State Diagram Library Manual

state-diagram.com

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved.

Please save resources, do not print this manual. Read it on—screen instead.

Contents

T Disclaimer

2__Introduction|
2.1 Getting Started]

[3 State Diagram in Action|

@ State Machines 7 State Hi hics

[S Signals and Transitions|

{6 Signal Data / Transition Specs|

/__Miscelleanous|
[/.1 ~ Perfect Synchrony / Accumulative Signal Activation|
[7.2 More on Signal Data / Data Variables|
[/.3 Arrays of Data Variables|
[/.4 Polyadic Signals|.
[/.5 ObjectOwnership|.,
/.6 _Errors|o
(7.7 Compile-Time Flags|

8 A Somewhat Larger Example: Programming a Microwave Oven|

9 What’s New

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved.

11

14

17
17
17
18
19
19
19
20

22

30

1 Disclaimer

Information in this document is provided as is, with all faults. State Diagram library
contributors and manual authors expressly disclaim all warranties, representations, and
conditions of any kind, whether express or implied, including, but not limited to, the
implied warranties or conditions of merchantability, fitness for a particular purpose, and
non-infringement. State Diagram contributors and manual authors do not assume any
liability rising out of the application or use of any artifact described herein and specifically
disclaims any and all liability, including without limitation indirect, incidental, special,
exemplary, or consequential damages.

State Diagram contributors reserve the right to make changes without further notice to
any artifacts described herein.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 3

2 Introduction

State Diagram is a C++ library that supports specifying and executing hierachical, con-
current, finite state machines. Such state machines are particularly prevalent in embedded
systems. The present manual assumes general knowledge of hierarchical, concurrent,
finite state machines, their building blocks, and how they can be put to use.

As a brief reminder, the classical object—oriented approach to specifying state ma-
chines models any given concurrent region by introducing a class whose instances rep-
resent all the states that appear in that region. A transition trigger corresponds to a class
member function that can be called on any given source state to yield a target state — so
that transitions are implicit in argument/result relationships. Moreover, state hierarchies
are modelled by means of inheritance.

State Diagram differs greatly from that in that it permits specifying state machines al-
most without using any object—orientedness at the API level. It takes a rather elementary
route that goes directly from hierarchical state machines to hierarchical graphs: There are
pre—supplied classes, one per type of state, that are instantiated to represent states regard-
less of where in the hierarchy these states reside. Hierarchical relationships are expressed
by declaring them for each parent/child relationship separately and explicitly. Transitions
and transition decorations — triggers, guards, outputs, actions — are introduced as first—
class citizens as well, as instances of other pre—supplied classes, rather than leaving them
implicit in pre—/post—condition relationships and the like.

The relative lack of any outward object—orientedness lessens the C++ learning curve
if C is the language a user comes from, like many embedded programmers do. At the
same time, and already by the very fact that it is a programming language library and
not a graphical tool, State Diagram emphasizes coding efficiency, testability, and flexible
reuse. Optionally, these objectives can be helped even more by using whatever C++ has to
offer, including all of its object—oriented features, on top of the basic API. In addition to
all of that, State Diagram’s outward API is not only simple but also very intuitive in that
each individual API call corresponds to a graphical state machine component. In other
words, programming in State Diagram could be considered “drawing” state machines not
graphically but programmatically, as it were. In this way State Diagram combines the best
of two worlds, programmatical versatility and graphical accessibility.

State Diagram offers a broad range of state machine features, to a large degree emu-
lating UML statecharts in this regard. It is also very pure in that computations on data and
operations yielding side effects are not part of its API. State Diagram allows for these as-
pects to be injected into state machines very simply by means of C++ lambdas. Hence the
full power of C++ can be brought to bear to express computations on data and side effects
directly. Cumbersome and laborious code emulation or code import features as it is typ-
ical for graphical state machine tools are totally foregone by State Diagram. Employing
State Diagram means coding in C++ directly.

State Diagram has a very clean and non—-ad-hoc yet versatile signaling model. Ac-
cording to this model, signals or, equivalently, transition triggers once activated stay so
until a transition sequence, a so—called macro step, has run to completion. This model
is inspired by a computer science concept that is known as perfect synchrony. Perfect
synchrony combines versatility with mathematical tractability, a sweet spot that has been
chosen with a view to adding formal verification functionality to State Diagram in the

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 4

future. State machine tools and frameworks other than State Diagram partly struggle with
impaired mathematical tractability. The reason for that lies more often than not in a less—
than—optimal signaling model that deviates from perfect synchrony.

State Diagram maps concurrency to executing cocurrent regions in lockstep. Thread
libraries or inbuilt threads are not required to execute State Diagram state machines that
have concurrency in them.

State Diagram uses the heap to allocate state machine components. It does not induce
any further heap usage at any point thereafter unless a state machine employs local event
vectors in transition outputs — see Section [6]

State Diagram is free and open source with generous licensing according to the
Apache 2.0 license.

Simple on the outside, State Diagram is heavily patterned on the inside, thereby mak-
ing it easy to review and modify its code base.

2.1 Getting Started

Download the .zip file at state-diagram.com, unpack it, and place folders Include
and src or their contents wherever it suits you. State Diagram comes without any
build mechanics. The #includes making State Diagram available have to point to
state_diagram/state_diagram.h. Then, everything inside State Diagram (except
macros) lives inside namespace state_diagram. State Diagram was developed using
GCC 9 with —std=c++2a, so that is the platform (or newer) that should be employed in us-
ing it. Attempting to compile State Diagram with GCC versions earlier than 9.1 is known
to have triggered compiler bugs. State Diagram can also be compiled with Clang 12.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 5

https://state-diagram.com

3 State Diagram in Action

Consider a state machine that prints "Hello world!"

helloWorld

aboutToSayHello\ sayHelloWorld/ >.
<) printf ("%$s\n", "Hello world!\n");

This state machine can be specified using State Diagram like so:

#include <cstdio>
#include <state_diagram/state_diagram.h>

using namespace state_diagram;

int main ()
{
FSM_TOP (helloWorld) ;
FSM_SIGNAL (void, sayHello, helloWorld);
FSM_INIT (helloWorld);
FSM_STATE (aboutToSayHello, helloWorld);
FSM_FINAL (helloWorld);
FSM_AUTO (helloWorld_INIT, aboutToSayHello);
FSM_STEP
(
aboutToSayHello
, helloWorld FINAL
, Trigger (sayHello)
, Action([]{printf ("%$s\n", "Hello world!\n");})
)
M.init ();
M.step();
M.step (sayHello);
return O;

}

Let us go through this example statement—by—statement:

* FSM_TOP (helloWorld) — defining a top state or, equivalently, a state machine,
helloWorld.
* FSM_SIGNAL (void, sayHello, helloWorld) — defining a void (i.e. non—data

carrying) signal, sayHello as belonging to the state machine. This signal is to
trigger the action of printing “Hello world!” in the terminal window.

* FSM_INIT (helloWorld) — defining an initial state directly beneath the top state,
helloWorld_ INIT.

* FSM_STATE (aboutToSayHello, helloWorld) — defining an ordinary state di-
rectly beneath the top state, about TosayHel1lo. In this case there is nothing beneath
the ordinary state, whence it is a leaf state.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 6

* FSM FINAL (helloWorld) — defining a final state directly beneath the top state,

helloWorld_ FINAL.

FSM_AUTO (helloWorld INIT, aboutToSayHello) — defining a (triggerless)
auto—transition from helloWorld_INIT tO aboutToSayHello. This transition, by
(a) being attached to an initial state directly beneath the top state and (b) not carry-
ing any guards, becomes enabled immediately upon starting up the state machine.
All it does consists of transferring control flow to state aboutToSayHello.

FSM_STEP (aboutToSayHello, printer_ FINAL, Trigger (sayHellWorld),
Action ([]{printf ("$s\n", "Hello world!\n");})) — defining a (triggered)
step transition from aboutToSayHello to helloWorld_FINAL. The transition car-
ries an action that is parameterized by a lambda that achieves the desired side ef-
fect. Such an amendment to a transition is henceforth called a spec — that what is
normally but less succinctly called a decoration. The transition becomes enabled if
(a) signal sayHe110 is active and (b) control flow resides at state about ToSayHello.
Upon execution, it performs the action and, simultaneously, transfers control flow
to state helloWorld_ FINAL.

helloWorld.init () — initializing the state machine. Control flow now resides at
state helloWorld_ INIT.

helloWorld.step () — letting the state machine execute the auto transition. Con-
trol flow now resides at state about ToPrint.

helloWorld.step (sayHello) — letting the state machine execute the step transi-
tion. This transition becomes enabled by control flow and because signal sayHello
is being actived due to it appearing as an (optional) parameter to step. Executing
the step transition lets the state machine print “Hello World!”.

Please note how almost C-like this example turns out to be. No new classes are intro-
duced. Object—orientedness makes an overt appearance only in the form of the .—notation
being used to invoke functions init and step on the top state.

State Diagram does not impose any artificial non—orthogonalities. Among other
things, orthogonality means that auto—transitions may carry specs. The hello-world ex-
ample could, thus, be simplified as follows, doing away with the external signal and the
step transition (and omitting the top matter, which stays the same).

int

{

main ()

FSM_TOP (helloWorld) ;
FSM_INIT (helloWorld};
FSM_FINAL (helloWorld);
FSM_AUTO

(

14

14

)i

M.
M.

helloWorld_ INIT
helloWorld_ FINAL
Action([]{printf ("%$s\n", "Hello world!\n")})

init ();
step();

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 7

return 0;

A more abstract example is the following one. It consists of a state machine M with
an ordinary state s that is subdivided into two concurrent regions rR1 and r2. These two
regions communicate via a local signal a. An entire run to termination requires two calls
to member function step.

#include <cassert>
#include <state_diagram/state_diagram.h>

using namespace state_diagram;

int main ()

{
F'SM_TOP (M) ;

FSM_INIT (M) ;
FSM_STATE (S, M);
FSM_FINAL (M) ;
FSM_AUTO (M_INIT, S);
FSM_AUTO(S, M_FINAL);

FSM_LOCAL_SIGNAL (void, A, S);

FSM_REGION (R1, S);

FSM_INIT (R1);

FSM_FINAL (R1);

FSM_AUTO (R1_INIT, R1_FINAL, Output (2));

FSM_REGION (R2, S);

FSM_INIT (R2);

FSM_FINAL (R2);

FSM_STEP (R2_INIT, R2_FINAL, Trigger (A));

M.init ();
M.step () ;
assert (M.step());
return 0;

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 8

4 State Machines / State Hierarchies

A state machine or, equivalently, a state hierarchy always starts out at a top state as
shown above. Top states have to and ordinary states can be sub—divided into one or
more orthogonal regions, regions for short, whence top states and ordinary states are
called compound states. Regions, in their turn, are made up of sub—states and transitions,
and so on. If a compound state consists of at least two regions, then these regions are
executed concurrently. A state that has exactly one region does not have to have this
region explicitly attached to it; sub—states in this region can be attached to the state directly
instead. A default region is then placed in between the state and its sub—states implicitly.
Ordinary states are most often called states if no confusion can arise.

Function init has to be invoked on a top state to initialize it before calling function
step, usually repeatedly, to let it go through maximal sequences of transition executions
(that what is called run to completion in UML) — so that the state machine generates ac-
tions. Such a maximal execution sequence is called a macro step. As already mentioned,
State Diagram uses the convention that a step transition that executes does not deactivate
the trigger signal. Once activated, signals stay activated over the entire course of a macro
step. They become deactivated once the macro step is completed. Then, in accordance
with UML, a transition that originates at an ordinary state is enabled only if no transi-
tion originating at an immediate or non—-immediate sub—state of that state is enabled. A
compound state has ferminated if, and only if, the current state of all its immediate sub—
regions is a final state. Function step returns true if, and only if, the state machine has
terminated due to the state machine undergoing the macro step triggered by it. The func-
tion takes any number of external signals as arguments, including zero signals, activating
each one before letting the state machine go through a macro step in accordance with
these activations.

Table [T] summarizes what kinds of states there are in State Diagram and what prop-
erties they have. Constructor argument name is always of type std::string consts;
constructor argument parent is always either of type Compoundstate consts or of type
Region consts — so that each type of sub—state has two constructors: one with a state
as the parent of the sub—state, the other one with a region as the parent of the sub—state.
In case a sub-state is defined with a state as its parent, the region is inserted implicitly as
a default region in between that parent and the sub—state. It is not permitted to attach any
region explicitly to a state that already has a default region. Conversely, it is not permitted
to attach any default region — implicitly — to a state that already has a region attached
to it explicitly. Attempting either of these operations leads to an Error being thrown.
Default regions always have a default name of "rREGION".

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 9

Table 1: States in State Diagram

Type in Constructor Is sub— | Is Can be Can be Pauses
namespace arguments state compound | transition | transition | local
state_diagram state source target control
flow
Top name No Yes No No N/A
Init parent Yes No Yes No No
State name, parent | Yes Yes Yes Yes Yes
Connector name, parent | Yes No Yes Yes No
Final parent Yes No No Yes Yes

Type Region in namespace state_diagram has as constructor arguments a name of

type std::string consts and an parent of type CompoundState consts.

Names must always be unique per parent with initial and final states always carry-
ing default names of "INIT" or "FINAL", respectively. The name given as a constructor
argument and the programmatic name often coincide, as in

State const aboutToSayHello{"aboutToSayHello", helloWorld};

To help avoiding this tediousness, State Diagram provides a number of convenient macros
for defining states and regions, see Table @

Table 2: Macros and constructors for defining states and regions.

Macro

— The corresponding constructor
FSM_TOP (name)

— Top const name("name")

FSM_INIT (parent)
— Init const parent_INIT (parent)

FSM_STATE (name, parent)
— State const name("name", parent)

FSM_CONNECTOR (name, parent)
— Connector const name("name", parent)

FSM_FINAL (parent)
— Final const parent_FINAL (parent)

FSM_REGION (name, parent)
— Region const name ("name", parent)

An ordinary state always leads to local control flow pausing once the state has been
reached. To enable transition sequencing during one and the same macro step, connector
states, connectors for short, are provided. Connectors cannot be subdivided.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 1 0

5 Signals and Transitions

External signals tell a state machine to do certain things; analogously to that, local signals
emitted somewhere inside of a state machine tell some other part of the state machine to
do certain things. Local signals, thus, serve as a means of communication between parts
of a state machine that run concurrently to each other, and also as a means of establishing
dependencies on sequential execution paths. Dependencies via local signals can only
occur within macro-steps — see below.

The following table summarizes what convenience macros there are for defining sig-
nals. The underlying constructors can be gleaned from the macro expansions. There are
no other signal constructors.

Table 3: Macros and constructors for defining signals.

Macro

— The corresponding constructor

FSM_SIGNAL (type, name, parent)

— ExternalSignal<type> const name ("name", parent)

FSM_LOCAL_SIGNAL (type, name, parent)
— LocalSignal<type> const name ("name", parent)

The parent of an external signal must be a top state; the parent of a local signal must be a
top state, ordinary state, or a region, thereby assigning a scope to the signal being defined.
The local signal in question must not be used outside this scope. The respective point
of usage is always defined to be the source or the host of any transition where the signal
appears as a trigger or transition output, see next.

Transitions come as external, enter, exit, and internal transitions. External transitions
lead from state to state, which are called the source or the target of the transition, respec-
tively; enter, exit, and internal transitions are always associated with an ordinary state,
which is called the host of the transition. A hosted transition is an enter, exit, or inter-
nal transition; a boundary transition is an enter or exit transition. As partly shown in the
examples, external transitions can be triggered or non-triggered and with or without specs.

A unary member function add is provided as part of all transition types to enable
adding specs to transitions already defined, like so:

// Defining a transition with a programmatic name of
// helloWorld_INIT_TO_aboutToSayHello (see macro definition)
FSM_AUTO (printer_INIT, aboutToPrint);

// Adding an action spec to the transition
helloWorld_INIT_TO_aboutToSayHello
.add (Action ([]{printf ("%$s\n", "Hello world!\n")}));

Member function add has an equivalent in the form of a <<—operator, whence specs can
be added to transitions like so:

helloWorld_INIT_TO_aboutToSayHello
<< Action([]{printf ("%$s\n", "Hello world!\n")});

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 1 1

Both add and the <<—operator return a reference to this, which allows putting additions
in sequence, like so. . .

helloWorld_INIT_TO_aboutToSayHello
.add (Action ([] {printf ("%$s\n", "Hello world!")}))
.add (Action ([]{printf ("$s\n", "Hello hello!")}));

. Or so:

helloWorld_INIT_TO_aboutToSayHello
<< Action([]{printf("%$s\n", "Hello world!")})
<< Action([]{printf ("%$s\n", "Hello hello!")});

Analogously to external transitions, internal ones can be triggered or non-triggered. The
difference between loops on the one hand, that is to say, external transitions where the
source and the target are the same and internal transitions on the other hand consists of
loops leading to entering and exiting the state in question. Internal transitions do not in-
duce any entering or exiting of their host. A triggered external or internal transition is
called a step transition, a non—triggered one is called an auto transition. Table] summa-
rizes what macros and constructors there are for defining transitions. Triggers are always
of type Signal consts, source states of type sourceState consts, target states of type
TargetState constg, host states of type State consts, where types SourcesState,
TargetState, and state are given as indicated in Table

Table 4: Macros and constructors for defining transitions.

Macro

— The corresponding constructor

FSM_STEP (source, target)

— Step const source TO_target(trigger, source, target)

FSM_AUTO (source, target)
— Auto const source_TO_target (source, target)

FSM_ENTER (host)
— Enter const host_ENTER (host)

FSM_EXIT (host)
— Exit const host_EXIT (host)

FSM_INTERNAL_STEP (host)
— InternalStep const host_INTERNAL_STEP (trigger, host)

FSM_INTERNAL_ AUTO (host)
— InternalAuto const host_INTERNAIL_AUTO (host)

All transitions macros and constructors can have an arbitrary number of specs as ad-
ditional parameters, in which case they go after the parameters shown in the table. The
only mandatory specs are triggers on triggered transitions.

The source and the target in an external transition need not belong to the same region.
The target may rather belong to any region that sits, in a direct line of descent, above or
below the region to which the source belongs. An equivalent way of putting that consists

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 12

of saying that external transitions must never cross any concurrency boundaries.

An important distinction to make is that between regions being entered implicitly or
explicitly. A region is entered implicitly when its parent state is entered without the re-
gion directly taking part in it; it is entered explicitly if one of the region’s sub-states is
entered from above via a transition that enters the region’s parent state by crossing the
state boundary and then continuing into the region. As a consequence of this definition,
crossing a state boundary from above entails implicitly entering all sibling regions of the
region being targeted.

Dually to regions being entered implicitly or explicitly, regions can also be exited
implicitly or explicitly. A region is exited implicitly when its parent state is exited without
the region directly taking part in it; it is exited explicitly if one of the region’s sub—states
is exited via a transition exiting the sub—state and then leaving the region by crossing the
boundary of the parent state. As a consequence of this definition, crossing a state boundary
from below entails implicitly exiting all sibling regions of the region from within which
the transition originates.

Transitions that run in the upward direction are like exceptions in that they lead to
a state machine’s tree—like activation “stack” being unwound. The unwinding proceeds
by exiting regions as described in the previous paragraph. It stops once the target region
of the transition is reached. Practical applications of ordinary state machines usually
depend on horizontal and downward transitions much more than on upward transitions,
probably because upward transitions really tend to be used like exceptions. In addition to
that, formal verification is much easier to implement if upward transitions are completely
absent. Users are encouraged to avoid upward transitions in view of formal verification
functionality to be added to State Diagram in the future.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. l 3

6 Signal Data / Transition Specs

At the point of definition, signals have to be declared either void or data—carrying. Data—
carrying signals then provide typed member functions set and get as well as a ()—
operator that is equivalent to set. Data—carrying signals that are referred to as triggers in
transition specs appear as const references to type Event or LocalEvent, Where const
references to type Event may refer to any signal and const references to type LocalEvent
refer to local signals. Signals when referred to as events do not carry any overt data type
information. To set and retrieve their data in a type—safe manner, set and get have to be
endowed with the data type as a template argument. The following example shows most
of these mechanisms at work.

FSM_TOP (M) ;
FSM_SIGNAL (string, A, M);
FSM_SIGNAL(string, B, M);

FSM_INIT (M) ;
FSM_STATE (S, M);
FSM_FINAL (M) ;

FSM_AUTO (M_INIT, S);
FSM_STEP (S, M_FINAL);
S_TO_M_FINAL
<< Trigger (A)
<< Trigger (B)
<< Action([] (Event consté& trigger) {printf ("%$s\n",
trigger.get<string>().c_str());});

M.init ();

M.step (A(string ("Hello!")));
M.init ();

M.step (B(string ("Good bye!")));

Specs that are parameterized by an event reference can solely be used on (triggered) step
transitions. In any (attempted) execution of a step transition, a reference to the trigger
event used in the execution becomes the argument of any parameterized spec that belongs
to the transition. In this way data from the signal behind the event can be transmitted to
those specs. This discipline encompasses parameterized guard specs, in which case data
of attempted triggers are used to evaluate those guard specs before the transition actually
becomes enabled. Table [f| summarizes what transition specs there are and how they may
be parameterized. Please note that there are two output spec constructors that use a macro
FsM_LEV. These two kinds of specs are explained below.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 14

Table 5: Transition specs.

Type of spec | Constructor parameter

Trigger Event consté&

Guard function<bool () > consté&

Guard function<bool (Event consté&)> consté&

Output LocalSignal consté&

Output function<LocalEvent consté& ()> consté

Output function<FSM_LEV () > consté&

Output function<LocalEvent consté& (Event consté&)> consté&
Output function<FSM_LEV (Event consté&)> consté&

Action function<void () > consté&

Action function<void (Event consté&)> consté&

FreezeFlag (SHALLOW)
FreezeFlag (FULL)
MaxlFlag ()
CompletionFlag()

As per commonly adopted convention, a step transition needs just one of its triggers acti-
vated for the transition to be enabled. For any kind of transition, all of its guard functions
must evaluate to true for it to be enabled. Guard functions are evaluated prior to all other
functions. Otherwise, the order in which spec functions are invoked is indeterminate —
so that there must never be any reliance on any pre—supposed ordering other than that
guards are evaluated first. Outputs serve to activate local events, which means that call-
ing this type of spec an “Output” might be considered somewhat of a misnomer. State
Diagram sticks to using that wording because of historical reasons. Also, outputs may
be collated by returning a vector of references. To this end, macro FsM_LEV is provided,
which expands as follows.

FSM_LEV +— std::vector<std::reference_wrapper<LocalEvent const>>

Use these vectors of references to local events if some of the underlying signals are data—

carrying and, at the same time, computing the data involves shared sub—computations.

In such a case only one output can emit all of these signals at once instead of repeating

sub—computations across different outputs. As a caveat, the vector will probably entail

heap allocation, so that is a price to be paid for avoiding that computations get duplicated.
Transitions can be configured still further by means of flags:

* Freeze flags (FreezeFlag (SHALLOW) and FreezeFlag (FULL)) can be added to ex-
ternal transitions. Their effect consists of freezing the source state of the transition
once the transition is taken. Freezing means that, on implicit re—enter, sub-regions
of the source state have their current states assigned to them according to what
states were current when the freeze occurred. In the case of a shallow freeze, re—
assignment of prior current states occurs only in direct sub-regions of the source
state while indirect sub-regions are initialized in the normal way; in the case of a
full freeze, re—assignment of prior current states occurs in all, that is to say, direct
or indirect sub—regions of the source state. Freezes can be overridden by entering
target regions explicitly.

Freeze flags probably make up the biggest difference between State Diagram and
UML Statecharts. For better or worse, State Diagram takes the view that it usually

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 1 5

depends on the way a state is exited whether the state is to be frozen or not. UML
takes the view that whether a state or region is to be frozen or not is more of an
intrinsic property. To this end, UML provides freeze states, which serve to mark
such states or regions as to be freezed on exit. This concept does not exist in State
Diagram.

* Max-1 flags (Max1Flag ()) can be added to external and internal transitions. Their
effect consists of limiting the number of times a transition can execute, as follows.
If a transition carries a max—1 flag, then the number of of times the transition can
execute during a macro step is limited to just one. Pragmatically, max—1 flags sup-
port looping. The following modification of the preceding example demonstrates a
max—1 flag in action:

FSM_TOP (M) ;
FSM_SIGNAL (string, A, M);
FSM_SIGNAL(string, B, M);

FSM_INIT (M) ;
FSM_STATE (S, M);
// Doing away with the final state

FSM_AUTO (M_INIT, S);
// Attaching a max-1 loop to the ordinary state
FSM_INTERNAL_STEP (S);
S_INTERNAIL_STEP
<< MaxlFlag()
<< Trigger (A)
<< Trigger (B)
<< Action([] (Event consté& trigger)
{printf ("%$s\n", trigger.get<string>().c_str());});

M.init ();

M.step (A(string ("Hello!")));

M.step (B(string ("Good bye!")));
M.step (A(string ("Hello again!")));
M.step (B(string ("Good bye again!")));

* Completion flags (CompletionFlag ()) can be added to external transitions. Their
effect consists of modifying the execution discipline. In the absence of any com-
pletion flag, the execution of an external transition originating at state A merely
requires that no transition from within A is enabled; in the presence of a completion
flag, A is required to have terminated. Completion flags exist to support different
patterns of composing states sequentially.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 16

7 Miscelleanous

7.1 Perfect Synchrony / Accumulative Signal Activation

The following properties govern signal activation and how it influences step transitions
being enabled or not:

1. One of the trigger signals referred to by a step transition must be active for the
transition to be enabled (besides all other conditions required for enabled—ness).

2. There is no other way of testing whether a signal is active, especially not in transi-
tion guards. — Another way of putting that consists of saying that State Diagram
does not support any negated signal activations in predicates governing the enabled—
ness of transitions.

3. As already stated above, signals once activated stay activated over the entire course
of a macro step.

Elsewhere, similar concepts have been termed perfect synchrony due to the way they
provide a certain abstraction from temporality, putting the focus on causality instead. Per-
fect synchrony simplifies the mathematical treatment of state machines required, at later
stages, in adding formal verification functionality to State Diagram. It makes pragmatic
sense, too, in that ease of mathematical modeling goes hand-in—hand with ease of com-
prehension.

7.2 More on Signal Data / Data Variables

In keeping with perfect synchrony, signal data, once put in place during any macro step (by
means of set or the () operator), must not be put in place again during that same macro
step. Also, signal data must always be put in place before a signal becomes activated, and
they must never be retrieved (by means of get), before they have been put in place. The
idea behind these restrictions consists of being able to treat signal data in an accumulative

fashion just like signal activation.

For these reasons, Signals cannot be used like variables, that is to say, to store data for
use in subsequent macro steps. Ordinary program variables could be used to that effect,
however, State Diagram provides data variables, variables for short, that enforce perfect
synchrony. Employing State Diagram variables is not mandatory — they are just an option
at the present stage of State Diagram development. They will facilitate formal verification
once that has been added to State Diagram. Variables come as external and local variables
as shown in Table [6l

Table 6: Macros and constructors for defining data variables.

Macro

— The corresponding constructor

FSM_VAR (type, name, parent|, init])

— ExternalVar<type> name ("name", parent|[, init])

FSM_LOCAL_VAR (type, name, parent|[, init])
— LocalVar<type> name("name", parent|, init])

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 17

Data variables may be initialized by supplying an initial value as also shown in the table.

Data variables provide a set and a get function and a <<—operator that is equivalent
to set. Calling these functions must adhere to similar ordering constraints as in the case
of their namesakes that belong to class signal, too. About the only — and crucial —
difference consists of values being kept after a macro step has been completed — so
that calling get is nearly always well-defined after a macro step has commenced. A set
operation on the variable in question having occurred at least once. Without any initial
call to set, getting the variable’s data value results in an error being thrown. A local
variable that has been set looses this status, though not its value, once local control flow
exits its scope — so that the variable can be re—set during the same macro ste[ﬂ

There exists an additional function on State Diagram variables, setNxt, that takes
effect only once the macro step commences that directly follows the one during which it
is called. This function and function get do not interfere with each other. A typical usage
pattern of set, get and setNxt consists of using set to initialize a variable, followed by
only ever using get and setNxt thereafter. Calling setNxt more than once during one
and the same macro step leads to an error being thrown. Lastly, a next—step equivalent to
the <<—operator is provided in the form of a member nxt with a <<—operator defined on
it — so that .set (value) and .setNxt (value) can be written as << value Or .nxt <<
value, respectively.

7.3 Arrays of Data Variables
Arrays of data variables can be defined as shown in Table
Table 7: Macros and constructors for defining arrays of data variables.

Macro
— The corresponding constructor

FSM_ARRAY (type, name, size, parent|[, init])
— ExternalArray<type, size> name("name", parent|[, init])

FSM_LOCAL_ARRAY (type, name, size, parent|[, init])
— LocalArray<type, size> name("name", parent|, init])

Remarks:

1. Just like with local data variables, the parent of a local array of data variables can
be a compound state or a region. The given parent becomes the parent of every data
variable that belongs to the array.

2. Arrays of data variables can be initialized at the point of definition. Technically, the
initializer has to be a reference to a const instance of a std: :array<type, size>.
This requirement entails that the initializer can be given syntactically as a comma—
separated sequence of initial values enclosed in curly brackets. An example of that
would be an initializer of {1, 2, 3, 4} in case the array were of type int and
size 4.

'In formal verification this feature leads to what is known as the reincarnation problem.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 1 8

3. The usual bracket operator serves to dereference individual data variables, as in
a[0] given that a is an array of such.

7.4 Polyadic Signals

Polyadic signals can be declared as shown in Table [§] Making use of one of the con-
venience macros, FSM_SIGNAL Or FSM_LOCAL_SIGNAL, requires making use of another
auxiliary macro, FsM_TT, to declare the actual tuple type that is to serve as the signal
payload.

Table 8: Macros and constructors for defining polyadic signals.

Macro

— The corresponding constructor

FSM_SIGNAL(FSM_TT<tg,..., tg—1>, nhame, parent)

— ExternalSignal<tqg,..., tx_1> const name ("name", parent)

FSM_LOCAL_SIGNAL (FSM_TT<tq,..., ty_1>, name, parent)
— LocalSignal<ti,..., tg> const name("name", parent)

(to, ..., ti_1 abbreviates typey, ..., type,_; With k > 2)

When referring to a polyadic signal as an event, retrieving the signal’s data contents
requires adding type parameters to get to make the polyadicity explicit. It also requires
appying an additional get to retrieve any individual data item. The latter get has to be
parameterized with the data item’s index, like so:

trigger.get<typey,...,typer_1> () .get<i> ()
A polyadic signal is emitted by applying a polyadic ()—operator, like so:

signal (expry,..., €xXpri_1)

7.5 Object Ownership

Explicitly created, API-level states, transitions, signals, and variables are never destroyed
from within State Diagram. Implicitly created default regions and elements of external
arrays reside at the API-level too in the sense that their types are API-level. Nevertheless,
their ownership rests with the region parent or external array, respectively. Destruction of
explicitly created, API-level state machine components must never occur before the entire
state machine can be torn down (the reason of which being that State Diagram employs
the pimpl—pattern to let API-level components own behind—the—scenes components that
do nearly all of the “heavy lifting").

7.6 Errors

State Diagram signals errors by throwing instances of sub—classes of class Error.
A std::string describing any error thrown can be obtained by calling member
function what (); descriptive data items associated with the error can be obtained

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 19

from const fields that are specific per sub—class. Please consult the header file,
state_diagram/state_diagram.h, and its HTML documentation to learn about what
types of errors there are and what data they provide. A typical pattern of catching errors
at design time consists of wrapping the state machine in question in a t ry—catch clause,
like so:

try
{
// Regular State Diagram stuff

}

catch (Error const & err)

{
std::cerr << err.what();
// Doing whatever else is required

7.7 Compile-Time Flags

State Diagram provides a number of compile—time flags. They can be used to modify how
state machines behave, and also what the API looks like, as follows.

1. Defining STATE_DIAGRAM NO_RUNTIME_SHUFFLING makes State Diagram forego
injecting a certain amount of randomness into how it steps through state machines.
Usually, there are degrees of freedom with respect to the order in which simultane-
ously enabled transitions from concurrent regions etc. can be executed. State Dia-
gram normal mode of operation includes randomization to actuate part of this lee-
way though not all of it (because that would be to cumbersome). This feature helps
obeying the UML guideline that was already mentioned herein, which says that ex-
ecution order must not be relied upon whenever there is any leeway at all. Defining
flag STATE_DIAGRAM_NO_RUNTIME_SHUFFLING disables all of this randomization at
the benefit of reducing computational burdens on any state machines compiled with
it. It should usually be defined only in a deployment phase after adherence to the
UML guideline has been ensured by following proper development methodology.

2. Defining STATE_DIAGRAM NO_CHECKS_WHILE_STEPPING switches off checks per-
formed while stepping through state machines. Like the previous flag, this one
should usually be defined only in a deployment phase once the absence of State
Diagram—specific runtime errors has been made sure.

3. Defining sSTATE_DIAGRAM_STRINGLESS modifies the code base so as to remove
type std::string from it. All name parameters are dropped, as well as all er-
ror messages of string type that come with exceptions. This flag serves to reduce
the size of compiled State Diagram code. Like the previous two flags, it should
be used in a deployment phase. Constructors that carry a name parameter loose
it if the flag is defined, while the corresponding macros keep their name param-
eter. These macros are redefined so as to drop the name parameter in expanding
to the now—redefined constructor. Hence, if user—level State Diagram code uses
macros to declare named entities, as in TOP (awsomeStateMachine), then defining

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 20

STATE_DIAGRAM_STRINGLESS does not require any code changes, whence you can
still write TOP (awsomeStateMachine).

If sSTATE_DIAGRAM_STRINGLESS is defined, then State Diagram exceptions acquire
code, which is a const member of type int. This field’s value is unique per
type of exception. Please consult the header files, state_diagram_error.h and
state_diagram.h, to find out which codes exist and what their identifiers are.

4. Defining STATE_DIAGRAM_EXIT_ON_ERROR lets State Diagram exit on any user error
instead of throwing any exceptions. Exit codes are the same as error codes on
defining STATE_DIAGRAM_STRINGLESS.

All of these flags have to be given as compile—time defines and, at the same time, client
code prior to including the State Diagram header file.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 2 1

8 A Somewhat Larger Example: Programming a Mi-
crowave Oven

The following example provides a somewhat idealized account of how to program a mi-
crowave oven using State Diagram. The example starts off with a number of constants
that are related to cooking time spans and watt figures. Setting the cooking duration in
the seconds range is limited to a maximum of 59 seconds (maxSecondsSettable). In the
the minutes range it is limited to a maximum of 30 minutes (maxMinutesSettable), 30
minutes in seconds also being the limit to the cooking duration overall (maxSeconds).
In the seconds range the step size in dialing in the cooking duration is five seconds
(secondsstep). The power output can be dialed in with a minimum of 150 watts
(minWattsSettable), a maximum of 750 watts (maxWattsSettable), and a step size
of 150 watts (wattsStep).

intl6_t constexpr secondsPerMinute{60};

intl6_t constexpr maxMinutesSettable{30};

intl6_t constexpr maxSecondsSettable{secondsPerMinute - 1};

intl6_t constexpr minSecondsSettable{0};

intl6_t constexpr maxSeconds{maxMinutesSettable * secondsPerMinute};
intl6_t constexpr secondsStep{5};

intl6_t constexpr maxWattsSettable{750};
intl6_t constexpr minWattsSettable{150};
intl6_t constexpr wattsStep{150};

The example continues with a hypothetical low—level API. This API is assumed to
reside outside the state machine. It consists of several functions that are given as lambdas,
the function names being self—explanatory. The API provides the interface between the
state machine and the microwave hardware. Ellipses appear where hardware—dependent
code would appear in any concrete instantiation of the microwave example. Please note
that these API calls form the entire interface that the microwave state machine possesses
apart from functions init and step which are to called on the top state. Testing the
microwave state machine could, thus, be accomplished by (a) replacing the ellipses with
appropriate tracing code and (b) subjecting the state machine to init/step stimuli to test
whether traces come out as expected.

auto const doorIsShut{[&] () —-—>bool{...}};

auto const soundBeep{[&]{...}};

auto const turnOnDisplay{[&]{...}};

auto const displayMinutesSeconds{[&] (intl6_t const minutesSet,
intl6_t const secondsSet){...}};

auto const displayWatts{[&] (intl6_t const wattsSet){...}};
auto const turnOffDisplay{[&]l{...}};

auto const turnOnMagnetron{[&] (intl6_t const wattsSet){...}};
auto const turnOffMagnetron{[&]{...}};
auto const turnOnTurntable{[&]{...}};

auto const turnOffTurntable{[&]{...}};
auto const turnOnLight{[&]{...}};
auto const turnOffLight{[&]{...}};

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 22

On to the state machine itself, it reacts to eight external signals as shown next. Five of
these signals correspond to buttons that are assumed to be available on the outside of the
microwave. The cooking duration can be dialed up (signal durationplus) or down (sig-
nal durationMinus), as can be the power output (signals wattsPlus and wattsMinus). A
start/stop button is also present (signal startstop). Then, the microwave senses the door
to the cooking chamber being opened (signal dooroOpen) or closed (signal doorshut).
Lastly, there is recurring tick (signal tick) that is assumed to be signaled each second.
Technically, there has to be an external loop that invokes function step on microwave,
the argument to step being the signal that corresponds to the event that the microwave is
to react to next. The way the state machine is written it assumes that step will only ever
be called with one signal argument at a time.

FSM_TOP (microwave) ;

FSM_SIGNAL (void, durationPlus, microwave);
FSM_SIGNAL (void, durationMinus, microwave) ;
FSM_SIGNAL (void, wattsPlus, microwave) ;
FSM_SIGNAL (void, wattsMinus, microwave) ;
FSM_SIGNAL (void, startStop, microwave);
FSM_SIGNAL (void, doorOpen, microwave);
FSM_SIGNAL (void, doorShut, microwave) ;
FSM_SIGNAL (void, tick, microwave);

Just below the top level, the microwave has states microwave INIT, standby, and on.
Once initialized, an auto transition puts the state machine into st andby upon calling step.
Calling step step once more with any external signal but t ick puts the state machine into
on. Completing a cooking process corresponds to state on terminating, whence transitions
emanating at on carry a completion flag. The state machine transitions from on back to
standby in case external signal tick arrives. It loops from on to on in case any other
external signal arrives.

FSM_INIT (microwave) ;
FSM_STATE (standby, microwave);
FSM_STATE (on, microwave) ;

FSM_AUTO (microwave_INIT, standby);
FSM_STEP (on, standby, Trigger(tick), CompletionFlag());
FSM_STEP
(

standby
, on
, Trigger (startStop)
durationPlus)
durationMinus)
wattsPlus)
wattsMinus)
doorOpen)

, Trigger
, Trigger
, Trigger
, Trigger
, Trigger

—~ o~ o~ o~~~

Most of the statemachine sits below state on. There are two local variables, seconds
and watts. They hold the current count—down value or the current power setting, respec-
tively. These variables are (re—initialized) whenever state on is entered.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 23

FSM_LOCAL_VAR(intl6_t, seconds, on);
FSM_LOCAL_VAR(intl6_t, watts, on);

FSM_ENTER
(
on
, Action([&]{
seconds << minSecondsSettable;
watts << minWattsSettable;
})
)

Updates to local variables seconds and watts always take effect once the next macro
step commences, using nxt—syntax. Other parts of the state machine need to be noti-
fied of any such update already during the current instant. To this end, two local sig-
nals, secondsNxtSet and wattsNxtSet, are attached to state on in addition to variables
seconds and watts:

FSM_LOCAL_SIGNAL (intl6_t, secondsNxtSet, on);
FSM_LOCAL_SIGNAL (intl6_t, wattsNxtSet, on);

SﬁyuﬂsdurationPlus,durationMinus,wattsPlus,andwattsMinusZHeremIed—K)
by means of four transitions that are internal to state on, each one having one of these
signals as its trigger. Each one of these transitions is also guarded by the countdown value
having to be grater than zero since it being zero means that state on needs to terminate.
Each one of these transitions also has a Max1Flag. As for dialing the countdown value
up or down, there are two step lengths to this, 5 or 60 seconds. The changeover threshold
lies at 60 seconds (the same as the bigger step length). The smaller step length is used for
adjustments below this threshold. Newly dialed in countdown values are also normalized
modulo the step size — so that they always come out to be 0, 5, 10, ..., 50, 55, 60, 120,
180, ..., 1680, 1740, or 1800.

InternalStep const on_ON_durationPlus

{

on
, Trigger (durationPlus)
, Guard([&] {return seconds.get () > 0;1})
, Output ([&] () —>LocalSignal<intlé6_t> consté&(
int const valSecondsNxt{[&]{
if (seconds.get () < secondsPerMinute)
{
int const rawValSecondsNxt{seconds.get () + secondsStep};
return rawValSecondsNxt - (rawValSecondsNxt % secondsStep);
}
int const rawValSecondsNxt {seconds.get () + secondsPerMinute};
return rawValSecondsNxt <= maxSecondsSettable ?
rawValSecondsNxt - (rawValSecondsNxt % secondsPerMinute)

maxSecondsSettable;
PO b
seconds.nxt << static_cast<intlé_t>(valSecondsNxt) ;
return secondsNxtSet (static_cast<intl6_t>(valSecondsNxt));

)
, MaxlFlag()

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 24

bi
InternalStep const on_ON_durationMinus
{
on
, Trigger (durationMinus)
, Guard([&] {return seconds.get () > 0;})
, Output ([&] () —>LocalSignal<intl6_t> consté&(
int const valSecondsNxt{[&] {
if (seconds.get () <= secondsPerMinute)
{
if (seconds.get () <= secondsStep)
{

return static_cast<int> (seconds.get());
if ((seconds.get () % secondsStep) == 0)

return seconds.get () - secondsStep;
}
return seconds.get () - (seconds.get() % secondsStep);
}
else
{
if ((seconds.get () % secondsPerMinute) == 0)
{
return seconds.get () - secondsPerMinute;

}

return seconds.get () — (seconds.get() % secondsPerMinute);

}

}O Y

seconds.nxt << static_cast<intl6_t>(valSecondsNxt) ;

return secondsNxtSet (static_cast<intl6_t>(valSecondsNxt));

})

, MaxlFlag()
}i
InternalStep const on_ON_wattsPlus

{

on

, Trigger (wattsPlus)

, Guard([&] {return seconds.get () > 0;1})

, Output ([&] () —>LocalSignal<intl6_t> consté&(

int const rawValWattsNxt{watts.get () + wattsStep};
int const valWattsNxt({
rawValWattsNxt <= maxWattsSettable ?
rawValWattsNxt
maxWattsSettable
bi
watts.nxt << static_cast<intlo_t> (valWattsNxt) ;
return wattsNxtSet (static_cast<intl6_t>(valWattsNxt));
})
, MaxlFlag()
bi
InternalStep const on_ON_wattsMinus
{
on
, Trigger (wattsMinus)

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved.

25

, Guard([&] {return seconds.get () > 0;})
, Output ([&] () —>LocalSignal<intl6_t> consté&(
int const rawValWattsNxt{watts.get () - wattsStep};
int const valWattsNxt({
rawValWattsNxt >= minWattsSettable ?
rawValWattsNxt
minWattsSettable
bi
watts.nxt << static_cast<intl6_t> (valWattsNxt) ;
return wattsNxtSet (static_cast<intl6_t> (valWattsNxt));
})
, MaxlFlag()
}i

Making up the microwave oven’s “business end”, the cooking chamber is next. It is
controlled via a distinct region, cookingChamber, that sits directly below state on. The
only states that require explanation are stopped and paused: The cooking process stops
whenever the start/stop button is pressed; it pauses whenever the door is opened.

FSM_REGION (cookingChamber, on);
FSM_INIT (cookingChamber) ;

FSM_STATE (stopped, cookingChamber) ;
FSM_STATE (paused, cookingChamber) ;
FSM_STATE (cooking, cookingChamber) ;
FSM_FINAL (cookingChamber) ;

Region cookingChamber signals to other regions below on whether the cooking pro-
cess starts, stops temporarily, or exits altogether. These signals must be local to state on
for them to be visible in these other regions.

FSM_LOCAIL_SIGNAL (void, start, on);
FSM_LOCAL_SIGNAL (void, stop, on);
FSM_LOCAL_SIGNAL (void, exit, on);

Transitions in region cookingChamber also make use of two auxiliary functions,
which are given as lambdas.

auto startCooking{[&] {
turnOnTurntable () ;
turnOnMagnetron (watts.get ());

i

auto stopCooking{[&] {
turnOffMagnetron() ;
turnOffTurntable () ;

1By

There are six cooking chamber transitions, one of them being an internal step of
state cooking. Transitions that emanate from state stopped make use of API predi-
cate doorIsshut in their guard condition. It is assumed that this predicate behaves as
one would expect with regard to which one of signals dooropen and doorshut has been
emitted last.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 26

FSM_AUTO (cookingChamber_ INIT, stopped);

FSM_STEP
(
stopped
, cooking
, Trigger (startStop)
, Guard([&] {return doorIsShut () &&

(seconds.get ()

, Action([&] {startCooking();}), Output (start)

FSM_STEP
(
stopped
, cookingChamber_FINAL
, Trigger (startStop)
, Guard([&] {return seconds.get () ==
, Action([&] {soundBeep();1})
, Output (exit)

FSM_STEP
(
paused
, cooking
, Trigger (startStop)
, Guard([&] {return doorIsShut () &&
, Action([&] {startCooking();})
, Output (start)

FSM_STEP
(
paused
, cookingChamber_ FINAL
, Trigger (startStop)
, Guard([&] {return seconds.get () ==
, Action([&] {soundBeep();})
, Output (exit)
)

0; 1)

(seconds.get ()

0; 1

Step const cooking_TO_paused_BY_ startStop

(
cooking
, paused
, Trigger (startStop)
, Action([&] {stopCooking();})
, Output (stop)
)i

Step const cooking_TO_paused_BY_doorOpen

(
cooking
, paused
, Trigger (doorOpen)
, Action([&] {stopCooking();1})
) i
FSM_INTERNAL_STEP
(
cooking
, Trigger (tick)

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved.

>=

>=

DR

DR

27

, Guard([&] {return seconds.get () >= 2;})

, Output ([&] () —>LocalSignal<intl6_t> consté&(
intl6_t const valSecondsNxt{seconds.get () - 1};
seconds.nxt << valSecondsNxt;
return secondsNxtSet (valSecondsNxt) ;

})

, MaxlFlag()

)

FSM_STEP

(

cooking
, cookingChamber_FINAL
, Trigger (tick)

, Guard([&] {return seconds.get () <= 1;1})
, Action([&]{
seconds.nxt << static_cast<intl6_t>(seconds.get () - 1);

stopCooking () ;
soundBeep () ;

)
, Output (exit)

The second region below state on controls the light bulb that illuminates the cooking
chamber. There are four states and six transitions to this region.

FSM_REGION (light, on);
FSM_INIT (light);

FSM_STATE (1ightOff, light);
FSM_STATE (lightOn, light);
FSM_FINAL (light);

FSM_STEP
(
light_INIT
, lightOn
, Trigger (start)
, Trigger (doorOpen)
, Action([&] {turnOnLight ();})

FSM_STEP (light_INIT, light_FINAL, Trigger (exit));
FSM_STEP
(
lightOff
, lightOn
, Trigger (start)
, Trigger (doorOpen)
, Action([&] {turnOnLight ();})

FSM_STEP (lightOff, light_FINAL, Trigger (exit));
FSM_STEP
(
1lightOn
, lightOff
, Trigger (stop)
, Trigger (doorShut)

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 28

, Action([&]{turnOffLight ();})
)i
FSM_STEP

(

lightOn

, light_ FINAL

, Trigger (exit)

, Action([&] {turnOffLight ();})
) i

State on has one more region below itself. This region controls the display that pro-
vides information on the cooking duration and the power setting. There are three states
and six transitions to this region.

FSM_REGION (display, on);
FSM_INIT (display);

FSM_STATE (displayOn, display);
FSM_FINAL (display);

FSM_AUTO (display_INIT, displayOn);
FSM_ENTER
(
displayOn
, Action([&]{
turnOnDisplay () ;
displayMinutesSeconds (

seconds.get () / secondsPerMinute
, seconds.get () % secondsPerMinute

)i
displayWatts (watts.get ());
})
)
InternalStep const displayOn_INTERNAL_ON_secondsNxtSet
(
displayOn
, Trigger (secondsNxtSet)
, Action([&] (Event consté& secondsNxtSet) {
displayMinutesSeconds (
secondsNxtSet.get<intl6_t>() / secondsPerMinute
, secondsNxtSet.get<intl6_t>() % secondsPerMinute
)i
})
, Maxl1lFlag()
) ;
InternalStep const displayOn_INTERNAL_ON_wattsNxtSet
(
displayOn
, Trigger (wattsNxtSet)
, Action([&] (Event consté& wattsNxtSet) {
displayWatts (wattsNxtSet.get<intl6_t>());
1)
, MaxlFlag()
) i
FSM_EXIT (displayOn, Action([&]{turnOffDisplay();}));
FSM_STEP (displayOn, display_ FINAL, Trigger (exit));

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 29

9 What’s New

August 22, 2021:

1. Adding note on Clang 12.
May 04, 2021:

1. Minor edit.
March 19, 2021:

1. Introducing STATE_DIAGRAM_EXIT_ON_ERROR flag.

2. Flag STATE_DIAGRAM_NO_RUNTIME_CHECKS replaced by a more fitting
STATE_DIAGRAM_NO_CHECKS_WHILE_STEPPING.

3. More structured introduction.

4. Various minor edits.
February 24, 2021:

1. Reflecting a change of implementation approach, the explanation regarding the use
of exceptions in implementing upward transitions has been dropped. Upward tran-
sitions are no longer implemented by throwing exceptions.

2. Various minor edits.
January 20, 2021:

1. More generous layout.

2. Resource—saving request.

3. Corrections to the introduction.

4. Correction to what is written regarding heap usage.

5. Other minor editing.
January 19, 2021:
1. Removing C++17 flag.

2. Introducing STATE_DIAGRAM_STRINGLESS flag.

3. Slightly more comprehensive introduction, minor section rearrangement, other mi-
nor editing.
December 25, 2020:

1. Adding a graphic that depicts the hello—world state machine.

2. Minor updates and modifications.
November 19, 2020:

1. Minor corrections.
August 13, 2020:

1. First version of this manual.

Copyright © Authors of State Diagram Library Manual 2020-2021. All rights reserved. 30

	Disclaimer
	Introduction
	Getting Started

	State Diagram in Action
	State Machines / State Hierarchies
	Signals and Transitions
	Signal Data / Transition Specs
	Miscelleanous
	Perfect Synchrony / Accumulative Signal Activation
	More on Signal Data / Data Variables
	Arrays of Data Variables
	Polyadic Signals
	Object Ownership
	Errors
	Compile–Time Flags

	A Somewhat Larger Example: Programming a Microwave Oven
	What's New

