-
Updated
Oct 14, 2021
Artificial Intelligence
The branch of computer science dealing with the reproduction, or mimicking of human-level intelligence, self-awareness, knowledge, conscience, and thought in computer programs.
Here are 10,504 public repositories matching this topic...
-
Updated
Oct 15, 2021 - Python
-
Updated
Oct 15, 2021 - JavaScript
-
Updated
Oct 14, 2021 - Jupyter Notebook
-
Updated
Oct 10, 2021 - C++
MLflow Roadmap Item
This is an MLflow Roadmap item that has been prioritized by the MLflow maintainers. We're seeking help with the implementation of roadmap items tagged with the help wanted label.
For requirements clarifications and implementation questions, or to request a PR review, please tag @BenWilson2 in your communications related to this issue.
Proposal Summary
Includ
-
Updated
Jul 1, 2021 - Python
-
Updated
Oct 6, 2021 - Jupyter Notebook
Bug Report
Got error message on an empty directory, shouldn't it show nothing? like ls command.
Description
 version: Fedora 30
- Node.js version: 10.16.3
- Complete "npm run check" output:
➡ Here is the diagnosis about your current setup
✔ Run
✔ Run modules
✔ Reply you by texting
❗ Amazon Polly text-to-speech
❗ Google Cloud text-to-speech
❗ Watson text-to-speech
❗ Offline text-to-speech
❗ Google Cloud speech-to-text
❗ Watson spee
-
Updated
Aug 4, 2021 - C#
-
Updated
Oct 15, 2021 - C++
-
Updated
Sep 9, 2021
-
Updated
Oct 13, 2021
-
Updated
Oct 14, 2021 - Python
-
Updated
Oct 15, 2021 - Python
-
Updated
Oct 6, 2021 - Python
-
Updated
Oct 14, 2021 - Python
With a config like this
{
"METAFLOW_DATASTORE_SYSROOT_S3": "s3://mf-test/metaflow/",
}
(note a slash after METAFLOW_DATASTORE_SYSROOT_S3)
metaflow.S3(run=self).put* produces double-slashes like here:
s3://mf-test/metaflow//data/DataLoader/1630978962283843/month=01/data.parquet
The trailing slash in the config shouldn't make a difference
-
Updated
Sep 8, 2021 - JavaScript
2019/12/02 和Yi Wang沟通交流考虑SQLFLOW可以支持如下的特性
一、基础功能:好用的工具需要一个更加简易友好的界面,让业务开发/分析更加简单
1)设计分析类工具,提供自动联想输入、快速语法、常见语义错误,提升用户体验
应用场景:提供IDE的自动联想功能,提高开发效率;语法和基本语义提前检查,避免提交到后台,执行较长时间后报错
2)大数据量时时间较长,建议提供任务(job)管理、允许用户了解数据执行的状态、监控进度、提供动态调试、watch能力,方便用户感知和调优
应用场景:耗时任务可以快速了解整体进度,提供一些中间的过程信息、耗时等,方便用户进行调优,优化开发
3) 安全权限、用户管理、
应用场景:增加新的数据分析人员、用户权
Tensorboard logging metrics from different GPUs when using DataParallel training.
To Reproduce
Use any arbitrary toy model with DP as an accelerator and in training_step(), include the below line of code:
self.log(mode + '_loss', sum(losses), on_epoch=False, on_step=True, prog_bar=True, logger=True, sync_dist=True)In the trainer, specify tensorboard logger with