees 1470
DROP POLICY ..ttt ettt ettt ettt e et e et e et e et e et e e e eaaa s e et e eeaneeeaaeenaaeennans 1471
DROP PROCEDURE ...ttt ettt e et s e e e e ena e eeneeeenae e 1472
DROP PUBLICATTON ...ttt ettt ettt et e e e e et e ea e et e e ena e enna e ennaes 1474
DROP ROLE ...ttt et et e et e e et e et e e et e e eaa e e raa e e ran e enaaeees 1475
DROP ROUTINE ...ttt ettt e e et e et e eaa e eenaeeenaes 1476
DROP RULE ...ttt et ettt et et ettt et e e tea e e eaa e e et e e eaa s e eaaeeranneennaeeees 1477
DROP SCHEMA .ttt ettt ettt e et e e e et s e e e e e an e eaneeenens 1478

xiii

Postgres Pro Standard
11.13.1 Documentation

DROP SEQUENCE ..ottt ettt ettt ettt e e et e e eee e e ren e e ean e eeaaeeees
DROP SERVER ...ttt ettt ettt e e e et e e e tae e e e e eeaaeennaeees
DROP STATISTICS ..ottt ettt ettt e e et ettt e e e et e s e et e eenneennnenes
DROP SUBSCRIPTIONouiiiiiiiiiiiiiie ettt et e et e et e et e eene e e tan e e ean e eenaeennaeeeens
DRODP TABLE ...ttt ettt et e et e e e e et et e e e e e e et et e eena e
DROP TABLESPACE ...ttt ettt et e e e e e e et et e e e e s eenn e eanees
DROP TEXT SEARCH CONFIGURATION ...ttt ettt
DROP TEXT SEARCH DICTIONARY ..ottt ettt ettt eee e e
DROP TEXT SEARCH PARSER ...ttt ettt
DROP TEXT SEARCH TEMPLATE ...ttt ettt e e e e eenees
DROP TRANSFORM ...ttt ettt ettt ettt e et e e e en e e e e eena s
DROP TRIGGER ..ottt et ettt e et e e et e e ean e e ran e erana e
DROP TYPE ..ottt ettt e e e ettt e e e et e e e e e e e et e e ene e eena e
DROP USER ...ttt ettt e et e ettt et e e e et e e e e e e e e ran e eens
DROP USER MAPPINGouiiiiiiiiiiieiie ettt et e e et e et e e e e e e e ennaeeees
DROP VIEW L.ttt ettt et e et e et e et e e e e ran e eeanneeenneeeees
BN D ettt et et et ettt e e e e e e e eaaaes

L0 D 7N S
72X O L 1 P
7 1
WATITLSN Lottt ettt e e e et e e e et e e e e ettt e e eeetaa e eaestna s eeessnnneeeesnnnnsaessnnnnsernsnnnnseenennnnnns
II. Postgres Pro Client APPLICATIONSuiiiniiiiiiiee e e e et e e e e e eaeeaanas
CIUSEETAD ..o et et e et et e e et e e et e e ea e e et e eebaeeees

Xiv

Postgres Pro Standard
11.13.1 Documentation

o2 4 == 1 7=Te | o TP 1608
CTEALEUSEYT ..eeuniiiiii ittt ettt et et e et e et e et e et e ta e et e ean e eau e et et etnneauaeesaeeensaanseenaetaneanneennaenes 1611
6 By} 076 1 o J 1615
6 By} 010 F=1=Y 1617
704 o Yo E PRSP 1619
PG DASEDACKUD ettt e e e e e 1621
9701 0 7=1 s Vol o U 1628
oTo Je10) 1V Lo SRS R PP PPN 1642
o Yo Je L0 N1 o J O OO PPPRRPPRRRN 1645
o Yo Je Lbha] o T 1 | KPP PRUTPTRRt 1657
1910 B E] =TT | PO TOPPRPPPPRRPRt 1663
DG TECERIVEWAL ..cetiiiii ittt ettt et e et e et e e et e e et e e eea s e et s e et e eebaeeananas 1665
o Yo I A =ToaTa o To 1 [o}- 1 RPN 1669
DU TESTOTE «.eeniiiiiieei ettt et e e et et e et et e et e et e etn e eaaetaa e ean s eaneeanaeetasetnnaannaenneeenns 1672
10 2 =Y 0] 0 1) AP PR PRRR 1680
1910 1 S 1682
30010 155 (6 | o PSPPI 1719
VACUUINAD ..ottt e e et e et e et e e et s e et s e et e e eaa e e eaa e eenaaees 1722
III. Postgres Pro Server APPLICAtIONSciiuiiiiiiiiiii et e et e e e e e e e e e eens 1726
1011 e | o T OO PPPRRPRt 1727
PG ATCRIVECLEATITD ...eiiiniiii ettt et e et e et e e et e e et s e et s e etaseaanneeaens 1731
o Yo I et0) a1 o) Ko b= 1 - O USROS 1733
o1 2 1 RO PP PRSPPIt 1734
PO TESEEWAL ..ttt ettt e e et e e et e et e eb et e eeb e eab s 1739
910 B A=) o Lo OO PRSPPI 1742
110 T SY AU o PPN 1745
PG EESE FSYTIC ettt ettt et e e et et e et e e et e e e eaa e 1747
o Jo ST A 001 o o S PP UP TR PPTPPRRPRURt 1748
o Yo JRVY o Yo 1 o= Vo [T OO OPPRUOPPRRRS 1751
PG VETIEY ChECKSUINS ..couuniiiiiiiiii et e e et e e et e e ee e eeb e e 1758
PG WALAUINID «.eiiiiiiii et ettt ettt e et e et e e e et s e et s e ett e e aaa e eaean e eataneeasaneeesaeeannaes 1759
[TSI o 1 ol SRR 1761
0TS m a0 b) =) PN 1768
VIL INEETTIALS oeenieiiii ittt et et e et e et e e et e e et s e et e e eta e e et s e et s aetanseaannaeesanaansnnaes 1769
49. Overview of Postgres Pro INtEINaAlsciiiiiiiiiiii et e e e e eaas 1770
49.1. The Path Of @ QUETY ..uceuniiiiiiiee e et e et e e e e et e e te e s e et e et e e e s aenesaneerneees 1770
49.2. How Connections are Establishedccooiiiiiiiiiiiiiiiiiii e, 1770
78S TG T N o T 2) =T =) Al = Vo [RN 1771
49.4. The Postgres Pro RUle SYSLEIMc..iiiiiiiiiiiii et e e 1772
2 NS TN T = o N 0 o T=Y 47 @)] 01 =) Rt 1772
9.6, EXCCULOT .ottt et ettt ettt e e et et et et et e eaeeaa e 1773
O 4] 1Y 0 N O 1 = 1 Lo o £ 1775
50,1, OVEIVIEW .ouiiiiiiiiiiie ittt et et et e et et e et e et eea e eaa e etn s eaneetbe e et eanetnsaanneennaeeneenns 1775
5] I Yo f-Yo e b ol =T 1= ot < SUUT O U RP 1776
S R T o te = I U TP 1779
YR S o Ye Y 1) < IOt 1779
ST O S T oY Y 111 o} ate L AN O 1780
o O ST Yo = N ok o o =S AP ORI 1781
(S VR <Y =L o o o < ol = S OOt 1781
S O e T Yo R ol o e E RN 1784
oYU Yo RO ol T 111 111 oY= 5 ok SN 1785
YO N R T T =1 U OO TP UTURIRt 1786
o R R oY A N = =T R PR 1787
151000 B e ot e M = ¥ i I) o NPT 1791
ST O I ST oY i olo) oP=k ol ar= K I o | TP 1792
YOI T Yo B eTe) o R 72 Y of =k e s R T PR 1794
S O BT o Te Hic R =0 o Y= =TSN 1795

XV

Postgres Pro Standard
11.13.1 Documentation

50.16.
50.17.
50.18.
50.19.
50.20.
50.21.
50.22.
50.23.
50.24.
50.25.
50.26.
50.27.
50.28.
50.29.
50.30.
50.31.
50.32.
50.33.
50.34.
50.35.
50.36.
50.37.
50.38.
50.39.
50.40.
50.41.
50.42.
50.43.
50.44.
50.45.
50.46.
50.47.
50.48.
50.49.
50.50.
50.51.
50.52.
50.53.
50.54.
50.55.
50.56.
50.57.
50.58.
50.59.
50.60.
50.61.
50.62.
50.63.
50.64.
50.65.
50.66.
50.67.
50.68.
50.69.
50.70.
50.71.

jole e] ol oo N YINCT Y ol ol I o Lo H PP PP PP PPPPPPPP

JS T e L= B = X 2 N

S 1 @ LY =T o

jsTe @ LY =T i o) wll @) o P

L1 TS QUi D o = I o NN

jole il ke altiNe s olile - Rul-Tl A ar-l o) o 1= 5 NN ST PP PPN

jele el alchiNe s o= % a4 S PN
Jo X J B = e o T wi= N o T N
<1 S o 1 PN
jole R I 0¥ o 1% ki A o= PP
L1 T I o T Bl v
<1 R =50 L = =

jele N R-T ale (oTo) o Jy Yol N PP PP PPN
jele MR- Rale [oTol o3y EoYoh il 111} o= Lo K- N ot N PPN

PO NAME SPACE tuttuutneanernteneeaneaneanaantentsansanasnsentensesensenssnasnssnsanssnsenssnsenssensansensensensennenns
J <1 @) oY@ N = N
| S L) X i
o1 @) @ = ¢ B N
PO _Partitioned _table i et e
ST <30 G i 41 T i

PO 00 L L Oy ttttnttrnteeneeenaeeenteeanseansessnsssnssessssnssesssssnssesssssnsssnssssssssnssssssssnssssssssnssssssssnssonss
o] J o il o L& N PP

jele il eJb] NIk N Tt vl el o NN PP PP

el 01 NIk NeF-N vl He) o Mk af =N PP PPN
o o= 0 X
jele il a) ol Ik Nor-1 ki No) ol o hak Ke i o NSNS
ol R AN i o = S PP PPN
<1 TS 1Y @ = @ = T
jole =T=Ye 15 1Y o Yol Y
<1 =0 aTe 1] ST o ¥ P
jele MY oTe IST-Tehah A o)l K o) o BN PPN
ST =T 0 BT Y = 0
ST =T wr= N i = s I P
jele MR - Rulk =1 o N o = -4 U PPN

eI MIRCRUY oF-Tehak N o) il A o o N

J ST TRCRBY OF=T et I o uil I o N ot =0
oL TR TE= T TN Y= N
LS R U o= o = i PN
o ol A e ol
jele i =T oo} o ik Ko NN PP PPN
jele i =T ele) obiih Ko f 111 < TN PP PPN
o1 T A= T N
S T U= T © 1=

ST R o T =Y (30 = i

oo JRBR=T b i (1= o 5 o Y
SYSEEIM VIBWS ettt ettt et e e e et et e e e et et e et ea e e e aneaanaaneanaanaens

el ANV N RTIICY S ol =Y o F T el o ¥= R PP PP PP PP
PO_available eXtenSion VeI SIONS tiiiiiiiiiiiiiitriittiietrateeieeeanesssseesnsosnssesssssnssesssssnssanss

21 J T o B« N
jole MR eAb bal=Te X al= NN PPN
jele M B R TN =T=Y ol ol B o L £ PP PP PP

P _JTOUD tetuuteneesnueoensossuessnssessssnssenssessssonssessssssssssssssnssssssssssssnssssssssssssnssesssssnssssssssnsssnns
o1 J o @ = N e I o 6

XVi

Postgres Pro Standard
11.13.1 Documentation

51.

52.
53.

54.

55.

56.

57.

YO AT T N oL 1= 3 <= 1= ST PPN 1843
o VRS T <Y i Ko Te) 3= U OO 1844
S R T Yo B (R v =) = SN 1847
YO YA T o Te i o Te M Ko K =1 RPNt 1847
50.76. PG _PrePared STAtEMEIES tirierirerrirnererteeneeeteenererernereerernereserneresernerterernereerernernerernernes 1848
IS URVAVARE oe Bl e al=] o F- B at= Yo D €=V o) o - HUUT U O UUPUT 1849
SYORVAS TR oTe ll o301 R I I=h o MY s M =Y o I == SRRt 1849
SO IVAS I oYe f ot =YeloXi2=F o - T= ol ok o o £ N 1850
50.80. pg_replication Origin_ Statls civiiiiiiiieiiiiiieiteieeeieeeieetertereerernereerernereerernernerernesns 1850
ISTOIR S J A oTe S at=) SN I Lok o Moy s M= o) ot = PN 1850
YOI S F R oY i e M = Y= T OO PTRN 1852
o O S 1S T oY o U0 Y= SO 1853
S U e 7 T Yo BT Y el K=Y o 1= N - E U TURROt 1853
S O e 1o T o Te B T=To 1o =) o Vot=Y = PRt 1854
S OIS T oY HE =TS ol o I o L 1= RSN 1854
S O S WA <Y =) s F=Ye Lo) AT U O TP UUURPRRt 1857
O 1 e T et BT = o= PP 1857
YOI 1 I Yo i =1 o 1 K= R PP 1860
SO IO Yo MR B =Y. 2o} TR 1 o) oF o =3 74= U U USRI 1860
50.9], PG L iME ZONE_NAIMES ttuitiinirnerernetnereenernererternesasternesaesesnesassesnesssessesessessersssesseseeressesaeseees 1861
S R N oY H ==Y RNt 1861
STORE I TN oY BT E=T=S ol (=) o) <k o e 1= RN ORI 1861
S O T oY 4 =) = S U OO TP 1862
Frontend/Backend ProtoCOLccuviiiiiiiiiiiiiiiee et eete et e e ee e e eae s eeteeeaasaeannss 1863
1.1 OVETIVIEW euiiiiiiiiiiiii ettt ettt e et e et e et e et e et e et s e e e et s et s eau e et eatnsetnsetaeanneasnsesnseenns 1863
51.2. MESSAGE FLOW ..iiniiiiiiiiiiii et e et e et e et e et e e e e st e et e et e et e et e saneeaaesrnesanns 1864
51.3. SASL AUthentiCAtioncccuviiiiiiiiiiiiie ettt e e e e e et e e et e e eaaesaaaneeaeanns 1876
51.4. Streaming Replication ProtoColccoouiiiiiiiiiiii e 1877
51.5. Logical Streaming Replication Protocolooiiiiiiiiiiiiiieiie e 1883
51.6. MeESSAGE DaAta TYDES cuuiiniiiiiiiiiii et e e et e e et et e e e e et aeans 1884
51.7. MeSSAGE FOTINALS ..cuuiiniiiiiiiiie et e et e e e et e e e e e et e e e e e eaeanaans 1884
51.8. Error and Notice Message FieldsScocueiiiiiiiiiiiiiiiii e e 1900
51.9. Logical Replication Message FOrmatsccccueiiiiiiiiiiiiiiieiie e 1901
51.10. Summary of Changes since Protocol 2.0ccooiiiiiiiiiiiiiiiiece e 1905
Writing A Procedural Language Handler ..o 1907
Writing A FOoreign Data WA DO ..ouu ittt e e e et e e e et et e e e e e et eaneaaaaanas 1910
53.1. Foreign Data Wrapper FUNCEIONScoouiiiiiiii et a e 1910
53.2. Foreign Data Wrapper Callback ROULINESccovuiiiiiiiiiiii e 1910
53.3. Foreign Data Wrapper Helper FUNCLIONSooiiiiiiiiiiiiiieieee e 1922
53.4. Foreign Data Wrapper Query Planningc.c.coeiiiiiiiiiiiiii i e s 1923
53.5. Row Locking in Foreign Data WIapPeTsSc.oiiuiiiiiiiieiiieeieeeieete ettt e e e ea e 1925
Writing A Table Sampling Method ... 1927
54.1. Sampling Method Support FUNCLIONScooviiiiiiiiice e 1927
Writing A Custom Scan ProvVIiAerccoouiiiiiiiiiiiiieiie et e et e e e e e aaaaean 1930
55.1. Creating Custom Scan Paths ... 1930
55.2. Creating Custom ScCan PIAnSscccooiiiiiiiiiiiie e e et e et e e e eanes 1931
55.3. Executing CUSEOIM SCANS ...ivuiiiiiiiiiiiiie et et e et e e e e et et e e e et e a e e eanaanns 1932
Genetic QUETY OPTIMIZET ..cvuiiniiiiiiie ettt e et e e et e e e et et e e e et eanaaneanaasnaens 1934
56.1. Query Handling as a Complex Optimization Problemcccooiiiiiiiiiiiiiiiiiieiieeeins 1934
56.2. GenetiC AIGOTILRIMNSouiiiiiii e e et e e e e et e et e et e et e e e e et eaaaans 1934
56.3. Genetic Query Optimization (GEQO) in Postgres Proccccoviiiiiiiiiiiiiiiiieeeeecee, 1935
56.4. FUIther REAMING ..ccvuiiiiiiiiiiiii et e e e et e e e et e et e e e e st e saeeaanns 1936
Index Access Method Interface Definitionccccouveiiiiiiiii e, 1937
57.1. Basic API Structure for INAEXESccuuiiiiiiiiiiie e e e e e e e et eeaas 1937
57.2. Index Access Method FUNCEIONSc.uiiiiiiiiiiie et e e e v 1939
SWARC TN §aTe 155 Qi Tot=1 a1 k11 Yo AU URRPURt 1944
57.4. Index Locking ConsSiderationsccoiuieiiiiiiiiiiiie et e e e et e ereeaanas 1945

xvii

Postgres Pro Standard
11.13.1 Documentation

57.5. Index Uniqueness CRECKSccuiiiiiiiiiiiiiee e e et e e e et e et e e e eaeeaeesaneeens 1946
57.6. Index Cost Estimation FUNCTIONSc..oiiiuiiiiiiiiiiiiiie e e 1947
58. GENETIC WAL RECOTAS ..uuiiiuiiiiiiieiie ettt ettt et ettt e et e e et s e et s e et e e et e eeeaeeeaaeeaaanaees 1950
59, B-TTEE IMAEXES .oeuuiiiiieiiie ettt ettt e et e et e e et e e et e e et e e eaa e e et e eetaeeetaeeeeanseeenns 1952
1S TR IO 4 L o Yo L o1 1 o) o A OO OO 1952
59.2. Behavior of B-Tree Operator ClaSSEScccueeiiuiiiiieiieiiieeiieeeieeeieeie e e eaeeaeeaneeaenasannas 1952
59.3. B-Tree Support FUNCLIONSc.oiuiiiiiii ettt e e et e s e e e eaeane e 1953
B0. GIST INAEKES ..eeuuiiiieeiiie ettt ettt ettt e et e et s e et s e et s e et e eeaaa s eetan e eetaneeabaeeennseetanseennnns 1955
B0.1. INETOAUCTION .eviiiiiiiieiii ettt et e e et s e et e e et e et e e e et e e et s entaeeenanns 1955
60.2. BUilt-in OPerator CLASSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e et et e et e et e eaeaeaeesanasrnaesnneenns 1955

LS O JC TR 5 Y o 53 31) RN 1955
60.4. IMPLEMENtAtION ...iieniiiieie e e et e et e et e et e e e et e et e e e et aaaaaaeaan 1964

S 0T 5= 1001 o] (=T S 1964
1. SP-GIST INAEXES ..evuuiiiiiiiiie ettt ettt ettt et e e et e e et e e et s e et s e et e ettaeeeaaseeasanaeetaneensaeaennnaes 1965
0 IO 4 L 4 o To L o1 o) o A PO 1965
61.2. BUilt-in OpPerator CLlAaSSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e e te e s e et e et e eaeeeaeesanaernaesnneenns 1965

O NG TR 5 Y o 153 31) RPN 1965
I 00} 0] Lo a =Y a1 =Y) o PN 1972
B2, GIN IIAEKES ..eevuuniiiietiii ettt ettt ettt e e et e e et e e et e e et e e et e etha e etaa e eaunseetnnseetnnseesnnsennnnns 1974
2/ IO 4 L o Lo L T o1 1 o) o A OO PO 1974
62.2. BUilt-in OPerator CLASSES ...c.uciiuiiiiiiiiiieeie e e et et et e et e e te e e e et e et e eaeeeaenesanaernaesnnesens 1974
LSV C T 0 1Y o 531 031) RN 1974
Y N 00} 0] Lo a =Y a1 =) o PN 1977
62.5. GIN TipS @nd TTICKS ..icvuiiiiiiiiieiiieiiieeie e e et e e e et e e e e st e st e eaaeeressaneeanaeanaeenns 1978
62.6. LIMITATIONIS .oeuniiiiiiiiii ittt e et et et e et e et e e e e eb e een e ean e e eenas 1978
Y 5 <= 1111 o] (=T S 1978
63. BRIN INAEXES ..uieiiiiiiiieiiiie ettt ettt et e et e e et e et e ettt e ettt s e et s e eta s eataaseeanneeasnneeesanaenes 1980
76 T80 IO 4 L 4 0 To L T o1 1 o) o AU OO 1980
63.2. BUilt-in OpPerator CLlASSES ...c.uciiuiiiiiiiieieeiii et e e e et e e et e e te e e e et e et e ereeaenesanaernaesnneenns 1980
LS36 T0C T 05 1Y o 531 031 51 RN 1981
4. HASH INAEXES ouuiiiiiiiiiiiie ettt ettt e et e e et e e et e e et s e et s e et e e et aeasaseeananaees 1985
4.1 . OVEIVIEW .ouiiiiiiiiiiieii ettt et et et e ettt e et e et e et e et eea e et e ean s eaneeabe et etnetnsaenneenneeeneenns 1985

O R N 00} 0] o 4= a1 =Y) o PN 1986
65. Database PhySiCal StOTAQEccuuiiiuiiiiiiiii et e et e et e et e et e e ae e st e st e eaneeeanaees 1987
65.1. Database File LayOoulcccuiiiiiiiiiiiie et e e e e e et e et e e e e et e et e e e e aena s 1987
85,2, TOA ST .ottt ettt e et e e et e e et e et e et e et et e et e et e et eaaanas 1989
05.3. FIEE SPACE MAD tiuiiniiiiiiiiiie ettt e e e e et e e e e et et et e e et e e e e aans 1991
65.4. VISIDILEY MAD ..iiiuiiiiiiiiiie ettt ettt e e et s e et e e et e e et e e et e e et e eabaeees 1992
65.5. The Initialization FOTKc.uiiiiiiii ettt e e e e e e e eee 1992
65.6. Database Page LayOulciiiiiiiiiiii et e e e et e e e aaas 1992
66. How the Planner Uses StatiStiCScviiiuiiiiiiiiiiiiiii e e e 1996
66.1. Row Estimation EXampPlesc.oiiiiiiiiiiiiiiiiiiie e e et e e e e e et e e e e s e aaeeaaaas 1996
66.2. Multivariate StatisticsS EXamPILEsiiiiiiiiiii i 2000
66.3. Planner Statistics and SECUTILYoiiuiiiiiiiiii e 2002
V0 N o) 0 1= oL b (=Y SN 2003
YAV o T W 4 T = o T o) O o o LY 2004
B. Date/Time SUPPOTTE «.ouniiiiii ettt et e e et et e et et e e e et eaa et e e aanaaneeneannaeneens 2012
B.1. Date/Time Input INterpretationccoiiiiiiiii i e 2012
B.2. Handling of Invalid or Ambiguous Timestampscccccueiiiiiiiiiiiiieii e e 2013
B.3. Date/Time KEY WOTASccuiiiiiiiiiieiiie ettt e e e et e et e e te et e et e et e e s eaenesanasanaaannasennns 2013
B.4. Date/Time Configuration FilesScccoiiiiiiiiiiiiei e e e e e e 2014
B.5. POSIX Time Zone SPecCifiCationscc.oeiiiiiiiiiiiiiiie e e e 2016
B.6. HiStOTY Of UTIES ciiuniiiiiiiii et e e e et e et e e e et e et e et e aneaaneesnnaes 2017

S TR L TN E= o D - 1 =Y 2018
(OO) I =) A 0] oo £ 2020
D. SQOL CONLOTINATICE .euinininininieei ettt ettt ettt ettt e ea et e eneastetnensastetnensassesensneseteensnennnns 2043
D.1. SUPPOTLEA FEATUTES ...ceuiiiiiiiiii et e e e et e et e et e e e et e e e e e e e st e et e esnaesnnaeen 2044
D.2. Unsupported FEAtUTEScc.ueiiuiiiiiiiieiii ettt e e e e et e e e e e e et e et e e s e aeeeenesanneeas 2059

xviii

Postgres Pro Standard
11.13.1 Documentation

D.3.

XML Limits and Conformance to SQL/XML ...ttt eeaeaens

B REIEASE INOLES ouininitiiii ittt ettt ettt ettt st e e s et e en s et e enea et e eneasseenenensaenenenns

E.1.

]
N

N N N R R R WS BN SO

b b b b b b b b b b b b b b b
OO WNRF, O

Postgres Pro Standard 11.13.1 ... e e e e e e e et e e a e e e e een

. Postgres Pro Standard 11.12.1 ... e et e e e e e e e e e a e e een

Postgres Pro Standard 11.11.2 ... e e e e e e e et e e a e e e aees
Postgres Pro Standard 11.11.1 ...t e e e e e et e e a e e e eees
Postgres Pro Standard 11.10.1 ... e e e e e e e et e e a e e e e ees
Postgres Pro Standard 11.9.1 ...t e e e e e a e aas
Postgres Pro Standard 11.8.1 ... e e e e e et e e e aas
Postgres Pro Standard 11.7.1 ... et e e e e e e e e e e aa e aas
Postgres Pro Standard 11.6.1 ... e e e e e e e et e e e eaas
. Postgres Pro Standard 11.5.4 ...t e e e e e aa e e e
. Postgres Pro Standard 11.5.3 ..ot e e aaas
. Postgres Pro Standard 11.5.1 ..ot e e e et e e e aaa s
. Postgres Pro Standard 11.4.1 ... e et e et e e e et e e it e e e e e aaaaas
. Postgres Pro Standard 11.2.1 ..ot e e e e e e e ae e aaaas
. Postgres Pro Standard 11.1.1 ..ot e et e e e e e e e eaa s
CREIEASE 11,03 ittt e et e et e e e e eea e eaa e
CREIEASE 11,12 ittt e et et e e e et e aaa e
CREIEASE T1. 11 ittt e et et e et e eea e aaa e
cREIEASE T1.10 ittt ettt e et et e et e eea e eaa e
cREIEASE 1 1.9 oo ettt e e e et e et e aaa e eea e
REIEASE 11.8 oottt e it et e taa e eea e
s REIEASE 1 1.7 ottt e et e et aaa e eaa e
cREIEASE 11,6 et ettt e b e et e et e aea e eaa e

| R R e [=Y= =TS N A S TR

E.30.

CREIBASE L1.4 oot
L RBIEASE L. 3 oot
CRBIBASE L. et
L REBIEASE L. oot aaas
CREBIEASE L1 oo e
| 4 o0y il =Y (YYo=

F. Additional Supplied MOAUIESc..oiiuniiiiiiiei et e e e e et e e e e et e e ae e e e sanaennnns

F.1.
F.2.
F.3.
F4.
F.5.
F.6.
F.7.
F.8.
F.9

F.10.
F.11.
F.12.
F.13.
F.14.
F.15.
F.16.
F.17.
F.18.
F.19.
F.20.
F.21.
F.22.
F.23.
F.24.
F.25.

o Te Ba 0} o Vo] : NN
N0 To] 11T o) ORI
AUEN dELAY oeeiiiii ettt et e et e e eaaa s
Lo I 5):q] F= 1 RPN
o] (oo 1's HS U PP
o) cTC T o 11 RPN
o1y cTo R o 1) AU PRRUPORRPRt
(012« A OO TP

[0 101 A o L O PP TOPPR TPt
o hlo] b <) 1 RO OTPRUPRRRRt
Lo Lb N0} S - PP PP
CATTNAISTATICE ..eeuiiiiiii it ettt e et e et e et e et e e eees

| 15] 110 of <
101 < Lo £ E PPNt
1= o T

| o X

Xix

Postgres Pro Standard
11.13.1 Documentation

F.26.
F.27.
F.28.
F.29.
F.30.
F.31.
F.32.
F.33.
F.34.
F.35.
F.36.
F.37.
F.38.
F.39.
F.40.
F41.
F.42.
F.43.
F.44.
F.45.
F.46.
F.47.
F.48.
F.49.
F.50.
F.51.
F.52.
F.53.
F.54.
F.55.
F.56.
F.57.
F.58.
F.59.
F.60.

ONLINE ANALYZE ..oiviiiiii ettt ettt e e et e e e e e
=T e (3101 1= o VPP
T 3SR 0] e Lol o =T od - RN
PG DUITETCACKE ..eeiiicii et e e e e e eeas
| 916 (04 174 01 {0 R PPN
PG fTEESPACEIMAD .uuiiiinieiii ettt ettt et e e et ettt e et e et e et e et e eea e eaa e et eaaanes

PO PATIINAN ..ottt et e e et e eaae s
DO DPTEWATTIL «euueiiuneettineettieetuneetunseetuaeetueettuneeteaneettaseetsaeatsnetennseesnnsessnnseesnnseesnseeennsees

PO QUETY SEALE ..oniniiiiii et
10 10 AT 1o Yol <N
PG stat statements
L0 FST = 1 b o) 1SN
916 [A 1 8 1 PP PP PTPPPR
PO LSPATSET .ttt ettt ettt st ettt e et e e e

PG VATIADLIES ettt ettt ettt e et e et e et e eaa e eaa e
PG VISIDILIEY oottt e e e

oY E= N L 0 1= RN
POSETES FAW ettt ettt e e et e e et s e et s e et s e et e eanaeeeans
0101 o] : RN
Y=To PR PP PR PPRTRR

=TS e LeToloTe Yo SO OP PP UTOTPN
SN SYSTEIM TOWS L.eeiiiiii ettt et e e eas
ESIN SYSTEIMN TIIMIE L.cenniii i ettt et e e et et e ee e e e e e e ena s
UNACCEINT Lo et et e e e e e aae
LO RV L0 B0 T3] o S
b4 01 PRSP PPTPR PPN

G. Additional SUpPPlied PIrOGTAmSuiiiiiiiieieeiie et et e et e e e e te et e st e st e et eaeseaneesnaeanaeanesnnnns

G.1.
G.2.
H. Exte
H.1.
H.2.
H.3.
H.4.

(OFMT=] o LAY o o] A Tot= 1 o) o ¥ TP
Server APPLICATIONSiiiiii e e e e e e e aanns
L0 1 oo) [T o1 SN
(01 TS o) A B 0} =) i Lol Y
AdminiStration TOOLSiiiiiiiiie e e e e e et e e e e et e et e e r e e e e raeeaanaas
Procedural LanQUagesuiiuuiiiniiieeiee et ee e et et e et e e te e e e et e et e eanaeannesanestnaeeneanneenns
| =Y 1153 (0) 0 1 S PP

I. Configuring Postgres Pro for 1C SOIULIONScvieiiiiiiiiiii e e
J. Demo Database “AITLINES”oiriiiiiiieii et et e et e et e et et eeae et e et e et e et eraaaanaan

J.1.
J.2.
J.3.
J.4.

J.5.
K. Acro

|0 TS] = 11 -1t (o) s O URTUUPPN
S To =Y 00 b= D < T b = 1 o H RPNt
STod o 1=y b B DICT - 0d a1 o] # o) o NSt
S Tod o T=Y 00 b= RO] o =T o1 TSN
LU ET= o = T PIN
1047 10 1 SO PPPI

L. Obsolete Or ReNAMEA FRALUTES ...ouvuninininiiiiie ettt ettt ettt e et et e eaeaetaenenennens

L.1.
L.2.
L.3.

pg_xlogdump IreNamMed t0 PG_WALAUMD iuvrririiriiniiiieeenieeteeneeeeeenerneaaenerneaenerneraenernernaneenes
pg_resetxlog reNAMEd L0 PG _TeSEEWAL .iiiiiiriiniiiiiiteiieeteeeieeterneeerertererernerteaeenerneneens
pg_receivexlog renamed L0 Pg_reCeIivVEeWAL .iiviiiiiieiieiieieiieererneeieeterneeterrereenernaernens

|50 0) N oY 1= o] 0|7/ PR

Index

XX

Preface

This book is the official documentation of Postgres Pro Standard. It has been written by the Postgres
Pro developers, PostgreSQL community, and other volunteers in parallel to the development of the
PostgreSQL and Postgres Pro software. It describes all the functionality that the current version of
Postgres Pro officially supports.

To make the large amount of information about Postgres Pro manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
Postgres Pro experience:

e PartIis an informal introduction for new users.

* Part Il documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every Postgres Pro user should read this.

e Part III describes the installation and administration of the server. Everyone who runs a Postgres
Pro server, be it for private use or for others, should read this part.

* Part IV describes the programming interfaces for Postgres Pro client programs.

¢ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

e Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

e Part VII contains assorted information that might be of use to Postgres Pro developers.

1. What is Postgres Pro Standard?

Postgres Pro Standard is an object-relational database management system (ORDBMS), developed by
Postgres Professional in the Postgres Pro fork of PostgreSQL, which is in turn based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

Both PostgreSQL and Postgres Pro Standard support a large part of the SQL standard and offer many
modern features:

complex queries

foreign keys

triggers

updatable views

transactional integrity
multiversion concurrency control

Besides, PostgreSQL and Postgres Pro can be extended by the user in many ways, for example by adding
new

data types

functions

operators

aggregate functions
index methods
procedural languages

2. Difference between Postgres Pro Standard and
PostgreSQL

Postgres Pro provides the most actual PostgreSQL version with some additional patches applied and
extensions added. It includes new features developed by Postgres Professional, as well as third-party

xXxXi

http://postgresql.org
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

patches already accepted by the PostgreSQL community for the upcoming PostgreSQL versions. Postgres
Pro Standard users thus have early access to important features and fixes.

Note

Postgres Pro Standard is provided under the following license: https://postgrespro.com/products/
postgrespro/eula. Make sure to review the license terms before downloading Postgres Pro
Standard.

Postgres Pro Standard provides the following enhancements over PostgreSQL.:

Improved deadlock detection mechanism that does not cause performance degradation.

Reduced WAL size on CREATE INDEX operation for GiST, GIN, SP-GiST.

Better planning speed and accuracy for various query types.

Reduced memory consumption in complex queries that involve multiple tables.

Displaying planning time in the output of the auto explain module.

NUL byte replacement with the specified ASCII code while loading data using the copy FROM
command. (See nul byte replacement on import parameter description.)

ICU collation support on all platforms to provide platform-independent sort for various locales. By
default, the icu collation provider is used for all locales except ¢ and POSIX. (See Section 22.2.2.)
PTRACK implementation, which enables pg probackup to track page changes on the fly when
creating incremental backups.

Consistent reads on standby servers. (See WAITLSN.)

pg_recovery_settings view that displays the current recovery settings stored in the
recovery.conf file.

Changing parameters in recovery.conf without restarting the server.

Improvements for command-line editing using WinEditLine in the Windows version of psql,
including autocomplete support in psql console and changing the psql default encoding to UTF-8.
Unified structure of binary installation packages across all Linux distributions, which facilitates
migration between them and allows to install different PostgreSQL-based products side by side,
without any conflicts. (See Chapter 16.)

Postgres Pro Standard also includes the following additional modules:

dump stat module that allows to save and restore database statistics when dumping/restoring the
database.

fasttrun module that provides transaction-unsafe function to truncate temporary tables without
growing pg_class Ssize.

fulleq module that provides additional equivalence operator for compatibility with Microsoft SQL
Server.

hunspell-dict module that provides dictionaries for several languages.

jsquery module that provides a specific language for effective index-supported querying of JSONB
data.

mamonsu monitoring service, which is implemented as a Zabbix agent.

mchar module that provides additional data type for compatibility with Microsoft SQL Server.
online analyze module that provides a set of changes to immediately update statistics after INSERT,
UPDATE, DELETE Or SELECT INTO operations applied for affected tables.

pgbouncer connection pooler.

pg pathman module that provides optimized partitioning mechanism and functions to manage
partitions.

pg probackup, a backup and recovery manager.

pgpro controldata, an application to display control information of a PostgreSQL/Postgres Pro
database cluster and compatibility information for a cluster and/or server.

pg query state module that enables you to get the current state of query execution for a backend.
pg repack utility for reorganizing tables.

pg tsparser module, which is an alternative text search parser.

xxii

https://postgrespro.com/products/postgrespro/eula
https://postgrespro.com/products/postgrespro/eula

Preface

* pg variables module that provides functions for working with variables of various types.

* plantuner module that provides hints for the planner to disable or enable indexes for query
execution.

* shared ispell module that enables storing dictionaries in shared memory.

e sr plan module that allows to save and restore query plans.

Postgres Pro Standard releases follow PostgreSQL releases, though sometimes occur more frequently.
The Postgres Pro Standard versioning scheme is based on the PostgreSQL one and has an additional
decimal place.

3. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

3.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Information
Technologies (later merged into Informix, which is now owned by IBM) picked up the code and
commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia 2000
scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

3.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see

xxiii

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

¢ The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

* The instance-level rule system was removed. Rules were still available as rewrite rules.

e A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

3.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

4. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (.. .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the Postgres Pro system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

5. Bug Reporting Guidelines

When you find a bug in Postgres Pro we want to hear about it. Your bug reports play an important part
in making Postgres Pro more reliable because even the utmost care cannot guarantee that every part of
Postgres Pro will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something

XXiv

Preface

different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

A program produces the wrong output for any given input.
A program refuses to accept valid input (as defined in the documentation).

A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

Postgres Pro fails to install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

5.2. What to Report

When reporting a bug, make sure to state all the facts. Each bug report should contain the following
items:

The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries.

The output you got. If there is an error message, show it. If the program terminates with an
operating system error, say which. If nothing at all happens, say so. Even if the result of your test
case is a program crash or otherwise obvious it might not happen on our platform. The easiest
thing is to copy the output from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log error verbosity to verbose so that all details are
logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server.

The output you expect is very important to state. Please provide the expected output, if applicable.

Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default.

XXV

Preface

¢ Anything you did at all differently from the installation instructions.

* The Postgres Pro version. You can run the command SELECT pgpro_version (); to find out the
version of the server you are connected to. Most executable programs also support a --version
option; at least postgres --version and psqgl --version should work.

¢ Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on.

5.3. Where to Report Bugs

In general, send bug reports to our support email address at <bugs@postgrespro.ru>. You are requested
to use a descriptive subject for your email message, perhaps parts of the error message.

Do not send bug reports specific to Postgres Pro to the PostgreSQL support email address,
as Postgres Pro is not supported by the PostgreSQL community. But you can send reports to
<pgsqgl-bugs@lists.postgresqgl.org> for any bugs related to PostgreSQL.

Even if your bug is not specific to Postgres Pro, do not send bug reports to any of the user mailing
lists, such as <pgsql-sql@lists.postgresql.org> Or <pgsgl—-general@lists.postgresql.org>. These
mailing lists are for answering user questions, and their subscribers normally do not wish to receive bug
reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers' mailing list
<pgsqgl-hackers@lists.postgresqgl.org>. This list is for discussing the development of PostgreSQL,
and it would be nice if the community could keep the bug reports separate. The community might choose
to take up a discussion about your bug report on pgsgl-hackers, if the PostgreSQL-related problem
needs more review.

XXVi

Part |. Tutorial

Welcome to the Postgres Pro Tutorial. The following few chapters are intended to give a simple
introduction to Postgres Pro, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers. No
particular Unix or programming experience is required. This part is mainly intended to give you some
hands-on experience with important aspects of the Postgres Pro system. It makes no attempt to be a
complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applications for
Postgres Pro. When learning SQL, you can use the demo database described in Appendix J. Those who set
up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use Postgres Pro you need to install it, of course. It is possible that Postgres Pro is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access Postgres Pro.

If you are installing Postgres Pro Standard yourself, then see instructions on installation (Chapter 16),
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic Postgres Pro system architecture. Understanding
how the parts of Postgres Pro interact will make this chapter somewhat clearer.

In database jargon, Postgres Pro uses a client/server model. A Postgres Pro session consists of the
following cooperating processes (programs):

¢ A server process, which manages the database files, accepts connections to the database from
client applications, and performs database actions on behalf of the clients. The database server
program is called postgres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, a web server that accesses the database to display web pages, or a specialized
database maintenance tool. Some client applications are supplied with the Postgres Pro
distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The Postgres Pro server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
Postgres Pro server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

Getting Started

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then Postgres Pro was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such
file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Postgres
Pro user account for you. (Postgres Pro user accounts are distinct from operating system user accounts.)
If you are the administrator, see Chapter 20 for help creating accounts. You will need to become the
operating system user under which Postgres Pro was installed (usually postgres) to create the first user
account. It could also be that you were assigned a Postgres Pro user name that is different from your
operating system user name; in that case you need to use the -u switch or set the PGUSER environment
variable to specify your Postgres Pro user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If Postgres Pro refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed Postgres Pro yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as.

You can also create databases with other names. Postgres Pro allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

! Asan explanation for why this works: Postgres Pro user names are separate from operating system user accounts. When you connect to a database, you can choose
what Postgres Pro user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a Postgres Pro user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the -U option everywhere to select a Postgres Pro user name to connect as.

Getting Started

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the Postgres Pro interactive terminal program, called psql, which allows you to
interactively enter, edit, and execute SQL commands.

+ Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

¢ Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part IV.

You probably want to start up psgl to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psgl mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (11.13.1)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Postgres
Pro instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psqgl is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT pgpro_version();
version
PostgresPro 11.13.1 on x86_64-pc-linux—-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2,
64-bit
(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
?column?

Getting Started

(1 row)

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various Postgres Pro SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including melt93 and date97. You should be aware that some Postgres Pro
language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

2.2. Concepts

Postgres Pro is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single Postgres Pro
server instance constitutes a database cluster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_1lo int, —-— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)i

You can enter this into psgl with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

Postgres Pro supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a rich set
of geometric types. Postgres Pro can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The SQL Language

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i
The point type is an example of a Postgres Pro-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The 1INSERT statement is used to populate a table with rows:
INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)"');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM '/home/user/weather.txt';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here + is a shorthand for “all columns”. ! So the same result would be had with:

! While sErECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

The SQL Language

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;
The output should be:

city | temp_lo | temp_hi | prcp | date
——————————————— B T s
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;
This should give:

city | temp_avg | date
_______________ S
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward \ 45 | 1994-11-29
(3 rows)

Notice how the As clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather

WHERE city = 'San Francisco' AND prcp > 0.0;
Result:
city | temp_lo | temp_hi | prcp | date
——————————————— e e A
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— —————
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward

The SQL Language

San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once,
or access the same table in such a way that multiple rows of the table are being processed at the same
time. A query that accesses multiple rows of the same or different tables at one time is called a join query.
As an example, say you wish to list all the weather records together with the location of the associated
city. To do that, we need to compare the city column of each row of the weather table with the name
column of all rows in the cities table, and select the pairs of rows where these values match.

Note

This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— e e et e e e it

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

Observe two things about the result set:

¢ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see
shortly how this can be fixed.

e There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WwHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities

2 In some database systems, including older versions of Postgres Pro, the implementation of DISTINCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current Postgres Pro does not guarantee that DISTINCT causes the rows to be ordered.

The SQL Language

WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— et s et it et et
Hayward | 37 | 54 | | 1994-11-29 |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all other
weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— e
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

10

The SQL Language

Like most other relational database products, Postgres Pro supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

46
(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GRouP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, o
Hayward | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ +_____
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we
only care about cities whose names begin with “s”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE 'S%' -

11

The SQL Language

GROUP BY city
HAVING max (temp_lo) < 40;

The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WwHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28";

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— et e e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— -t
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form
DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

12

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Postgres
Pro. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some Postgres Pro extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT name, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weather table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the cities table to check if a matching record exists,
and then inserting or rejecting the new weather records. This approach has a number of problems and
is very inconvenient, so Postgres Pro can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
name varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities (name),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:

13

Advanced Features

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint
"weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use
of foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00

WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00

WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In Postgres Pro, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and coMMIT commands. So our banking transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00

14

Advanced Features

WHERE name = 'Alice';
—-— etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of commIT, and all our
updates so far will be canceled.

Postgres Pro actually treats every SQL statement as being executed within a transaction. If you do
not issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and coMMIT is sometimes called
a transaction block.

Note

Some client libraries issue BEGIN and coMMIT commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use
of savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing
the rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back to
it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance
WHERE name = 'Bob';

-— oops ... forget that and use Wally's account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Wally';

COMMIT;

balance + 100.00

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

15

Advanced Features

However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e e
develop \ 11 | 5200 | 5020.0000000000000000
develop \ 7 4200 | 5020.0000000000000000
develop \ 9 | 4500 | 5020.0000000000000000
develop \ 8 | 6000 | 5020.0000000000000000
develop \ 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales \ 3 | 4800 | 4866.6666666666666667
sales \ 1 | 5000 | 4866.6666666666666667
sales \ 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the non-window
avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a normal function or non-window aggregate.
The oVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY clause within ovER divides the rows into groups, or partitions, that share the
same values of the PARTITION BY expression(s). For each row, the window function is computed across
the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
——————————— R
develop \ 8 | 6000 | 1
develop \ 10 | 5200 | 2
develop \ 11 | 5200 | 2
develop \ 9 | 4500 | 4
develop \ 7 4200 | 5
personnel | 2| 3900 | 1
personnel | 5 | 3500 | 2
sales \ 1| 5000 | 1
sales \ 4 | 4800 | 2
sales \ 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank for each distinct oORDER BY value in the
current row's partition, using the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the ovER clause.

16

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FrROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways using different over clauses, but they all act
on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is a single partition containing all rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists
of all rows from the start of the partition up through the current row, plus any following rows that are
equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rows in the partition. ! Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;
salary | sum
,,,,,,,, I
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
________ I
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the seLECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

17

Advanced Features

aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a wINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

elevation int, -— (in ft)
state char (2)

)i

CREATE TABLE non_capitals (

name text,
population real,
elevation 1int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, elevation FROM capitals
UNION
SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.
A better solution is this:

CREATE TABLE cities (
name text,

18

Advanced Features

population real,
elevation int —— (in ft)
)i

CREATE TABLE capitals (
state char (2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its parent,
cities. The type of the column name is text, a native Postgres Pro type for variable length character
strings. The capitals table has an additional column, state, which shows its state abbreviation. In
Postgres Pro, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

which returns:

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953
Madison \ 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ o
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

Postgres Pro has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

19

https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in Postgres Pro. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a complete
description of a particular command should see Part VI.

Readers of this part should know how to connect to a Postgres Pro database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the Postgres Pro interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to Postgres Pro.

4.1. Lexical Structure

4

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

21

SQL Syntax

can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this creates
an ambiguity with the operator s. Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "data" could be written as

U&"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the uEscaprclause
after the string, for example:

Uu&"d!0061t!+000061" UESCAPE '"!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F00, foo, and "foo" are considered the same by Postgres Pro, but
"Foo" and "Foo" are different from these three and each other. (The folding of unquoted names to lower
case in Postgres Pro is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If you
want to write portable applications you are advised to always quote a particular name or never quote it.)

1.2. Constants

There are three kinds of implicitly-typed constants in Postgres Pro: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

22

SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'

'bar';

is equivalent to:

SELECT 'foobar';

but:

SELECT 'foo' 'bar’';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; Postgres Pro is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

Postgres Pro also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E' foo'. (When continuing an escape string constant across lines, write £ only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (o =0-7) octal byte value

\xh, \xhh(h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9,A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \ ', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007r) can be specified. Both the 4-
digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 8-digit form technically makes this
unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first combined
into a single code point that is then encoded in UTF-8.)

23

SQL Syntax

Caution

If the configuration parameter standard conforming strings is of £, then Postgres Pro recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters
escape string warning and backslash quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

Postgres Pro also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us'foo'. (Note that this creates an ambiguity with the operator «. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string 'data' could be written as

U&'d\0061t\+000061"'
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us'\0441\043B\043E\043D"'

If a different escape character than backslash is desired, it can be specified using the UEscaprclause
after the string, for example:

U&'d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into a single code
point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard conforming strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security issues.
If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, Postgres Pro provides another way,
called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar

24

SQL Syntax

sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of
characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne's horse” using
dollar quoting:

$$Dianne's horses
$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$function$
BEGIN
RETURN ($1 ~ $gS[\t\r\n\v\\]1$qg$);
END;
$function$

Here, the sequence gs [\t\r\n\v\\]g represents a dollar-quoted literal string [\t\r\n\v\\1, which
will be recognized when the function body is executed by Postgres Pro. But since the sequence does not
match the outer dollar quoting delimiter $functions, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagstring contentStag is correct, but
$TAGSString content$tag$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written as
four backslashes, which would be reduced to two backslashes in parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., 8'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X' 1FF'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:

digits

digits.[digits] [e[+-]1digits]
[digits].digits|e[+-]1digits]
digitse[+-]1digits

25

SQL Syntax

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

4?2

3.5

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL '1.23' —-- string style
1.23::REAL —-— Postgres Pro (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type
CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, casT (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

'string' syntax is that it does not work for array types; use :: or CAsT () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type 'string' syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but Postgres Pro allows it for all types. The syntax with
: : is historical Postgres Pro usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:

26

SQL Syntax

4.

+-*¥/<>=~1@#% " &| ?
There are a few restrictions on operator names, however:

* ——and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~1@#% "~ &|?

For example, @- is an allowed operator name, but *- is not. This restriction allows Postgres Pro to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@, you cannot write x*@Y; you must write x* @y to ensure that Postgres Pro reads it as two operator
names not one.

1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

* A dollar sign (s) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

* Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

* Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

* Commas (,) are used in some syntactical constructs to separate the elements of a list.

* The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

* The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

* The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

* The period (.) is used in numeric constants, and to separate schema, table, and column names.

1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.qg.:

—— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment

* with nesting: /* nested block comment */

*/
where the comment begins with /* and extends to the matching occurrence of */. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

27

SQL Syntax

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.
4.1.6. Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in Postgres Pro. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left Postgres Pro-style typecast
[] left array element selection
+ - right unary plus, unary minus
A left exponentiation
* /% left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN IN LIKE ILIKE SIMILAR range containment, set
membership, string matching
<> =<=>=<> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS
DISTINCT FROM, etc
NOT right logical negation
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR () .

28

SQL Syntax

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; Is tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator precedence warning turned on to see if
any warnings are logged.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

A constant or literal value
A column reference

A positional parameter reference, in the body of a function definition or prepared statement
A subscripted expression

A field selection expression
An operator invocation

A function call

An aggregate expression

A window function call

A type cast

A collation expression

A scalar subquery

An array constructor

A row constructor

Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

29

SQL Syntax

A column can be referenced in the form:
correlation.columnname
correlationisthe name of a table (possibly qualified with a schema name), or an alias for a table defined

by means of a FroM clause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $S
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which will
be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

30

SQL Syntax

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:
(compositecol) .*

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name (|lexpression [, expression ... 1])

For example, the following computes the square root of 2:

sgrt (2)
The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard but
is provided in Postgres Pro because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by clause]) [FILTER
(WHERE filter clause)]

31

SQL Syntax

aggregate_name (ALL expression [, ... 1 [order _by_clause]) [FILTER
(WHERE filter clause)]
aggregate_name (DISTINCT expression [, ...] [order_by clause]) [FILTER
(WHERE filter clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate_name ([expression [, ... 1 1) WITHIN GROUP (order_by_ clause) [FILTER

(WHERE filter clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since aLL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count (*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yields the total number of input rows; count (f1) yields the number of input
rows in which f£1 is non-null, since count ignores nulls; and count (distinct f1) yields the number of
distinct non-null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs
in. However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the oRDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ',') FROM table; —— incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DIsTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DISTINCT list.

Note

The ability to specify both DISTINCT and ORDER BY in an aggregate function is a Postgres Pro
extension.

Placing orRDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an order_by_clause is

32

SQL Syntax

required, usually because the aggregate's computation is only sensible in terms of a specific ordering
of its input rows. Typical examples of ordered-set aggregates include rank and percentile calculations.
For an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order_by_clause are evaluated once per
input row just like regular aggregate arguments, sorted as per the order by clause's requirements,
and fed to the aggregate function as input arguments. (This is unlike the case for a non-wITHIN
GROUP order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from
the aggregated arguments listed in the order_by_clause. Unlike regular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used
for things like percentile fractions, which only make sense as a single value per aggregation calculation.
The direct argument list can be empty; in this case, write just () not (*). (Postgres Pro will actually
accept either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
TOWS.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row)

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the
aggregate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and filter clause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVING clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according

33

SQL Syntax

to the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
OVER window_name

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
OVER (window_definition)

function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

where window_definition has the syntax

[existing_window_name]
[PARTITION BY expression [, ...] 1
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]

[, «..1 1]
[frame_clause]

The optional frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame_ start and frame end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW

offset FOLLOWING
UNBOUNDED FOLLOWING

and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's wINDow clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the winDow clause; see the SELECT reference page for details. It's worth
pointing out that OVER wname is not exactly equivalent to OVER (wname ...); the latter implies copying
and modifying the window definition, and will be rejected if the referenced window specification includes
a frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS Or GROUPS mode; in each case, it runs from the frame_start to the frame_end. If frame_end
is omitted, the end defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition.

34

SQL Syntax

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current row's
first peer row (a row that the window's ORDER BY clause sorts as equivalent to the current row), while
a frame_end of CURRENT ROW means the frame ends with the current row's last peer row. In ROWS mode,
CURRENT ROW simply means the current row.

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an expression not
containing any variables, aggregate functions, or window functions. The meaning of the offset depends
on the frame mode:

* In rROWS mode, the offset must yield a non-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GROUPS mode, the offset again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
offset specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the offset expression varies
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columns it is an interval. For
example, if the ordering column is of type date or timestamp, one could write RANGE BETWEEN '1
day' PRECEDING AND '10 days' FOLLOWING. The offset is still required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both rows and GrROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to CURRENT
row. This normally holds in RANGE mode as well, for an appropriate data-type-specific meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. ExCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, this means all rows
of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED
PRECEDING, and the frame_end choice cannot appear earlier in the above list of frame_ start and
frame_end options than the frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND
offset PRECEDING is not allowed. But, for example, ROWS BETWEEN 7 PRECEDING AND 8 PRECEDING is
allowed, even though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count (*) OVER (PARTITION BY x ORDER BY vy). The asterisk (*) is customarily not used for

35

SQL Syntax

window-specific functions. Window-specific functions do not allow DISTINCT or ORDER BY to be used
within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. Postgres Pro accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical Postgres Pro usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent float8 can. Also, the names interval, time,
and timestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be
avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions
The cOLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

36

SQL Syntax

4

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, c¢c FROM tbl WHERE ... ORDER BY a COLLATE "C";
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the coLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';
But this is an error:
SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word aArRRrAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example:

SELECT ARRAY([1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer([];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

37

SQL Syntax

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]1];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,1[3,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr (f1 int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY([[1,2],1[3,4]]1, ARRAY[[5,6],1[7,8]11);
SELECT ARRAY([f1, f2, '{{9,10},{11,12}}"'::int[]] FROM arr;

array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, 1*2] FROM generate_series(1,5) AS a(i));

{{1,2},4{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

38

SQL Syntax

The subscripts of an array value built with ARrRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word row, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5, 'this is a test');

The key word row is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns f1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW (t.f1l, t.f2, 42) FROM t;

Note

Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW (t.*, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . *, for instance rRow (t, 42).

By default, the value created by a rRow expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl1 int, f2 float, f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS 'SELECT $1.fl1' LANGUAGE SQL;

—— No cast needed since only one getfl () exists
SELECT getfl (ROW(1,2.5,'this is a test'));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl1 int, f2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

—— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,'this is a test'));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1,2.5,'this is a test')::mytable);
getfl

SELECT getfl (CAST(ROW (11, 'this is a test',2.5) AS myrowtype));
getfl

39

SQL Syntax

11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or Is NOT NULL, for example:

SELECT ROW(1,2.5, 'this is a test') = ROW(1l, 3, 'not the same');

SELECT ROW (table.*) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:

SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(aND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A cask construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 36.7, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in the table has x > 0 so that the ELSE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

40

SQL Syntax

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min (). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

Postgres Pro allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

Postgres Pro also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS
$S
SELECT CASE
WHEN $3 THEN UPPER(S1 || " ' || $2)
ELSE LOWER(S1 || " ' || $2)
END;
$S

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in Postgres Pro. An
example is:

SELECT concat_lower_or_upper ('Hello', 'World', true);
concat_lower_or_upper

HELLO WORLD
(1 row)

41

SQL Syntax

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello', 'World');
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper (a => 'Hello', b => 'World');
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a => 'Hello', uppercase => true, b => 'World');
concat_lower_or_upper

HELLO WORLD

(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello', 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD

(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

42

SQL Syntax

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

43

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

Postgres Pro includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers,
numeric for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day
values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named first_column
and has a data type of text; the second column has the name second_column and the type integer.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i

(The numeric type can store fractional components, as would be typical of monetary amounts.)

44

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for

the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default
of CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In Postgres Pro this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval ('products_product_no_seq'),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (

45

Data Definition

product_no SERIAL,

)i

The SeErRIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that
would violate a constraint, an error is raised. This applies even if the value came from the default value
definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)

So, to specify a named constraint, use the key word coNsTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

46

Data Definition

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (Postgres Pro doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)
)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note

Postgres Pro does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNIQUE, EXCLUDE, or FOREIGN KEY constraints to express cross-row and
cross-table restrictions.

47

Data Definition

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/reload problem because pg dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

Note

Postgres Pro assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. Postgres Pro does not disallow
that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (

)i

product_no integer NOT NULL,
name text NOT NULL,
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in Postgres Pro
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way:.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

)i

product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to Postgres Pro to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (

)i

product_no integer NULL,
name text NULL,
price numeric NULL

and then insert the NOT key word where desired.

48

Data Definition

Tip

In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric
)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful
when developing applications that are intended to be portable.

5.3.4. Primary Keys

49

Data Definition

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by Postgres Pro, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

50

Data Definition

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer
)i
because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i
Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of a
tree structure, you could write

CREATE TABLE tree (
node_id integer PRIMARY KEY,
parent_id integer REFERENCES tree,
name text,

)i

A top-level node would have NULL parent_id, but non-NULL parent_id entries would be constrained
to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

51

Data Definition

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

* Disallow deleting a referenced product
* Delete the orders as well
¢ Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO acTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to oN DELETE there is also ON UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same. In this case, CASCADE means that the updated values of
the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

52

Data Definition

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too.
Because this is not always needed, and there are many choices available on how to index, declaration of
a foreign key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created using
WITH 0IDS, or if the default with oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.19 for more information about the type.
tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it's difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.
xmin
The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)
cmin

The command identifier (starting at zero) within the inserting transaction.

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

53

Data Definition

The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used
to locate the row version very quickly, a row's ctid will change if it is updated or moved by vacuum
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

¢ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 232 (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

* QOIDs should never be assumed to be unique across tables; use the combination of tableocid and
row OID if you need a database-wide identifier.

* Of course, the tables in question must be created wiTH 01Ds. As of PostgreSQL 8.1, WITHOUT 0OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore Postgres Pro provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

¢ Add columns

¢ Remove columns

¢ Add constraints

¢ Remove constraints

e Change default values

* Change column data types
¢ Rename columns

¢ Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

54

Data Definition

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

Tip
From Postgres Pro 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. Instead, the

default value will be returned the next time the row is accessed, and applied when the table is
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default value is volatile (e.g., clock_timestamp ()) each row will need to be updated
with the value calculated at the time ALTER TABLE is executed. To avoid a potentially lengthy update
operation, particularly if you intend to fill the column with mostly nondefault values anyway, it
may be preferable to add the column with no default, insert the correct values using UPDATE, and
then add any desired default as described below.

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the app will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

5.5.2. Removing a Column
To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, Postgres Pro will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

55

Data Definition

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add cascaADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column's Default Value
To set a new default for a column, use a command like:
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;
This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.
5.5.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

Postgres Pro will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object vary

56

Data Definition

depending on the object's type (table, function, etc). For complete information on the different types of
privileges supported by Postgres Pro, refer to the GRANT reference page. The following sections and
chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g., ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details
see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves as well as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptions to this rule are 1eakproof functions, which
are guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the
row-security check.) Rows for which the expression does not return t rue will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

57

Data Definition

Superusers and roles with the ByPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using either Or (for permissive policies,
which are the default) or using AND (for restrictive policies). This is similar to the rule that a given role
has the privileges of all roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, Or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name pUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a seLECT command, these two policies are combined using ORr, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

58

Data Definition

—— Simple passwd-file based example
CREATE TABLE passwd (

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; —-- Administrator
CREATE ROLE bob; —-— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table
INSERT INTO passwd VALUES

('admin', 'xxx',0,0, "Admin', '111-222-3333"',null, '/root', '/bin/dash"');
INSERT INTO passwd VALUES

('bob', 'xxx',1,1, 'Bob', '123-456-7890"',null, ' /home/bob', ' /bin/zsh'");
INSERT INTO passwd VALUES

('alice', "xxx',2,1,"'Alice"','098-765-4321"',null, '/home/alice', '/bin/zsh'");

—-— Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies
—— Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—— Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
—-— Normal users can update their own records, but
—— limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND
shell IN ('/bin/bash', '/bin/sh','/bin/dash', '/bin/zsh','/bin/tcsh')
)i

—— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—-— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—— admin can view all rows and fields
postgres=> set role admin;
SET

59

Data Definition

postgres=> table passwd;
user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir
shell

admin | xxx \ 0 | 0 | Admin | 111-222-3333 | | /root

| /bin/dash

bob | xxx \ 1 | 1 | Bob | 123-456-7890 | | /home/bob
| /bin/zsh
alice

| /bin/zsh
(3 rows)

098-765-4321 /home/alice

XXX \

—-— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for relation passwd

postgres=> select user_name, real_name, home_phone,extra_info,home_dir, shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir \ shell
——————————— e e s st
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for relation passwd
—— Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE O
postgres=> update passwd set shell = '/bin/xx';

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for relation passwd

postgres=> insert into passwd (user_name) values ('xxx');

ERROR: permission denied for relation passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';

UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined using
the “AND” Boolean operator). Building on the example above, we add a restrictive policy to require the
administrator to be connected over a local Unix socket to access the records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
USING (pg_catalog.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current_user;
current_user

60

Data Definition

admin
(1 row)

=> select inet_client_addr();
inet_client_addr

127.0.0.1

(1 row)

=> SELECT current_user;
current_user

=> TABLE passwd;
user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
shell

=> UPDATE passwd set pwhash = NULL;
UPDATE O

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through such
referential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row security configuration parameter to off. This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work this way. If it is necessary to consult other rows or other tables to make a
policy decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS, in the
policy expressions. Be aware however that such accesses can create race conditions that could allow
information leakage if care is not taken. As an example, consider the following table design:

—— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL) ;

INSERT INTO groups VALUES

(1, "low'"),
(2, 'medium'),
(5, 'high'");
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

—— definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups);

61

Data Definition

INSERT INTO users VALUES
('alice', 5),
("bob', 2),
('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
('barely secret', 1),
('slightly secret', 2),
('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

—— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
USING (group_id <= (SELECT group_id FROM users WHERE user_name

current_user));
-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory';

UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice's does. It blocks waiting for
alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTS in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the
referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock
on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update of
the referenced table and before making changes that rely on the new security situation.

62

Data Definition

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A Postgres Pro database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases
in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects
in any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To allow many users to use one database without interfering with each other.
* To organize database objects into logical groups to make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
)i

To drop a schema if it's empty (all objects in it have been dropped), use:

63

Data Definition

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in Postgres Pro internals, adding a schema to search_path effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

64

Data Definition

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects
in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

65

Data Definition

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a
secure schema usage pattern, users wishing to securely query that database would take protective action
at the beginning of each session. Specifically, they would begin each session by setting search_path to
the empty string or otherwise removing non-superuser-writable schemas from search_path. There are
a few usage patterns easily supported by the default configuration:

* Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that user.
Recall that the default search path starts with $user, which resolves to the user name. Therefore,
if each user has a separate schema, they access their own schemas by default. After adopting this
pattern in a database where untrusted users had already logged in, consider auditing the public
schema for objects named like objects in schema pg_catalog. This pattern is a secure schema
usage pattern unless an untrusted user is the database owner or holds the CREATEROLE privilege, in
which case no secure schema usage pattern exists.

* Remove the public schema from the default search path, by modifying postgresgl.conf or by
issuing ALTER ROLE ALL SET search_path = "Suser". Everyone retains the ability to create
objects in the public schema, but only qualified names will choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If
you create functions or extensions in the public schema, use the first pattern instead. Otherwise,
like the first pattern, this is secure unless an untrusted user is the database owner or holds the
CREATEROLE privilege.

* Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or a few mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to allow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search path,
as they choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user_name.table_name. This is how Postgres Pro will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

66

Data Definition

Postgres Pro implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (

name text,
population float,
elevation int -— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In Postgres Pro, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

Given the sample data from the Postgres Pro tutorial (see Section 2.1), this returns:

name | elevation
___________ e
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953

Here the onLy keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the oNLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT name, elevation

67

Data Definition

FROM cities*
WHERE elevation > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

which returns:

tableoid | name | elevation

__________ +___________+___________
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison \ 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities ¢, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

relname | name | elevation
__________ +___________+___________
cities | Las Vegas | 2174

cities | Mariposa | 1953

capitals | Madison \ 845

Another way to get the same effect is to use the regclass alias type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or cOPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-

68

Data Definition

5

null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the cascape
option (see Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the cAsCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as
well, when they are accessed through cities. This preserves the appearance that the data is (also)
in the parent table. But the capitals table could not be updated directly without an additional grant.
Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables are
always checked, whether they are processed directly or recursively via those commands performed on
the parent table.

In a similar way, the parent table's row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table's policies, if any, are applied only when it is the
table explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child tables
and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

¢ If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique

69

Data Definition

constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

* Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

* Specifying that another table's column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is
useful for your application.

5.10. Table Partitioning

Postgres Pro supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most
of the heavily accessed rows of the table are in a single partition or a small number of partitions.
Partitioning effectively substitutes for the upper tree levels of indexes, making it more likely that
the heavily-used parts of the indexes fit in memory.

* When queries or updates access a large percentage of a single partition, performance can be
improved by using a sequential scan of that partition instead of using an index, which would
require random-access reads scattered across the whole table.

e Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern
is accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTITION, is far faster than a bulk operation. These commands also
entirely avoid the vacuuM overhead caused by a bulk DELETE.

* Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Postgres Pro offers built-in support for the following forms of partitioning:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if one
partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10 belongs
to the second partition not the first.

List Partitioning

The table is partitioned by explicitly listing which key value(s) appear in each partition.

Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

70

Data Definition

If your application needs to use other forms of partitioning not listed above, alternative methods such
as inheritance and UNTON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

Postgres Pro allows you to declare that a table is divided into partitions. The table that is divided is
referred to as a partitioned table. The declaration includes the partitioning method as described above,
plus a list of columns or expressions to be used as the partition key.

The partitioned table itself is a “virtual” table having no storage of its own. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table
will be routed to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of a row will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own
indexes, constraints and default values, distinct from those of other partitions. See CREATE TABLE for
more details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove a partition from
a partitioned table turning it into a standalone table; this can simplify and speed up many maintenance
processes. See ALTER TABLE to learn more about the ATTACH PARTITION and DETACH PARTITION Sub-
commands.

Partitions can also be foreign tables, although they have some limitations that normal tables do not; see
CREATE FOREIGN TABLE for more information.

5.10.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well as ice cream sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data. In this situation we can use partitioning to help us
meet all of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:

1. Create the measurement table as a partitioned table by specifying the PARTITION BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition

key.

CREATE TABLE measurement (
city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

) PARTITION BY RANGE (logdate);

71

Data Definition

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal Postgres Pro tables (or, possibly, foreign tables). It is
possible to specify a tablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at a time. So the commands might look like:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01"') TO ('2006-03-01");

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
FOR VALUES FROM ('2006-03-01'"') TO ('2006-04-01");

CREATE TABLE measurement_y2007ml1l1 PARTITION OF measurement
FOR VALUES FROM ('2007-11-01'") TO ('2007-12-01");

CREATE TABLE measurement_y2007ml12 PARTITION OF measurement
FOR VALUES FROM ('2007-12-01"') TO ('2008-01-01")
TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
FOR VALUES FROM ('2008-01-01"') TO ('2008-02-01")
WITH (parallel_workers = 4)
TABLESPACE fasttablespace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTITION BY clause in the commands
used to create individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01') TO ('2006-03-01")
PARTITION BY RANGE (peaktemp);

After creating partitions of measurement_y2006m02, any data inserted into measurement that is
mapped to measurement_y2006m02 (or data that is directly inserted into measurement_y2006m02,
which is allowed provided its partition constraint is satisfied) will be further redirected to one of its
partitions based on the peaktemp column. The partition key specified may overlap with the parent's
partition key, although care should be taken when specifying the bounds of a sub-partition such that
the set of data it accepts constitutes a subset of what the partition's own bounds allow; the system
does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It is not necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual data is in child indexes on the individual partition tables.

CREATE INDEX ON measurement (logdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in
postgresqgl.conf. If it is, queries will not be optimized as desired.

72

Data Definition

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It is common to want to remove partitions holding old data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allows this otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSIVE lock on the parent
table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 PARTITION OF measurement
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01")
TABLESPACE fasttablespace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows new data to be loaded, checked, and transformed prior
to it appearing in the partitioned table. The CREATE TABLE ... LIKE option is helpful to avoid tediously
repeating the parent table's definition:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');

\copy measurement_y2008m02 from 'measurement_y2008m02"'
—-— possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01");

Before running the ATTACH PARTITION command, it is recommended to create a CHECK constraint on the
table to be attached that matches the expected partition constraint, as illustrated above. That way, the
system will be able to skip the scan which is otherwise needed to validate the implicit partition constraint.
Without the CHECK constraint, the table will be scanned to validate the partition constraint while holding
an ACCESS EXCLUSIVE lock on the parent table. It is recommended to drop the now-redundant CHECK
constraint after ATTACH PARTITION is finished.

As explained above, it is possible to create indexes on partitioned tables so that they are applied
automatically to the entire hierarchy. This is very convenient, as not only will the existing partitions

73

Data Definition

become indexed, but also any partitions that are created in the future will. One limitation is that it's not
possible to use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock
times, it is possible to use CREATE INDEX ON ONLY the partitioned table; such an index is marked invalid,
and the partitions do not get the index applied automatically. The indexes on partitions can be created
individually using CONCURRENTLY, and then attached to the index on the parent using ALTER INDEX
ATTACH PARTITION. Once indexes for all partitions are attached to the parent index, the parent index
is marked valid automatically. Example:

CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX measurement_usls_200602_idx
ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
ATTACH PARTITION measurement_usls_200602_idx;

This technique can be used with UNIQUE and PRIMARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;

5.10.2.3. Limitations
The following limitations apply to partitioned tables:

¢ Unique constraints (and hence primary keys) on partitioned tables must include all the partition
key columns. This limitation exists because the individual indexes making up the constraint can
only directly enforce uniqueness within their own partitions; therefore, the partition structure itself
must guarantee that there are not duplicates in different partitions.

¢ There is no way to create an exclusion constraint spanning the whole partitioned table. It is only
possible to put such a constraint on each leaf partition individually. Again, this limitation stems
from not being able to enforce cross-partition restrictions.

e While primary keys are supported on partitioned tables, foreign keys referencing partitioned
tables are not supported. (Foreign key references from a partitioned table to some other table are
supported.)

* BEFORE ROW triggers, if necessary, must be defined on individual partitions, not the partitioned
table.

* Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables
or their partitions, as discussed below. Notably, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can a table inherit from both a partitioned table and a regular
table. That means partitioned tables and their partitions never share an inheritance hierarchy with
regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, tableoid and all the normal rules of inheritance apply as described in Section 5.9, with a
few exceptions:

74

Data Definition

Partitions cannot have columns that are not present in the parent. It is not possible to specify
columns when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE

ATTACH PARTITION only if their columns exactly match the parent, including any oid column.

Both cHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO INHERIT are not allowed to be created on partitioned tables.
You cannot drop a NOT NULL constraint on a partition's column if the same constraint is present in
the parent table.

Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using oNLY will result in an error. Instead, constraints on
the partitions themselves can be added and (if they are not present in the parent table) dropped.

As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.10.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
table inheritance, which allows for several features not supported by declarative partitioning, such as:

For declarative partitioning, partitions must have exactly the same set of columns as the
partitioned table, whereas with table inheritance, child tables may have extra columns not present
in the parent.

Table inheritance allows for multiple inheritance.

Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
allows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

Some operations require a stronger lock when using declarative partitioning than when using table
inheritance. For example, adding or removing a partition to or from a partitioned table requires
taking an AccEss ExCLUSIVE lock on the parent table, whereas a SHARE UPDATE EXCLUSIVE lock is
enough in the case of regular inheritance.

5.10.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “master” table, from which all of the “child” tables will inherit. This table will contain no

data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For our
example, the master table is the measurement table as originally defined:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

. Create several “child” tables that each inherit from the master table. Normally, these tables will not

add any columns to the set inherited from the master. Just as with declarative partitioning, these tables
are in every way normal Postgres Pro tables (or foreign tables).

—

) INHERITS (measurement);
) INHERITS (measurement);

CREATE TABLE measurement_y2006m02
CREATE TABLE measurement_y2006m03

—

CREATE TABLE measurement_y2007ml1l
CREATE TABLE measurement_y2007ml2

—

) INHERITS (measurement);
) INHERITS (measurement);

—

75

Data Definition

CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);
. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghamshire', 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007ml1l (
CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01"')
) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2 (
CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01"')
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01"')
) INHERITS (measurement);
. For each child table, create an index on the key column(s), as well as any other indexes you might want.

logdate

4

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 () ;
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate)
()
(

4

4

CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate
CREATE INDEX measurement_y2008m0l1_logdate ON measurement_y2008m0l1 (logdate);

. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger function
to the master table. If data will be added only to the latest child, we can use a very simple trigger
function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
RETURN NULL;

END;

$S

LANGUAGE plpgsqgl;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

76

Data Definition

BEFORE INSERT ON measurement
FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

We must redefine the trigger function each month so that it always inserts into the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE '2006-02-01'" AND
NEW.logdate < DATE '2006-03-01"') THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.*);
ELSIF (NEW.logdate >= DATE '2006-03-01"' AND
NEW.logdate < DATE '2006-04-01"') THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.*);

ELSIF (NEW.logdate >= DATE '2008-01-01"' AND
NEW.logdate < DATE '2008-02-01"') THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger ()
function!';
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsqgl;

The trigger definition is the same as before. Note that each 1r test must exactly match the cHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order as in other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01"')
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.*);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01"')
DO INSTEAD

77

Data Definition

INSERT INTO measurement_y2008m0l1 VALUES (NEW.*);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use copy to insert data, you'll need to copy into
the correct child table rather than directly into the master. copy does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the master table instead.

6. Ensure that the constraint exclusion configuration parameter is not disabled in postgresql.conf;
otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2. Maintenance for Inheritance Partitioning
To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE measurement_y2006m02;

To remove the child table from the inheritance hierarchy table but retain access to it as a table in its
own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01")
) INHERITS (measurement);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
queries on the parent table.

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01'");
\copy measurement_y2008m02 from 'measurement_y2008m02"'
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.10.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

* There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

¢ The schemes shown here assume that the values of a row's key column(s) never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts to
do that will fail because of the CHECK constraints. If you need to handle such cases, you can put
suitable update triggers on the child tables, but it makes management of the structure much more
complicated.

* If you are using manual VACUUM or ANALYZE commands, don't forget that you need to run them on
each child table individually. A command like:

78

Data Definition

ANALYZE measurement;
will only process the master table.

* INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child
relations.

» Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.10.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enable_partition_pruning = on; —-— the default
SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01"';

Without partition pruning, the above query would scan each of the partitions of the measurement table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that
the partition need not be scanned because it could not contain any rows meeting the query's WHERE
clause. When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable partition pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they
have not. A typical unoptimized plan for this type of table setup is:

SET enable_partition_pruning = off;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01';
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 width=8)
-> Append (cost=0.00..181.05 rows=3085 width=0)
—-> Seq Scan on measurement_y2006m02 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)
—-> Seqg Scan on measurement_y2006m03 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

—-> Seqg Scan on measurement_y2007ml1l1 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seqg Scan on measurement_y2007ml12 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

—-> Seqg Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enable_partition_pruning = on;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01';
QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 width=8)
-> Append (cost=0.00..36.21 rows=617 width=0)
-> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether

79

Data Definition

an index needs to be created for a given partition depends on whether you expect that queries that scan
the partition will generally scan a large part of the partition or just a small part. An index will be helpful
in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. This is useful as it can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time; for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery or using a parameterized value on the inner side of
a nested loop join. Partition pruning during execution can be performed at any of the following times:

e During initialization of the query plan. Partition pruning can be performed here for parameter
values which are known during the initialization phase of execution. Partitions which are pruned
during this stage will not show up in the query's EXPLAIN or EXPLAIN ANALYZE. It is possible to
determine the number of partitions which were removed during this phase by observing the
“Subplans Removed” property in the EXPLAIN output.

* During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqueries and values from execution-time parameters such as those from parameterized
nested loop joins. Since the value of these parameters may change many times during the
execution of the query, partition pruning is performed whenever one of the execution parameters
being used by partition pruning changes. Determining if partitions were pruned during this
phase requires careful inspection of the 1oops property in the EXPLAIN ANALYZE output. Subplans
corresponding to different partitions may have different values for it depending on how many times
each of them was pruned during execution. Some may be shown as (never executed) if they were
pruned every time.

Partition pruning can be disabled using the enable partition pruning setting.

Note

Execution-time partition pruning currently only occurs for the aAppend node type, not for
MergeAppend Or Modi fyTable nodes. That is likely to be changed in a future release of Postgres Pro.

5.10.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other
purposes, including with declarative partitioning.

Constraint exclusion works in a very similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusion is only applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on
declaratively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may
be able to elide additional partitions from the query plan.

The default (and recommended) setting of constraint exclusion is neither on nor of f, but an intermediate
setting called partition, which causes the technique to be applied only to queries that are likely to
be working on inheritance partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

* Constraint exclusion is only applied during query planning, unlike partition pruning, which can also
be applied during query execution.

80

Data Definition

* Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

* Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the
partition key.

e All constraints on all children of the parent table are examined during constraint exclusion, so
large numbers of children are likely to increase query planning time considerably. So the legacy
inheritance based partitioning will work well with up to perhaps a hundred child tables; don't try to
use many thousands of children.

5.10.6. Best Practices for Declarative Partitioning

The choice of how to partition a table should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. wHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRIMARY KEY Or a UNIQUE constraint. Removal of
unwanted data is also a factor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such a way that
all data to be removed at once is located in a single partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implications if in several years you instead find yourself with a
large number of small customers. In this case, it may be better to choose to partition by HASH and choose
a reasonable number of partitions rather than trying to partition by .1sT and hoping that the number of
customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option is to use range partitioning with multiple columns in the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The query
planner is generally able to handle partition hierarchies with up to a few hundred partitions fairly well,
provided that typical queries allow the query planner to prune all but a small number of partitions.
Planning times become longer and memory consumption becomes higher as more partitions are added.
This is particularly true for the UPDATE and DELETE commands. Another reason to be concerned about
having a large number of partitions is that the server's memory consumption may grow significantly
over time, especially if many sessions touch large numbers of partitions. That's because each partition
requires its metadata to be loaded into the local memory of each session that touches it.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload, it
is important to make the right decisions early, as re-partitioning large quantities of data can be painfully

81

Data Definition

slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

5.11. Foreign Data

Postgres Pro implements portions of the SQL/MED specification, allowing you to access data that resides
outside Postgres Pro using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 53.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage in
the Postgres Pro server. Whenever it is used, Postgres Pro asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current Postgres Pro role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

* Views

¢ Functions, procedures, and operators
e Data types and domains

* Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, Postgres Pro makes sure that you cannot
drop objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;
ERROR: cannot drop table products because other objects depend on it

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

82

Data Definition

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In
this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there
because nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE
will do, run prop without cAscaDE and read the DETAIL output.)

Almost all brROP commands in Postgres Pro support specifying cascape. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE
to get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note

According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT Or CASCADE varies across systems.

If a brOP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of a foreign key
referencing tab1 from tab2 would not mean that cASCADE is needed to succeed.

For user-defined functions, Postgres Pro tracks dependencies associated with a function's externally-
visible properties, such as its argument and result types, but not dependencies that could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
'SELECT note FROM my_colors WHERE color = $1'
LANGUAGE SOQL;

(See Section 36.5 for an explanation of SQL-language functions.) Postgres Pro will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping the
function, because its argument type would no longer be defined. But Postgres Pro will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

83

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric
)i
An example command to insert a row would be:
INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a Postgres Pro extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today';

84

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as

flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word upDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the wHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WwHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the seT clause. For example:

UPDATE mytable SET a = 5, b =3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

85

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use
of RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table in
order.

In an 1NSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = 'today'
RETURNING *;

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

86

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort
specification. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM tablel;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if tablel has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tablel;
(assuming that b and ¢ are of a numerical data type). See Section 7.3 for more details.
FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions can

be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FrROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FroM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The rroM Clause

The the section called “FroM Clause” derives a table from one or more other tables given in a comma-
separated table reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FrROM

87

Queries

clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).
The result of the FroM list is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word oNLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing onLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tables is now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
T1 CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see below). It is also
equivalent to FrROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because JoIn
binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER JOIN T3 ON
condition is not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference 71 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

88

Queries

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the ON expression
evaluates to true.

The UsING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining 77 and 72 with USING (a, b) produces the join condition ON T1.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JoIN oN produces all columns
from 71 followed by all columns from 72, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from 71, followed by
any remaining columns from 72.

Finally, NATURAL is a shorthand form of UsING: it forms a USING list consisting of all column names
that appear in both input tables. As with UsING, these columns appear only once in the output table.
If there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE, producing
a cross-product join.

Note

USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t1:

89

Queries

num | value
_____ +_______
1] xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM tl1 CROSS JOIN t2;
num | name | num value

XXX
Yyy
ZZZ
XXX
Yyy
ZZZ
XXX

Yyy
ZZZ

=> SELECT * FROM tl1 INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S
11 a \ 1 | xxx
3] c \ 31 yyy
(2 rows)

=> SELECT * FROM tl1 INNER JOIN t2 USING (num);

_____ +______+_______
11 a | xxx
3 1 c | yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ +______+_______
11 a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S

11 a \ 1 | xxx

2 1 b \ \

3] c \ 3 |1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ +______+_______
11 a | xxx
2 1 b \
3 c | yyy
(3 rows)

90

Queries

=> SELECT * FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
1] a \ 1] xxx
3] c \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT * FROM tl1 FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
11 a \ 1 | xxx
2 1 b \
3] c \ 31 yyy
\ 5| zzz
(4 rows)

The join condition specified with oN can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx';
num | name | num | value
_____ +______ —_—— —_———— e —
11 a \ 1 | xxx
2 1 Db \ \
3 1 c \ \
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = 'xxx';

name num value

This is because a restriction placed in the oN clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters

a lot with outer joins.
7.2.1.2. Table and Column Aliases
A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.
To create a table alias, write
FROM table reference AS alias
or
FROM table_reference alias
The as key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id =

a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

91

Queries

SELECT * FROM my_table AS m WHERE my_table.a > 5; —-— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a Jo1N clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'Jjones'), ('joe', 'blow'))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FroM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the rRoOwWws FROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... 1)]1]

92

Queries

ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
[, .. 1)11

If the wITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the ordinal
column is called ordinality, but a different column name can be assigned to it using an aAs clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
r oo 1)1]

Ifno table_aliasis specified, the function name is used as the table name; in the case of a ROWS FROM ()
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS S
SELECT * FROM foo WHERE fooid = $1;
$S LANGUAGE SQL;

SELECT * FROM getfoo(l) AS t1;

SELECT * FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record with no ouT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the rows FROM() syntax, the column_definition list replaces the column alias list
that could otherwise be attached to the FroOM item; the names in the column definitions serve as
column aliases. When using the ROwS FROM () syntax, a column_definition list can be attached to each
member function separately; or if there is only one member function and no WITH ORDINALITY clause, a
column_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:

SELECT *

93

Queries

FROM dblink ('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
AS tl (proname name, prosrc text)
WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
(
json_to_recordset ('[{"a":40, "b":"foo"},{"a":"100","b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series (1, 3)
) AS x (p, 49, s)

ORDER BY p;
p I a | s
_____ +_____ —_—
40 | foo | 1
100 | bar | 2
\ | 3

It joins two functions into a single FrROM target. json_to_recordset () is instructed to return two
columns, the first integer and the second text. The result of generate_series () is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FroM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other rFroM item.)

Table functions appearing in FrROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at top level in the FroM list, or within a JoIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JoIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FrROM items providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vi1, v2

94

Queries

FROM polygons pl, polygons p2,
LATERAL vertices(pl.poly) vi,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vi1, v2

FROM polygons pl CROSS JOIN LATERAL vertices (pl.poly) vi,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id '= p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names ()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause
The syntax of the the section called “wHERE Clause” is
WHERE search_condition
where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.
After the processing of the FroM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one

column of the table generated in the FrROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the Jo1IN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FroM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FroM clause. The ON or USING
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

95

Queries

SELECT ... FROM fdt WHERE cl1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FroM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as £dt.c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GroUP RY and HAVING Clauses

After passing the wHERE filter, the derived input table might be subject to grouping, using the GrRour BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_1list
FROM
[WHERE ...]
GROUP BY grouping column_reference [, grouping_column_reference]...

The the section called “Group BY Clause” is used to group together those rows in a table that have the
same values in all the columns listed. The order in which the columns are listed does not matter. The
effect is to combine each set of rows having common values into one group row that represents all rows
in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM testl;

(3 rows)

In the second query, we could not have written SELECT * FROM testl GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;
X | sum
___+ _____

96

Queries

4
b | 5
c | 2
(3 rows)
Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the D1STINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GrROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but Postgres Pro extends this
to also allow GrROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
e
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c';

X | sum
e
a | 4
b | 5
(2 rows)

Again, a more realistic example:

97

Queries

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FrROM and WHERE clauses is grouped separately by each specified
grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then the
results returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ +______+_______
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
(size), ());

brand | size | sum
_______ +______+_____
Foo \ | 30
Bar | | 20
| L | 15
| M | 35
\ | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GRouP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping sets in which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
(el, e2, e3, ...),

98

Queries

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPING SETS (

4

4

(a, b, c),
(a, b)y
(a, c)y
(a)y
(b, ¢),
(b)
()
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPING SETS (
(a, b, ¢, d)
(a, b)y
(c, d)
()

)

and

ROLLUP (a, (b, c), d)
is equivalent to

GROUPING SETS (
(a, b, ¢, d),
(a, b, c),
(a)
()

14

)

The cuBk and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c¢), GROUPING SETS ((d), (e))

99

Queries

is equivalent to

GROUP BY GROUPING SETS (

(a, b, ¢, d), (a, b, c, &),
(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the Group
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are
the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in a
single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering
of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
table is finally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbll.a, tbl2.a, tbll.b FROM ...

100

Queries

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbll.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table_name. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference

any columns in the table expression of the FrROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified using As, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The as keyword is optional, but only if the new column name does not match any Postgres Pro keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM ...
but this does:
SELECT a "value", b + ¢ AS sum FROM ...

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FrROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The D1STINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_1list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns

101

Queries

to guarantee a unique ordering of the rows arriving at the p1sTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GRoUuP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] queryZ
queryl INTERSECT [ALL] queryZ2
queryl EXCEPT [ALL] queryZ

queryl and query?2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION queryZ2 UNION query3
which is executed as:

(queryl UNION queryZ2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional Asc or peEsc keyword
to set the sort direction to ascending or descending. Asc order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. !

! Actually, Postgres Pro uses the default B-tree operator class for the expression's data type to determine the sort ordering for Asc and pEsc. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

102

Queries

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum + c; -— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use As to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_1list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. oOFFsSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the L.TMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for L.1MIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with orRDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an orrFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

103

Queries

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must
have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, 'one'), (2, 'two'), (3, 'three');
will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columnl, 'one' AS column2
UNION ALL

SELECT 2, 'two'

UNION ALL

SELECT 3, 'three';

By default, Postgres Pro assigns the names columni, column2, etc. to the columns of a vALUES table. The
column names are not specified by the SQL standard and different database systems do it differently, so
it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num, letter);
num | letter
,,,,, o
1 | one
2 | two
3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:
SELECT select_1list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WIiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a wWITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, Or DELETE.

7.8.1. SELECT in WITH
The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)

104

Queries

)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WwITH clause defines two auxiliary
statements named regional_sales and top_regions, where t