PostgreSQL 9.6.23 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.6.23 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2021 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2021 by the PostgreSQL Global Development Group.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

| 24 =Y = o] < ST XX

A b L TR 013 o =1) I XX
2. A Brief History of POStgreSQLcouniiiiiiiiiii et e et e e e e et e e ae e e e et e st eaaesnnaeans XX
2.1. The Berkeley POSTGRES PIrOJECE ...ccuuiiiiiiiiiiiiieeiie et e et e e et e et e e et e e teereeaneeanns xxi
A o 1S W0 1 =11 1 PP xxi
PG T oo 1] e 1 o' =1 I PPN xxii

G T 0703 s k7=] a1 10) o - TN PP TP xxii
4. Further INformationoouiiiiiiiii ettt e e et e et e e et e e et e eeaaees xxii
5. Bug Reporting GUIAELINEScoiiiniiiiiiieei et e et e e e et e et e e e e et e eane e e e sanesrneannnns xxii
5.1. TAentifying BUGS ..iiuniiiiiiiiiie ettt e et e e et e et e et e et e et e et e e e et eaeaanaranas xxiii
STV AV o B) A o T 2 U)o 10) o PN xxiii
5.3. Where t0 REPOTE BUGS ..uoivniiiiiiiiiii e e e et e e e e e et e et e e e e aen e san e e e eaans XXV

| B I 01 o) i T 1 RO OP PR PPRRPTRRRPR 1
I LY o o o S =Y =T 2
I T 5T =Y < L o) s OO TPPOTR PPN 2
1.2. Architectural FUNAamentalsccoouuiiiiiiiiiii ettt et e et e e e e 2
1.3. Creating @ Dat@basec..ciiuiiiiiiiieiiie e e et e et e et e et e e e et e et e e e e et aanaas 2
1.4. AccesSing @ Data@basecouiiiiiiiiiii i a e eaans 4

N N T 1@] I - oo 1D =Y [T S 6
P20 I § 01 0 1o L1 (o o) o KOOSR PPNt 6
W 00 1 1o1<] o] %SO 6
2.3. Creating @ NEeW Tableccuiiiiiiiii et e et e e e e e et e e e e saneeaneeaaaaannaes 6
2.4. Populating a Table With ROWSccuiiiiiiiiiii e e e ee e e et e e a e e e aees 7
S T O 0 1Y v o o = T = o] LSRN 8
2.6. JOINS BEtWEEN TaDIESccuniiiiiiiiiii et e e e e et e et e et e et e et e e e e ean e et eaae e e aaens 9
2.7. Aggregate FUNCEIONS ...t et e et e e et et e e e e e e e e eans 11
PR & T U o Y b= 1 - SN 12
P8 B B 1= (<] 5 L) o T T OO OPPRUUPPRPRt 12

3. AdVANCEA FEATUTESoiiiiiiiiiiiii ettt e et e et e et e ett e e et e e et s e et e eetnneaananas 14
G 700 I § 0 1 0 1o 11 (o v o) + KPP PP 14
32, VB ittt ittt et ettt et et e et e e e et e et e et et e et e et e th e th et a et et e eha e et et e th e taeeanaaneanes 14

G TR T a0 o= To o N 05) 2= S RN 14
3.4, TTANSACEIONS ..eeniiiiiiiieiiie ittt ettt ettt e et e et e et eta e et e et s ean e etneeraeeeaneennaaneaarasesnaennnns 15
3.5. WINAOW FUNCEIONS ...iiiiiiiiiieiii ettt et e et e et e et e e et e e eeaa s e et s eeeaeseaennes 16
3.6, INNETIEATICE ..euiiiiiiiie ettt e et e et e e et e e et e e et e e aba e e et s eeebaaees 19
I 00 s Tod 11 153 (o) s KSR PP 20

L TSR T I I o U 1 - Vo £SO 21
T 1 0) I 4 01 - - QPPN 22
7 R =) Lo 1 S w (o 1 o SRR 22
V£ T LT b q o) =TT 0) o - SNt 30
G T OF-Y 15 Vo B Vs Lod [0 F= SN 41

5. Data DEfINITION civuuiiiiiiiii ettt et e et et et e et e et e et e et e eaaans 44
5.1, TADIE BASICS .uuiiiiuiiiiiieii ettt ettt ettt ettt e et e et e et e et e e aaaeeaaas 44
5.2, DEfAUll VALUES ..couniiiiiiiieee e ettt e et e e et e e et e e et e e e e e ebeeees 45
5.3, COMSITAINES .eueiiiiiieii et ettt et et e et et e et e et e et e et e eaneeaneeneeanaaananas 46
5.4, SYSEEIM COIUITIIIS ...cvuniiiiiiiiiii it et e e et e et e et et e et e et e tt e st eetneatanesnnasenasanasanssnnessnsssnnssnneeen 53
TR T\ (oo b7 b Vo B =] 1Y S 54
N T o 7 1 (=T £ 56
5.7. ROW SECUTILY POLICIES ..cvuiiiiiiiiiiiiiie et e et e e et e e e et e et e e aaeeaeeeanaeanns 57
RS T o 1 1< o < 1< SO OTPTRTPTPPPR 62
5.9, INNETILATICE «.euiiiiii ettt e et e et e e et s e et s e et e e eba e e et s eeebaaaes 66

T O o= iy o) s Lo SO RUPRPN 69

o A O o) 4 =) o 1 s B D = - PN 75
5.12. Other Database ODJECES ...ccuuiiiiii e e e et e e e e et e e e eaneeaans 76
ST G T D 1= oY= o [=3 0 Lo VA I = Yod L« 1 o o N 76

6. Data ManipuUlationcoiuiiiiiie e e et e et e et e et et e et e et e et e et e et et e e raaaas 78
6.1, INSETTING DAt cuuivniiniiiiii ettt et et et st te et e e s e et et seneeaaanaaneeaaenns 78
ST U o Yo k= h Vo B D 1<) - 79

iii

PostgreSQL 9.6.23 Documentation

LS TC T B TCY =] o Yo D - 1 - Nt 79
6.4. Returning Data From Modified ROWSiiiniiiiiiii e e e eaas 80
0 1§ 1<) o 1Y SN 81
A T O)7/ 2 T RO 81
7.2. Table EXPIESSIONS ..ivuuiiiiiiiieiiieiie e et et et e et e ete e et e et e et e et e st estnaaannaannesenasanasanassnnassnnsrnnns 81
RS T 1= (= To) Al B0 £ S OO PP PPPRRt 94
7.4. CombiniNg QUETIESiiniiiiiiiii ettt e e e et e et e e e e st e eta e eaeaatneeaneeanaeannssnnassnaarnnns 96
7.5, SOTEIIIG ROWS ..iuiiiiiiiiii ettt ettt et e ettt e e e et et et e et et et aaaanaeneaneaanaenesnanns 96
7.6. LIMIT @ILA OF FSET tuuttrutetueetuneeuneeunreunessnaseunsesneeensssnnssunsssnsssnessnnsesneseneesnesssasessesnsssnmeesnessnessnns 97
7.7, VALUES LISES ittt ettt e et e e te et e et s et e e e s et setnsasaseaaneeanees 97
7.8. WITH Queries (Common Table EXPIreSSIiONnS)cciieiiiiiiiieiiiieiieiiieeiiee e e e e e e e e eeen 98
T D F 1 = T 4 01T SN 104
o T IR A A 01 s 0 =) o (o 7 o 1= T T 105
I LY o) aTc) =1 oy A 7 1= T N 109
LT T O o ¥ = Toa =Y i 4 1= PRSPt 110
8.4. BINATY Data T e coniiniiiiiiiiiiiie ettt et et e et et et e et et e e e et et e e e et e e aaaas 112
8.5. DAte/TIINE TYPES eueiuiiiiiieii ettt ettt et et et e et et e ea e et e etteeteeeta et etnneenneeeneeenns 114
I T S To o L= 1 B 74 o 1= TN 123
8.7. ENUMETAtEA TIPS .ueiniiiiiiiii et e et e et e et e et e e ae e st e st e eae e st e st estneasnesenasenesannees 124
8.8, GEOMEITIC T PES ciuiniiiiiiiii ittt ettt et et e et et et e et e it et e eae et aanaaneaansenaanasannnnns 126
8.9. NetWOTK AAATESS THPES ..iiuiiiiiiiiiiiieiiie ettt ee et e et e et e et e e et e et e et e st e st e eaneesnaaannasranns 128
o T O = L s w1 a Lo B I 01T S 129
8.11. TEXt SEATCR T PES .iiiiiiiiiie ittt e et e et e et e e e e et e et e et e et e st esaneeaneaenasrnasnanns 130
B.12. TUUID THPE tuuitiinttiiieeiineetie ettt ettt e ettt e eett s e ettaeetttnseetanaesaneatunersnnsersnnsessnnsersnnseesnnseenneees 132
TR T €1 I 74 oY TSRO 133
B.14. JSON TYPDES -ueeetuetiiinietiiiteetie ettt ettt e ettsettaeetta ettt eatsaseatanseatunseattnseaennsersnnsessnnsersnnsensnnees 135
T TR AN o = 7/~ SN 140
8.16. COMPOSITE TYPES «euniuniiniiiiiieiiieiie ettt ettt et e tete et et et et et et et eaneanasaaseneenesnesenssnsenesnns 149
T A S ¥ a o (= 74 0 1= TP 154
8.18. ODbject TAENTIfIET TYPES .uuiiniiiiiiieiiie et e et e e e e e st e et e e s e st e st e eaneeanaaannns 159
TS T o o J £S5 N 4 o 1 T PO 160
T R Y=Y Lo Ko Rl 74 o Y= N 161
S R VE o Toa o) s FR= NaTe M@ o1=Y = 1 o) =S 163
1S BRI o Yo Tot= Y B @ oY) i<} o) =S URRNt 163
9.2. Comparison Functions and OPeratorscccc.eeiieiiiiiiiieiiieeiie e ee et e e e e e e esaaaas 163
9.3. Mathematical Functions and OpPeratorsccc.ceiiiiiiieiiiiiiie et e e aeeeane e 166
9.4. String Functions and OPETatorsc.ciiieiiiiiiiieii e et e e et e e e e e eaeeaaeeaans 169
9.5. Binary String Functions and OPeratorsccccueiiiiiiiiiiiieiieeee e e e e e e aens 183
9.6. Bit String Functions and OPeratorscccuueiiiiiiiiiiiieiiie et e e e e e eae e e eaanas 185
9.7. Pattern MatChingccouiiiiiiii e e et e e e et e et e e e e et e ea e et e aaaaaas 185
9.8. Data Type Formatting FUNCLIONScouiiiiiii ettt e e e aaas 199
9.9. Date/Time Functions and OPeTratorscccuueiiiiiiiiiiiiieiie et e e e e e et e e e e aanas 205
9.10. Enum SUuppOrt FUNCEIONS ..cvuiieiiiiiii et e e e e et e e e e e e e e eaneans 218
9.11. Geometric Functions and OPeratorsccccuiiiiiiiiiiiieiiieece e e e e er e e e e e eens 218
9.12. Network Address Functions and Operatorsccceiueeiiiiiiiiiiiieiiieeiie e ee e e e eaaes 222
9.13. Text Search Functions and OPeratorsccc.ceiiuiiiiiiiiiiiiieeiie et et e et e e e e e e aenas 224
.14, XML FUINCEIONIS .uituiiiiiiiiiiieii ettt et et et e et e et e et e et e eaueettnetteeetasetanetuneenneeenseaneeenneennns 229
9.15. JSON Functions and OPETratorsScecuueiiiieiiieiiieeiieeiiee e ete et e et eeaeereertestneranaesnaasnnns 238
9.16. Sequence Manipulation FUNCLIONSoiiiiiiiiiiiiii e e e 246
9.17. Conditional EXPIreSSIONS ..ccuuiiiniiiiiiiiiiiieiiie et et ee et e e et e e te e e e st e et eeaneeseaeaneeanaeaens 248
9.18. Array Functions and OPETatorsc..ciiuiiiiiiiiieiiee et e e eeree e e et e e ae e e eeresraaeees 250
9.19. Range Functions and OPETatorsSceiuueiiiiiiieiiieeiiieeieeteeie e et eeteeteeeaeestaesaeernaernnaees 253
9.20. Aggregate FUNCEIONSc.ciiiiiiiii ettt et et e et et e e e et et e e e et eanaenaaanns 255
9.21. WINAOW FUNCEIONS ..eevuniiiiiiiiii ittt s et s et e et s e et s e et s e et s easnsaasnaenannaes 262
9.22. SUDQUETY EXPIESSIONS . cvuiiiiiiiiiiieiieiiie et et e et eete et e et e ete et e st e st estaaaseaeatessnassnaesnnasens 263
9.23. RoW and Array COMPATISOIS ...uiiuuiiiiieiieeieeineeteetieetieetnestaettestaesrnesrnaernaessnessaesseesnnesens 266
9.24. Set Returning FUNCTIONScuiiiiiiii e et e e et et e e e e e e e aaeeanas 269
9.25. System Information FUNCLIONSccuiiiiiiiiic e e e e 272

iv

PostgreSQL 9.6.23 Documentation

9.26. System Administration FUNCLIONSccuniiiiiiiiii e e e 286

1 727N b o [0 £ ol 21 01 o] 1 (o) o - SN 300
9.28. Event Trigger FUNCEIONS ...c.iiiiiii et e e e e e e e e e e e e e eans 301
O 74 o TR 0] 1177 /= 0) o PP 304
I R 0 112 = L PP 304
IO @) 013 =1 Mo) o PP 305
[TR 1 o T v 0) o 1= PP 308
LR V=Y L TR) i Lo £ SRS 312
10.5. UNTON, CASE, and Related COnStIUCESccivviiiiiiiiiiiicie e e e e e 312

I T s T =) = T 315
R O o o Yo R T 0) o PR 315
1 o L= 7 o 1= T SN 316
11.3. MUltiCOlUMN INAEXES ..cvuiiiiiiiieiiitii et et et e et e et e e et e eta e et e et e etneetanseaneeaneeanaaennaennnns 318
11.4. IndeXeS ANd ORDER BY .ituuittuteiuretuneeuneenneetuaetuneetnsetneesunseunsesnsesneesunsesnsesnstsessinsemserasesnsees 319
11.5. Combining Multiple INAEXESccouiiiuiiiiiiiiii et e e e e e e eaans 319
11.6. UNIQUE INAEXES ..cvniiniiiiiiiiieie ettt e et e e et et e e e st et et e et st e s e et st asnestesanasnasnneen 320
11.7. IndexXes ON EXPIESSIONSciuiiiiiiiiiiiieiiee et et et e e et et e e e it e e e et et e e e st et esnesnaeanasnasneans 320
11.8. PArTtial INAEXES ...ovuiiiiiiiiiiiiii ettt e e e te et e et e ete e et e et s et s et eaanseansasneaaannas 321
11.9. Operator Classes and Operator Famili€scccceiuiiiiiiiiiiiiiieie e 323
11.10. Indexes and CoOllatiOnsciiuiiiiiiiriiinei ettt ei e ete et e et e eaaeeaieeainsannnas 324
11,17, INAEX-ONLY SCANS ..uiiiniiiniiiiiiieie ettt et et e et e et e et s et s et et eeansasneennes 325
11.12. Examining INAeX USAGgE ...ccuuiiiuiiiiiiiiiiieiieiie ettt et e et e et e et e e e eaneeaieeeieeaineannnas 326
12, FUll TEXE SEATCR ..uiiiiiiiiii et ettt s et s et e et e eb s et e et e et s et sesaneeen 328
{20 R o m o To 6 [T) s A PSP PPPPPPRPRt 328
12.2. Tables and INAEXEScvuuiiiiiiiiiiieiie et ettt e et e et e et s eateeain e et e et eaanearnaarnnas 332
12.3. Controlling TexXt SEATCRciuiiii et ea e eaas 333
12.4. AddItional FEAUTESciiuniiiiiiiiiie ittt ettt et et et e et e et s eaa e e e eaaneebnsesnnanes 339
12,5, PATSETS ..ottt ettt ettt e et e et e et e et s et s et e et e et e et e et e et e et et e et ea e aaaeeaanaas 343
[T D (e n o) a -V o 1= TSR PO PPN 345
12.7. Configuration EXAmPLEcoiiiiiiiiiiiiii ettt e e e e e et aaa s 353
12.8. Testing and Debugging TexXt SEaTChcc.oiiiiiiiiiiiiiiii e 354
12.9. GIN and GiST INAEX TYPES ..iiuiiiniiiiiiiieiiieiir ettt ei e et e et et e ete et eainsatnsernsesanesaneees 358

2 O o X=To B0 o) oY) o PPNt 358
12,17, LIMIEAEIONS .iuniiiiiiiiiiie et ettt et e et e et s et e et e et e etae e et e et e et araeaan 361
12.12. Migration from Pre-8.3 Text SearChc.coiiiiiiiiiiiiiiiii e 361
13. ConcurrenCy CONEITOLiiuiiiiiiii et e e e e et e et e ete e et e et e et s esaneeanees 363
G TR I 1w /o To ¥ [w1} s AP PSP OPRUPPRT PPt 363
13.2. Transaction ISOLAtIONviuiiiiiii ittt et e et s et e et s eaneeaaes 363
13.3. EXPLCIE LOCKITIQ .ivniiiiiiiie ettt et et e et e et e e e et s et e e e e et s et sasaeaaanaanneas 368
13.4. Data Consistency Checks at the Application Levelcccoooiiiiiiiiiiiiiiiniiii e, 373
ST T G- 17T 1 £ S PP P PRSPPI 375
13.6. LOCKING QN INAEXES ..uuiiniiiiiiiiiiieie ettt ettt e e e et et eete e e s et e et senasesaneeanaees 375
I o) o) o 00 =Y o Lo R) o 1P 377
14,1, USING EXPLATN itutiutttinttnetteetnetneetaetstnetuastastnssuestastnstusssestnssnssseststnsssessassnssnersessessnersernnns 377
14.2. Statistics Used Dy the PLannerccoiiiiiiiiiii e e e e et e e e e eaeeaanas 387
14.3. Controlling the Planner with Explicit JOIN ClauSesc.ccoeviviiiieiiiiiiieeieeie e, 388
14.4. Populating @ Dat@baseccuuiiiuiiiiiiiiii e e e e aaaaas 390
14.5. Non-Durable SettiNgscccuiiiiiiiiiii e e e e e et e e a e e e e ea e e e e e eeens 392
ST o= U= 1 =Y B 1Y g S 393
15.1. How Parallel QUETY WOTKSciiuiiiiiiiiiiiiiie et e et e e e e et e e e et e e e e eeeeaneesneees 393
15.2. When Can Parallel Query Be USEA?ccouniiiniiiiiii et e e et e e e e e e e e e ean s 393
15.3. PAT@lle]l PLANS ...ouuiiiiiiiiieiie ettt e et e et e e e et e et e e e e et e et e et e ran e e aanaaanaaannas 394
15.4. Paralle] Safely ...ccuniieeiiiiii et e e e et a e e e 395
L0 BTN 7Y Ve Bai o N s] o= 1 o) o N 397
16. PostgreSQL Installation from Source Codec.ueiiuniiiiiiiiiiieii e e e e e e e ees 398
LI S o) o Y=Y =3 o) PR 398
16.2. REQUITEIMEIIES ..uiininiiiiiiiiii ettt e e e e e e et et e e et et e e e s et sn e etssasnesetasneanennens 398
16.3. GettiNg The SOUTCEccvniiieiiieii ettt e et e et e et e e e e ea e et eaae e e eenn e st aesnaaannns 400

PostgreSQL 9.6.23 Documentation

17.

18.

19.

20.

21.

22.

16.4. Installation PTOCEAUTEccuuiiiiiiiie et e et e et e et e e e et e et e e s e et e eaneeanasenns 400
16.5. Post-INStallation SELUD ...ccvniiiiiiii et e e e e e e et e e e aaaaas 411
16.6. Getting StArtedccenniiiiiii e e e et e et e e e e et e et e e ra e e e et et e aaaaaanas 412
16.7. WHRAt NOW? ittt ittt ettt e et e et e e et e ettt e e et s e eta s eeta s eatueeeaannseetaneeenanaeeen 413
(SIS TS0 o] oo} i w=To B d K= o) o 00 TNt 413
16.9. Platform-SpecCific NOLESiieiiiiiiieie e e et e et e e e e et e e e e raneeaanees 414
Installation from Source Code 0n WINAOWSccuiiiiniiiiiiiiiiiie e e e e e e e e aens 422
17.1. Building with Visual C++ or the Microsoft Windows SDKcc.ccoeiiiiiiiiiiiiiiiiieeieeeenns 422
17.2. Building libpg with Visual C++ or Borland CH+4cooiiiiiiiiiiiieeeee e 426
Server Setup and OPETrationcoiuiiiiiiiiiiii e e et e et e et e e re e et e eaeraeaeaanas 428
18.1. The PostgreSQL USET ACCOUNLc.uiiiuiiiiiiiieiiie et et e e e te e e e et e et e e e s eeaaeeanaaannas 428
18.2. Creating a Database ClUSLETiiiiiiiiii et e e e e e e eaaaea 428
18.3. Starting the Database SETIVET ... et e e e e 429
18.4. Managing Kernel RESOUICESciiuiiiiiiiiiieeie et ee et e e e e e e e s e et e e e e e e esaneeannes 432
18.5. Shutting DOWN the SETVETcinniiiiii et e e e e e e e et e e ae e e e aanaas 441
18.6. Upgrading a PostgreSQL CIUSEETc.uiiiiiiiiee et e e e e e e aeeaanas 441
18.7. Preventing Server SPOOTIINIG ...ccuuiiiiiiiiiiiieiie et e e et e e et e e a e e e e e e eaaeeaans 444
RS TS T 280 Lol oy 74 0w 10} A B0 o] o) s 1~ SN 444
18.9. Secure TCP/IP Connections wWith SSL ..o e 445
18.10. Secure TCP/IP Connections with SSH Tunnelsccccoeiiiiiiiiiiiiiiin e, 448
18.11. Registering Event Log 0N WINAOWSceiuiiiiiiiiiiiiiie et e ea e e e e e eaeeaens 449
STy A=) ol O a N (o 1B b= 1 w10) o NP 450
19.1. Setting ParamELerSiuniiniiiiiiiiiii ettt et e e e e e et et ean s et et eaneeneeeaansanaranns 450
(S I 1 1T I Yok 1 (o) s 1= Nt 453
19.3. Connections and Authenticationccoeviiiiiiii i e 454
19.4. ResSoUIrCe CONSUIMPEIOTL tuuivuiiiiiiiiiitie it e ie e et et e te et et et e et et sanesaeesnsaneeneenneenesnesnnseneens 458
(S IR T A L AN 1Y o B o Yo RPNt 465
S I T A U= o) T ok=1 L) o P 470
RS A @10 1Y oy v o F 1 a1 o o PR 474
19.8. Error Reporting and LOGQingcccuoeiieiiiiiiiieiiie et e et e et e et e ere e s e et e ean e e s eannas 479
19.9. RUN-EIME STATISTICS Luvniiiiiiiie it e et e e e e e e ee et e e e eaeenaanaens 488
19.10. AULOMAtIC VACUUINIIIG t.uivniiniiiiiiieie e e e et e te e et e e e et et e e et et eaneeneaaneanasnesnneeneens 489
19.11. Client Connection Defaultsccocuiiiiiiiiiiii e e e e e eans 491
RS IR D2 o o LY. K- N = Vo 1= 00 =Y o N 498
19.13. Version and Platform Compatibilitycccceiiiiiiiiiiiiiiii e e 499
RS TR0 7 5 oo 3 ol = o 1 o o P 501
IR B TR o Y S A) o] o) o - S PPN 502
19.16. CuStOmMIZEd OPLIONIS ..vvniiiiiiiieiee et e et e e et e et e e e e et e st e eaneeessnnesanaennnns 503
19.17. DEVEIOPET OPEIONIS ..ivuniiiiiiiiie ettt e e e et e et e e e e et e et e et e st esanesanaesnesenessnaernneeen 503
RS IR R T o o) it A0) o] T) o TSNt 506
Client AUthentiCationcoouniiiii e e et e e e et e et e e e et e et e eaneannaas 507
20.1. The pg_hba.Cont FIle .o et ens 507
A O U E=T=) ol A K= 0 L=\ K=) o 1 513
20.3. Authentication MethOdscoouiiiiiiii et e 514
20.4. Authentication PTODLEIMScoouiiiiiiii ettt ea e 521
Database ROLES ...t ettt et e et et et e e eees 523
21.1. DAtabase ROLES ... oottt et eeas 523
21.2. ROLE ATETIDULES ..ottt et et e e e eaa e 524
21.3. ROIE MEMDETISIID ..ot e e e e et et e e et et e ee st e e e eanees 525
W2 I B) o] o) 01 ha Yo N 2V0) 1= T SRR 526
21.5. Default ROIES ...ttt et e e et e e 527
21.6. FUNCEION SECUTILY ..tuuiiniiiiiiiiiiei ettt et ettt et et et et e e s et et sansaae et eaneannens 527
Managing Dat@bhaSEScuuiiiuiiiiiiiiiiiiie et e e e e et a et e e aanns 528
22,1, OVETVIEW .ottt ettt et e et e et e e et et ea e e et e e et e eeta e eebneeeeaeeeaans 528
22.2. Creating @ Databaseccouiiiiiiiiiie et e e e e et e e e 528
22.3. Template Dat@bhasesccuiiuiiiiiiiiiee et e et a e 529
22.4. Database Configurationccviiiiiiiiiii e et e et e e e e e e e e eanas 530
22.5. Destroying @ Databaseccouiiiiiiiiiie e e e e aans 530

vi

PostgreSQL 9.6.23 Documentation

B T =Y o] (=T o ¥ Yo - RNt 531
PG T o Tof=1 b2 n o) « HE PR UTRNN 533
P26 0 B o Yo 1 LSRR 10} o) 10) o PRSPt 533

PG TV OFo) 1 - 1w Lo} a T AU 1 o] o Yo o AU 535
23.3. Character St SUPPOTTuiiiiiieiie ettt et e e e e et e et e e s e eaeeaneernenes 537
24. Routine Database Maintenance TasKScveiuuiiiiiiiiiiieriie ettt eae e e 544
P O A oY b s L= Yot R0 1 T RN 544
24.2. Routine ReINAEXING ...ocuniiiiiiiiiiiiieiie et e e et e et e et e e te e e e et e eaneeanasenns 551
24.3. Log File MaiNtENANCEccvuiiiniiieiieeie et e e et e et e et e e e et e et e e s e st esaneeanaeenneeens 551
PRSI S T-Tod i« V] o J= Vo Lo B TS o) o RPN 553
25.1. SQL DUIND tttuttiiiitiiiiet ettt ettt ettt et e et s e et s e ett s e eta e e et s ettan e eetaneeabaeeetnnsaeranaeanaans 553
25.2. File System Level BACKUDoivuiiiiii et e e e e e et e e e aan s 555
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccccovviiiiiiiiiiiieiie e, 556
26. High Availability, Load Balancing, and Replicationcccoeiiiiiiiiiiiiiiin e, 567
26.1. Comparison of Different SOIULIONScceuniiiiiiiiii e 567
26.2. Log-Shipping Standby SEIVETSc..oiiiiiiiiii e et e et et e e e et e eaaeannas 570
26.3. FAIlOVET ..ttt ettt e e et e e e e et et et b e et e et e aba e 577
26.4. Alternative Method for Log Shippingccceeiiiiiiiiiiie e 578

A TSI 5 o) = a Lo I o 7Nt 580
27. Recovery ConfigUTationccouiiiiiiiiiiii et e e et e e e et e e e e et e et e e aae e s eennaaenns 587
27.1. Archive ReCOVETY SELEINQS .uuiiiniiiiiiiieiiie e et e et e e e et e et e et e e e eaaeaaenas 587
27.2. Recovery Target SEtEINgS ..ottt e ee e e e e e ans 588
27.3. Standby Server SEttINgScccoeiiiiiiiiiiiie et e e e e e aans 589
28. Monitoring Database ACEIVILYccuuiiiiiiiiiiii e e e e e e e et e e ae e e e eaans 591
28.1. Standard Unix TOOLSiiiiiiiiiiiiiii e et ettt e e et e et s e et e e et e eeaa e 591
28.2. The StatistiCS COllECTOT ...iiiuiiiiii et e et et e e e e eeeas 592

P TG T4 T=A 04 b o O o Yo |« J S 612
28.4. ProgressS REPOTTIIIQ c.uiuuiiiiiiiiiieii ettt ettt et e ee et et e et e et et e an et eeneanseaaaensansannns 613

PAS TS TN D)2 0 b=V o N (o I o= Lok 1 1o AP 614
29. Monitoring DiSK USAGE ...cuuiiiuiiiiiiieiiie et e e et e e e e et e et e st e et e et esanesanaeanasnesenaannnns 624
29.1. Determining DiSK USAQE c.uuiiuniiiniiiiiiiiieiiieiiie et e et e et e et e et e eae e st e st e saaeeanesanaernaannnns 624
29.2. DiSK FUll FAIIUTE ...uuiiiiiiiiiiii ettt e et e e et e et s e et e e eei e eeaan e 625
30. Reliability and the Write-Ahead LOgcouoiieiiiiiiiee et e e e e e e e eaans 626
0.1, REHADIIEY ceuutieiiieiiie et ettt ettt e et e e et e e et s e et s e et e e ebaeeanaaees 626
30.2. Write-Ahead Logging (WAL) ...ccouiiiiiiieii et e et et e e e e et e e e e st e et e eaeeanesenaannnas 627
30.3. AsSynchronous COMIMILeiiuiiiiiii e e e e e et e et e e e e et e saneeaneeaeeennesanaeannns 628
G0 S VAVZAN IR @) a Vi o 10 Niar=1 10) o NSNS 629
30.5. WAL INEEITNIALS ...iiiiiiiiiiiiie ettt et e e et e et e e et e e et s e et s eetaeeaeaneeennn e 632
G =T] (o) o B KT LU UPRP 633
31.1. RUNNING The TeSES ciuniiiiiiiiiie e e e e e et e et e et e et e e e e saesanaernaesnnaeen 633
31.2. TeSt EValUATION .uuuiiiiiiiii et ettt et e et e e et e et e e eai e eeas 635
31.3. Variant CompariSONn FileSccuiiiiiiiiiiii et e e e e e et e e e e aana s 637
O Y S LT SO PTPRPRY 638
31.5. Test Coverage ExXaminationcocviiiiiiiiiiiiiiiiiin et eae e e e e e e e e aanas 638

IV, CLIENE INEETTACES ..uniiiiiiiiiee ettt e et e et e et s e e ta e e et s e eaan s e et s eatneaanannns 640
YA N1 0] oo B O BN 1 o) -) o7 641
32.1. Database Connection Control FUNCEIONScc.oviiiiiiiiiiiiiiiiiie et 641
32.2. Connection Status FUNCLIONScouuiiiiiiiiiii e e e 651
32.3. Command Execution FUNCLIONSccoiuiiiiiiiiiiii e ee e 656
32.4. Asynchronous Command PrOCESSINGccuuiiuniiinieiiieiiieiie et et et e et eeteereeeeeraesaneeaneeens 669
32.5. Retrieving Query Results ROW-BY-ROWcoiuiiiiiiiiiiiii et eaaas 673
32.6. Canceling QUETIES IN PrOQgTESS ..ccuuiiiiiiiieiiieeiie e et et ieee e et e et e ete e s e st e st eernaeaeaaranaeannees 673
32.7. The Fast-Path INTETTACEccieiuiiiiiiiii ettt e eee s 674
32.8. Asynchronous NOtIfiCAtioncccouiiiiiiiiiii e e e e 675
32.9. Functions Associated with the copy Commandoooeuiiiiiiiiiiiiiiiii e, 676
32.10. CONtrol FUNCEIONS ...ouuiiiiiiiiiee e ettt et e et e e et e eebeeeena e 680
32.11. Miscellaneous FUNCLIONSiiiiiiiiiiiii ettt e e e 681
32.12. NOTICE PIrOCESSINIQ ..euuiiniiiiiiiiii ittt et e et e e s e et et e e e et e e e e eansaneananneens 683

vii

PostgreSQL 9.6.23 Documentation

33.

34.

35.

G 170 G TR T C) o L 7451 <) 1 0 PP 684
32.14. Environment Variables ... 690
32.15. The PasSWOTA File ..ottt e e e e ee e e aeans 691
32.16. The Connection Service File ... 692
32.17. LDAP Lookup of Connection Parameterscccocueiiiiiiiiiiiieiiiecie e eeieeve e e e e 692
G 1 I TS 1] I 1) 0 o 10) ol PP 693
32.19. Behavior in Threaded Programsccccuiiiiiiiiieiieiii e e et et eete e e e e et e eaeeaeesannees 696
32.20. Building libpg PTrOQTaIMScouiiiiiiiiiii ettt et e et e et e et e et e et e e e e saesnneeaanaees 697
ICY ARV W =5 & 110 o] (ST o0 o Yo 1 =Y 4 =S 698
I o (SR @] o) =Y ol PNt 708
1C 76 70 IR ' m /o Yo A1 (o] o) o RSN U TSP TP 708
33.2. Implementation FEAtUTIESccoouiiiiiiiiiie e e e e et e e e e e e a e e e e eens 708
I 706 T O3 1Y o | Al B 0} M=) o =Y oL 1= ST OO U OTPUPPURt 708
33.4. Server-side FUNCLIONSoooiiiii ettt e e e e et e eans 712
T TSI 5= 100} o] (T 0 oo i< 11 s NPT 713
ECPG - Embedded SQL QN € ..o e et e e e e e e e e e e e ens 718
O R N s L= O o) s o] o) AP 718
34.2. Managing Database CONNECLIONScccuiiiiiiiiii e et e e e e eaaas 718
34.3. Running SQL COMIMANAS ...ccuuiiuniiiieiiieeiieeiiee et eete et et eeteeteaettaestestaaeraaesnesenassnassnaesnnaes 721
34.4. Using HOSt Variablescouiiiiiiiii e et e et e e et e ea e aens 723
7 S T B 2 s o 4 1 (o 1 ©) PN 735
G T o Yo 1 74 o Y=Y IR o) -) ANt 737
34.7. USING DESCTIPEOT ATEAS ..euiiniiiiiiiiiiieiie ettt te et e et e et e et et et e e aaneaneanaaeneanaennenns 748
G4 08 TR 5 ol) lll & = 1 o 1 o o 1Nt 760
34.9. PreproCeSSOT DITECTIVESiiuiiiiiiiii e e e e e e te e e et e e e et eaneane e ennaans 766
34.10. Processing Embedded SQL Programsccccuuiiiniiiieeiieeiieeeieeteeieeieeaeeaneeenneenneesnneens 767
G 000 I U 5 o) = 0 0 T) o T P 768
N I IR oo (=B @) o [T o1 =Nt 769
CY: 0 S TR OF TE V.Y o)] § of 1 (o) s 1= NNt 770
34.14. Embedded SQL COMINATIIAS t.iuiuiiinininiitiinineet ettt ettt eneaeae et easasteenensasteenensaseaenens 774
34.15. Informix Compatibility MOAeivuniiiiiiiei e e e e s 795
O 0 S T 11 =Y o = 1 =S O OO 808
The INformation SCREIMIAoouiiiiii ettt e e e et e e e eeeaeanas 810
35.1. THE SCREIMIA ..coniiniiiiie ettt et e e e e e et e it e e e et et e e e et aaneanes 810
1S T B L= 1 = B 74 o 1= TP 810
35.3. information_schema_ Catalog_INAME .iveiriuieeenenireeeenenerereeeneseserernesesesarenesereraenesesersenenees 811
35.4. administrable_role_aUthOriZations civiiiiiiieiieiiiieieitereierernereerernerereenererernerereenernenns 811
I N T o) N I N oY R oo B K=Y R U 811
G 1o TS JE= T o ol B <10 ot = Y= S PPN 811
L T el R o ey ot = o= 1= == TR 814
35.8. check _constraint _ rOULINe _TSAGE tiiiiiriiiiierereiereeterereeterererternerarnernesaererneraeresnesneneees 815
R 1o R BelsT=Ye) Sl ole) s TR okl B o} of= NUTUR TP 816
1o I N TN B RN o Ko o = T 816
35.11. collation_character_set_appPliCability iiiviiiriiiiieiiiiiieieinereenerereenerereenererernernens 817
35,12, COlUMN_AOMAIN USAGE titttuiietieneteternetneteeneteteenernerernesesesnesesesnesesesnesnesessesesessessesesseses 817
G 15 701 NS TR TR R (1} o o) o) o Ko} o F= HN S PO 817
1o T TG T R Rt i oW o F o A R =Y == RO USRS 818
3.1, COLUMN Ut TS AT itnttetueinireeneenereenernereterneraesesnesesesnesnssestesnesessesnesnesesnesnssesnesneseenesnesnses 818
G 1o T K S T TR AT 11 =TT 819
35.17. CONSETAIiNt_ COLUMN_USETE ttitniutrtirnienrrtrneenenernerenernerenernernesernerererneresersererernerernenernees 823
T T RS TNCT oYl b =0 B ok ol of=1 o K= L= 7-Y 1= S U O U U PR 823
G 1o TN e BG R T o 14 o TSN o o v T =Y 1Y SO UTPPt 824
R IV (e 1o} (o B s M oL} s U R ol =1 5 o} o= P 825
1IN G 1S« FoR B oW Te ol L E=T-Ye = S OO 825
1 I e o) = o U= ST 826
G 1o T AC TR N =Y =Y o R ol o < 1= 1 R PPN 828
S I Y ST SN Yo B e NN =Y RO T TP 830

viii

PostgreSQL 9.6.23 Documentation

35.25. foreign_data WraP P el 0Pt iONS tiriiiiiiiiit ittt ettt eteeeneneaerrnesereraeneseserarneneserarnns 831
T I] T e =5 Ko s o lie =N ot=Nl 5 oY o) 1= of - NN U OO 831
TSIV o3 =5 Ko b o M=1=F o va=$ ol o) o ik o) o 1= U 831
TSRS T e o=k Ko 1 M1 b o V2= F o< RO PR 832
TS IAS BB o3 =5 Ko s ol o1 ol K= o) o hull Ko} o 1= SN PR 832
TS IRCT O oS =R e oo W o= 1 < 1 K=Y R U U T 833
35,3 L. Ky COLUMN_ USATE tetutuitneinrrernerneraenerneresernesetesnesnssassesnssessesnssessesnssassesnesnssesnesnssessesnesnses 833
T IR Y o B o=t 1Y =S of = S 834
35.33. referential COMSEIAINES tiiiiiiiiiiieiierteieeieetetneeteetaetneeteetaetnereestassnssnassasrnssnessessassnesnnns 836
35.34. £01E _COLUMN_GIANES ttttetutrnereenernesernerneressernesassesnesssesnesassessesassessesassessesesessesseseesessesnenns 837
Ko TC 1o TR Y R =Y YoYU o [T e b ar= ¥ ok ot - RO P PPN 837
T IR ST ot N oY =0 o B =i £ =% o} ot = E OSSP 838
C TS IRC WA T R RN Bl Ll b o= 0 o} of - RO RUUUUURROt 839
CTo TGS T ot N =Y DE=ToYe (= ie £ ol=% o} of - NN 839
T IRCTS IR oY ERul B o= Y o T ok v 1 =Y 1= Y= RN 840
G R L B oYY ol B o Y=F = RPNt 840
K F S T N oy o= = o= N PRRN 845
1 R R T=Ye T=3 s Yo L= T R U 846
T I 3 =T o B =T} b b oy =Y - R U 847
35.44. sql_implementation_dMFO wiiiiiiiieiiiieieieieet ettt eieeteteete et et eteatea ettt eaaateraeaaetaaeraaraanean 847
1T 3 T =T B IE=Y o Ve 1 Y 1Y = S 848
T I ST N oF- Vo) =T 1= R 849
G Jo I =T B B o T= o o - R U OO POt 849
TSR 2 BT =B T I o U N 849
T I SS = Yo R RENCR - B ol fl o b are b 1 K = 1= RO PSPPSR 850
G Teo 1 R =t N =N oTo) o F=1 o ar=1: 1 o} ot - O RRPTPTRRRt 850
CT TSN R =0 o B ST oF o v I =Y 1= Y= R U 851
G 1 T e Y =Y N Y= T PP 851
1o THo 16 TR b oo} o U= e b 11 1= J N 852
35.54. triggered _UPdat e _COLUMNS .iiiiiieeeenereenernereenerneseenernesessesnesessesnesaesersesseresnesseseesesseneenns 853
G TS TS TS TR o o e T 1= ol HUR PN 853
TSNS 16 FRT e A il o3 ok AV R =Ye 1= Y- U T PPN 855
I N VAR E-FYo T <% o RV B K=Y 1= Y- O U U OO 855
C T INS Y TR DE-T-V allie (=% sk o T=To N w74 o 1= Y= RPN 856
KIS 1S MRTE-T-S ol (=Y o) il o le fle) o) ol Kol o k= NPT PPt 857
T N SO E=T= ol () o) 1 o e 1= S PR 858
3.0], VieW _COLUMN_USEGE ttuirttntrnerernernerernerneserneresesnesnesesnesnssessesnesessesnesessesnesaesesnesnesessesnesesnees 858
G T T O YR T oS L e YR uli B s Y= DR Y £ SR 859
T I IS TR v K=Y o= o B = L E= Y=Y = S 859
G TN O 4 =L = RN 860
AV T=) a72=Y alll o oo 1= N a1 011 o Lo E PRt 861
GO o ¢ X=Y o b o To 1 O IR PR 862
36.1. How ExXtensibility WOTKScouuiiiiiiiiiiiie et et e e e et e e et e e e e e e aane s 862
36.2. The PostgreSQL TYPe SYSLEIM ...cuuiiiiiiiiiii e et et e et e e e e e eans 862
36.3. User-defined FUNCEIONSoiivuiiiieiiiiieiiiiie st e e e et e e et e e eae e e aaaeseaaeeaernneeees 863
36.4. Query Language (SQL) FUNCLIONScvuiiniiiiiiii ettt e e e e eanas 864
36.5. FUNCtion OVETIOAdiNgccvuniiiniiiiiiie et e e e e ae e e st e e ae e s e st e et eeaanas 876
36.6. Function Volatility Cat@goTiesciuuiiiiiiiiiiiiiii e e et e e et e e e e 877
36.7. Procedural Language FUNCLIONScooiiiiiiiiiiiiie e e e eaans 878
36.8. Internal FUNCEIONS ...c.uuiiiiiiiiiiin it e et e e et e e et e e et e e et e e et eesennsaasnnsansnnsensnnaees 878
36.9. C-Language FUNCEIONSciuiiiiiii et et e e e et et e e et et e e e eanannns 879
36.10. User-defined AQQregates ...t e e et e et e e et e e e a e e eas 900
36.11. USEr-defiNEd TYPES couneinniiiiiiieiiieeiiee et e et e e et e et e e e et e e ae e et e st e saeeraaesaesrneaanns 906
36.12. User-defined OPeTatorsccuiiiiii it eete et et e et e e ae e e e st e st e eaaeannns 910
36.13. Operator Optimization INfOrmationc.coeiiiiiiiiiiiii e 911
36.14. Interfacing Extensions To INAEXEScooviiiiiiiiiiiiieiie e e eaas 914

ix

PostgreSQL 9.6.23 Documentation

37.

38.

39.

40.

41.

42.

43.

44.

36.15. Packaging Related Objects into an EXtensioncccceeeiiiiiiiiiiiiiiii e, 926
36.16. Extension Building INfrastruCtureooiiiiiiiiiiiiie e eaas 933
B L 10 =) oS TPPR 936
37.1. Overview of Trigger Behaviorc..ceiiiiiiiiii et e e e e e e eens 936
37.2. Visibility of Data CRANQEScoiuuiiiiiiiiieiiie et e e e et e et e e ae e e e eaaaeanns 938
37.3. Writing Trigger FUNCEIONS 1IN €iiiiiiiiiiieie ettt e e e et e e e e e eans 939
37.4. A Complete Trigger EXAMPLEcovniiiiiiiiiiiiei et e e e e e e e e et e e e eaens 941
| vy L 5 0 o [0 [=) S PPN 945
38.1. Overview of Event Trigger BEhaviorc.ccuviiiiiiiiiiiiie e e 945
38.2. Event Trigger FiliNg MatTiXcccciiiiiiiiiiiie et et et ete et e ee et easeae et eansaneennaes 946
38.3. Writing Event Trigger FUnctions in Cccciiiiiiiiiiiiiiiine et ev e e e e 950
38.4. A Complete Event Trigger EXampleooouiiiiiiiiiiiie e e et e e e e e eees 951
38.5. A Table Rewrite Event Trigger EXamplecooveiiiiiiiiiiie e e e eees 952
B oI A oI 1 1= oo TNt 953
39.1. The QUETY TIEE ..ouiieiiiiiiieiiie ettt e et e e et e e te e et e et e et e st eetnaetnaetnnesenasanaeanaaennasennns 953
39.2. Views and the Rule SYStEIMccouiiiniiiiiii et e e e e e e eees 954
39.3. MaAterialiZed VIEWS ...ciuiiiiiiiiiiie ettt et e et e e et e et e et e et e et e e e e saneeeneeanearnnaeen 961
39.4. Rules on INSERT, UPDATE, QN0 DELETE .ectuuttttuuttttuueeeeunaeetuneettuneeeeuneeeennaeesneetmnneeenneeeennees 963
39.5. Rules and PriVIEgesccuuiiiiiiiiiiiii et et et e et e et et e e e e e aaans 972
39.6. Rules and Command SEAtUSccouuiiiiiiiiii ettt 974
39.7. RULES VETSUS TIIGGETS teuuiiuniiiniiiiiiieeiee e eiieeteette e et e ete et eetneetneaanstenseanssenaeenneesnsernaesnnns 975
Procedural LanQUagESc.ueiiuiiiiiiieeiee e iieeeie et et e et e et e et e et e et et stnnsstnsetneatneennseansenneennns 977
40.1. Installing Procedural LanguUagEsScccuuiiuuieiueriiieiieiieeiieetieeeieeineetneeenneenneeeneesnessnassnnees 977
PL/pgSQL - SQL Procedural LangUagec.oeeeuuuieeiuieiii ittt ettt eei e eeieeeeaans 979
1.0 OVETVIEW «ettiiiitieeiii ettt ettt ettt ettt e et ettt e e eea e et eaa e e etaa e eeta e e ean e eeana e etanaeeetaneeetanaeenannns 979
41.2. Structure of PL/PGSQL ..ttt et e et e e te et e et e et e et e eaeeaneaaneeanaaeanes 980
41.3. DECIATATIONS ...uiiniieiiie ittt ettt ettt e et e e et e e et e e et e e eaa e eea e eeaans 981
R ' 0} =113 10) o 1= NN 986
41.5. BaSIC STAtEIMEIILS ..couiiiiii i ettt e e e enes 987
41.6. CONLIOl SITUCTUTESciiiiiiie ettt et e e e e eaa e 994
1.7, CUTSOTS ..ttt ettt ettt ettt e et e et e et s et e tn e taa e taa e ean e eaneeanaeeaa s atnseanaeenaeeeneaneannennns 1006
2 S T o) = 0 Lo B (TS T £ 1011
2/ S T b o T o £l 2 0 Yol =T LU ol Y- SN 1013
41.10. PL/pgSQL Under the HOOAcouiiiiiiiiiieie et et et e e et e e ee e e e e e eans 1020
41.11. Tips for Developing in PL/PGSQL ...ouniiiiiiiiiiieee et e e e e et e ea e e e eees 1023
41.12. Porting from Oracle PL/SQLcoiiiiiiiiiiiiiieeiie et e e e et e e e e e e aae e s aeaaaas 1026
PL/Tcl - Tcl Procedural LanguUagecccuuieiuiiiiiiiiie ettt ettt e e e et e e eeaeeeens 1035
2.1, OVETVIEW ..ttt ettt ettt ettt e e et e e et e e et e e tta e e taa e e taa e etaa e etba e eena e eeanaseetnaeeeennns 1035
42.2. PL/Tcl Functions and ATQUITIENITSoiiuuiiiiiieiiee ittt ettt ettt e et e eeieeeee 1035
42.3. Data Values In PLITCLo.u et ettt 1036
42.4. Global Data in PL/TCL ...ttt et et e e e e 1036
42.5. Database Access from PL/TCLcouuiiiiiiiii et 1037
42.6. Trigger Procedures in PL/TCl ... et 1039
42.7. Event Trigger Procedures in PL/TCl ... 1041
42.8. Error Handling in PL/TCL ...ttt 1041
42.9. Modules and the unknown COMMANAccuuiiiniiiiiiiiniiiieie et eei e et eaieeaieeaineas 1042
42.10. TCl ProCedure INAINEScccuuiiiimiieiiie ettt et e et e et e e et e e eebeereneeeanaees 1042
PL/Perl - Perl Procedural LAnQUAGgEcccuiiuniiiriiniineiieeieeteeiineeieete et eeineeinsenaneenneenneennns 1043
43.1. PL/Per]l Functions and ATGUIMENTSc.uviiiiiiiiiiiiiiieiiieiie it eve e e e ea e enieeeans 1043
43.2. Data Values In PL/PETLcoouiiiiiie e ettt e e e e e 1046
43.3. BUilt-Iin FUNCEIONS ..oiiiiiiiiii ettt e et et e een e 1047
43.4. Global Values in PL/PETLoiiiiiiii ettt et e 1051
43.5. Trusted and Untrusted PL/Per] ... e 1051
43.6. PL/PETL TTIGUETS ouuiiiniiiiieieeiieeiieete ettt et s et e et et setns et et eatnsatnsasnsetnnesnnsasnsesnsesnnsenns 1052
43.7. PL/Per] EVENt TTIQQETS ouuiiuiiiiiiiiiie ittt et et et ei e ete et e et e et s etseaaeainseaneaanaaannaas 1054
43.8. PL/Per]l Under the HOOQccouniiiii ettt 1054
PL/Python - Python Procedural Languagecccveiiviiiiiiiiiiiiriin et ei e evie e e eaine e 1056
44.1. Python 2 vs. PYLhon 3 ...t e e et e e e e e e 1056

PostgreSQL 9.6.23 Documentation

44.2. PL/PYthon FUNCLIONS ...civniiiiieie sttt e e et e e e e et e e ae e et e et e et e eaaeeenaees 1057
44.3. DAtA VAIUES ...iiiiieiieeiie ettt ettt e et e et e aa e eanas 1058
L S =Y oo o J D - - N 1062
44.5. AnNonymous Code BIOCKSccuuiiiiiiiiiiiiie ettt e et e e e e et e e a e e e eas 1062
44.6. TTIgQET FUNCEIONS ...ttt ettt et et et et e et e e e e e et et eaneeaaanaenaeanns 1063
4.7, DAtADASE ACCESS ..uuiiiuniiiiiieiie ettt ettt et e et ettt e et e et e et e et e ta e aa e eaiaees 1063

44 .8. EXplicit SUDLTANSACTIONS ...vveiiiiiiiiei e e et e e e e et e e e e e e eaaeeaanas 1067
44,9, UtIlity FUNCEIONS ..oeniiiiiiii et e et e et e et e et e et e et e st e s e eaneeenaeen 1068
44.10. Environment Variables ... 1069
45. Server Programming INEETTACEcouniiiiiiiii e e e e 1071
45.1. Interface FUNCEIONS ...c.uuiiiiiiiiii ettt et e et e et e e et e e eaa e eaeas 1071
45.2. Interface SUPPOTt FUNCLIONS ...cvuiiiiiii e e e e e 1103
ZSRCTLY (=Y 0 aTo) VN =N a o Yo o3 40 TC) o | AP 1111
45.4. Visibility of Data Changescc.ciiiiiiiiiiiiieie et e et e e et e e e et e e ae e e e e e saaaeees 1120
S TR b ¢V 1]) (YN 1120
46. Background WOTKET PTOCESSESc.uiiiuiiiiiiiiiiiieiee et e ete et e e e et e eae e e eean e st e aanesnnassnaerneees 1124
22 /A o Yo s o= B D 1= Yoo Yo 1T S 1127
47.1. Logical Decoding EXamMPIEScccuiiiuiiiiiiiiiiiiee et e et e e e et e et e e et e e aae e s e saaeannas 1127
47.2. Logical Decoding CONCEPESuiiuiiiiieiiieiii et e e e et e e te e e e et e et e e e e reneeannaes 1129
47.3. Streaming Replication Protocol Interfacec.cooeiiiiiiiiiiiiie e, 1130
47.4. Logical Decoding SQL INterfacecccueiiuiiiiiiiii e e e e 1130
47.5. System Catalogs Related to Logical Decodingccoeevuviiiiiiiiiiiieiiieiie e, 1130
47.6. Logical Decoding Output PIUGINSccooiiiiiiiiiiie et 1131
47.7. Logical Decoding Output WIILETScuuiiiniiiiiii e e e e 1134
47.8. Synchronous Replication Support for Logical Decodingcccceeviiviiiiieiieiinnennnnnnn. 1134
48. Replication Progress TTaCKITIgeiuueiiiiiieiiie et e e e e et e et e ete et e st e et e eaneeranassneeanaeanesnnnns 1135
AV R U)o s o] SO OPOTR PPN 1136
| ST) I 0} a0} 00 T< 1 s Lo - JNUPRN 1137
FN 20)24 OO POPPRUPPRN 1138
ALTER AGGREGATE ..ottt et ettt et e et e e et e e et s e et s e et s e et e e eanneeaannaees 1139
ALTER COLLATION ...ttt ettt e et e et e ettt e e et e e ta e e et e e et e e et eetea s eeaaaseeataeeasaeaannaes 1141
ALTER CONVERSION ...ttt ettt et et et e ettt e e ea e e et s e et s e et e eeaaeeeann s eeannseenaans 1142
ALTER DATABASE .ottt et e et e et e e et s e et s e et e e atan s e et e e et e eesaeaenaaes 1143
ALTER DEFAULT PRIVILEGES ...ttt et ettt e e et e e et e e et s e et e eenae s 1145
ALTER DOMALIN ..ottt ittt ettt ettt e et e e et e e et e e eta e e etan s e et s eatanseasanaeasaeesaaaeesanaaes 1148
ALTER EVENT TRIGGERootiiiiiiiiiii ettt ettt et e et e et e et e e et s e et e eenaeas 1151
ALTER EXTENSTION .ouiiiiiiiiiiieiii ettt et e et e e e tie e et e ettt e e et e e et s e et s ettaeeeaa e eeennseatanseesanns 1152
ALTER FOREIGN DATA WRAPPER ...ttt ettt eae e e e e e 1155
ALTER FOREIGN TABLE ...ttt ettt et e e e et e et e ettt e et e s e et s e et e eebaeeananas 1157
ALTER FUNCTION ...ttt ettt ettt e et e et te e et s e et s e eta e e tea e e et s eetan s eataneeesaeaesnseennns 1162
ALTER GROUP ..ttt ettt et e e et s e et s e et e e eaa e e et e e et e eebaeaananas 1165
ALTER INDEX L.ttt ettt et ettt e et e e et s e et s e et s e et e e eaa s eeban e e et e eesaeaenneeenns 1166
ALTER LANGUAGE ...ttt et ettt e e et s e et s e et s e eateeeaaneeaaanaes 1168
ALTER LARGE OBJECT ...ttt et et ettt e e et e e et s e et e e et e e tai s eeba e e et seataneeeranns 1169
ALTER MATERIALIZED VIEW ...ttt e et s e et s e et s e eai e e eanseenan e 1170
ALTER OPERATOR ..ottt ettt ettt ettt e et e et e et e et s e e et s e etn e e eannseenanaaes 1172
ALTER OPERATOR CLASS oottt ettt ettt e e et e e et s e et s e et e e et e eana s 1174
ALTER OPERATOR FAMILY ..ottt ittt ettt e et e et s e et s e et e e eea s e et s e et s eataneeeeanns 1175
ALTER POLICY ettt s et e e et e e e et e e et s e eta s e att s e aaun e eeaneeesaaeesaaaes 1179
ALTER ROLE .ottt et ettt e et e et e et e e et e e eea e e eaan s eetaseetnaseeenneanens 1180
ALTER RULE ...ttt ettt et e et e e et e e et e e et e e et e eta e e eaan s eatnnseeennes 1183
ALTER SCHEMA L.ttt et e et e e et e e et e e et e e et e e tt s e et e e et e eaaaseesaneeenanns 1184
ALTER SEQUENRCE ...ttt ettt ettt ettt e et e et e et s e e et s e e et s e eaaa s e et s eaann s eataneeesanes 1185
ALTER SERVER ...ttt ettt e et e et e et e e et e e e et s e et s eeta s e etaeesennaaeens 1188
ALTER SYSTEM .ottt ettt e e s e et e ettt e e et s e et s e et e e taneeeanaeesaseeasanaeees 1189
ALTER TABLE .ottt ettt ettt e et e et e et e e et s e et s e etb s e ata s eeaaeeeaaeeanaaees 1191
ALTER TABLESPACE ...ttt ettt et e e e et e et e e et e e et s e et s eeban e eebaeaananas 1202
ALTER TEXT SEARCH CONFIGURATIONcoutiiiiiiiiiiiiiiiieeeiie e et eet e eetiee et seeeie e eeaneeeiaeees 1203

xi

PostgreSQL 9.6.23 Documentation

ALTER TEXT SEARCH DICTIONARY ..ottt ettt e e e 1205
ALTER TEXT SEARCH PARSER ...t 1207
ALTER TEXT SEARCH TEMPLATEcooiiiiiiii ettt et et 1208
ALTER TRIGGER ... ottt ettt et e et et e et e e ee e e e e ennaes 1209
ALTER TYPE ittt ettt e e et e e et et e et e e eaae e e eaa e eenaeees 1210
ALTER USER ...ttt ettt et et e e et e et e e eaae e et e eenaeeeena s 1213
ALTER USER MAPPING ...ttt ettt ettt e e e e e s e e ne e e reaeeeens 1214
ALTER VIEW Lottt ettt ettt et e e e ettt e e et e et e e eaa e e eeaeenaaeeenns 1215
ANALYZE ..ottt ettt ettt e et e e e et et e e 1217
BEGIN oottt ettt et ettt et e e e e e e ea e ean e naas 1219
CHECKPOINT ..ottt ettt ettt s e et e e et e e ta e e eaa e e eaa e eenaeennaeranaeeenanees 1221
(03 10 1 TSP PPRR PP 1222
CLUSTER ...ttt ettt et e et e et e et et e et e s e ean e eenae e eenaeennannen 1223
COMMENT ..ttt ettt et e et e et et ta et ea e e een s eeana e eeaneeennnenes 1225
COMMIT ..ttt ettt ettt e et e et e e et e e eae e e eaa e et eeanaeeanaenens 1229
COMMIT PREPARED ..ottt et ettt et e e e e e e e 1230
(10~ PPN 1231
CREATE ACCESS METHOD ..ottt ettt eean e 1240
CREATE AGGREGATE ...ttt ettt ettt et e et e et e et e e e e e e ran e eenna e 1241
CREATE CAST .ottt ettt ettt e e tea e et e et e eene e eana e rena e eennaees 1248
CREATE COLLATION ..ottt ittt ettt et e et e e et e et e e e e e ena e eena e eena e eanaees 1252
CREATE CONVERSION ...ttt ettt ettt e e et e e e e e e e een e eena s 1254
CREATE DATABASE ..ottt ettt ettt e e et et e et e e e e e e e eanans 1256
CREATE DOMALIN ...ttt ettt ettt ettt et e e e et e e e e et e e e eea e eeaae e eenaeeenaees 1259
CREATE EVENT TRIGGER ...ttt ettt et e e e e 1262
CREATE EXTENSION ..ottt et et et e et e et e e e e ren e eena e 1264
CREATE FOREIGN DATA WRAPPER ...ttt ettt 1267
CREATE FOREIGN TABLE ..ottt et ettt et e e et et e e e e e e eenaeeee 1269
CREATE FUNCTION ..ottt ettt ettt e et e et e e et e e eane e e ean e e rana e e ranneernanees 1272
CREATE GROURP ...ttt ettt e e e et e e e e e ean e e eanes 1280
CREATE INDEX ...ttt ettt ettt e et e et e e et s e eea e e ran e e raneennaeeees 1281
CREATE LANGUAGE ...ttt e e e e e e e e 1287
CREATE MATERIALIZED VIEW ..ottt ettt e e e e 1290
CREATE OPERATOR ...ttt ettt et e e e e e e e e e e e raneeeens 1292
CREATE OPERATOR CLASS ittt ettt ettt e e e et e e e e e 1295
CREATE OPERATOR FAMILY ..ottt ettt e e e e e een e 1298
CREATE POLICY .ottt ettt ettt ettt st e et et e e e e et aa e e eaa e e eaaeeeena e ennns 1299
CREATE ROLE ...ttt ettt e et e et e e e e e e e ren e eeana e 1304
CREATE RULE ...ttt et et ettt e et e et e e e e e e e e ran e eranaees 1308
CREATE SCHEMA ..ttt ettt et e et et e e e et e e e e enneeeanaeeeens 1311
CREATE SEQUENRCEE ...ttt ettt e e et e e e e e e e e ran e eeaneees 1313
CREATE SERVER ...ttt ettt et e e e et e et e e e e e ran e eeana e 1316
CREATE TABLE .ttt ettt et et et e e e et e e eaa e ennaeeenaees 1318
CREATE TABLE AS ittt ettt et e ettt eetae e et et en e eanaees 1332
CREATE TABLESPACE ...ttt ettt e et et e et e e e e e e e eenaes 1335
CREATE TEXT SEARCH CONFIGURATIONitiiiiiiiiiiiiiiie ittt e 1337
CREATE TEXT SEARCH DICTIONARYcouiiiiiiiiiitii ittt et een e 1338
CREATE TEXT SEARCH PARSER ...ttt 1340
CREATE TEXT SEARCH TEMPLATE ..ottt ettt 1342
CREATE TRANSFORM ...ttt ettt ettt e e e e e e e et e e eae e eenaees 1343
CREATE TRIGGER ... ottt ettt ettt e et e et e et e e et e eeneeeena s 1345
CREATE TYPE .ottt ettt e ettt e e e et e e eaa e e eaa s eena e eenaees 1350
CREATE USER ...ttt ettt e e e et e et e et e e e e e e s e eeneeeeeneeeens 1358
CREATE USER MAPPING ..ottt ettt et e e e et e eene e een e eena e 1359
CREATE VIEW ittt ettt ettt et e et e et e e et e e eaa e e tan e eraneeenaeeees 1360
DEALLOGCATE ...ttt ettt ettt e e e e et s e et e et e et e e e e eeenaeeanaenens 1364
DECLARE ...ttt et et e e e e ettt et e e e e e eeaens 1365
DELETE ..ottt ettt ettt et e et e et e et e ettt e et e e e na e en e e eaa e 1368

xii

PostgreSQL 9.6.23 Documentation

DISCARD .ttt ettt e et e et ettt et et et et e e e e ea e eeaas 1371
DO ettt et e et e e e e e e e e rens 1372
DROP ACCESS METHOD ..ottt ettt e e e e e e eees 1373
DROP AGGREGATE ...ttt ettt ettt ettt et e e e e e e e eeaa e eenaees 1374
DROP CA ST ettt ettt ettt ettt e et e et e et et et et ean e e ran e e ran e eenaeees 1376
DROP COLLATTON ...eiiiitiiie ettt ettt et e et e et e et e et e e een e ran e ranaeeennaees 1377
DROP CONVERSION ...ttt ettt et e et e e et e e eaa e e ran e enana e 1378
DROP DATABASE ...ttt et ettt et e e e e e e e ea e eaaaes 1379
DROP DOMALIN ..ottt ettt ettt et e e e et e et et e e et e s eeaa s eenae e eenaeennnnees 1380
DROP EVENT TRIGGER ..ottt ettt ettt e e e e e e e eee 1381
DROP EXTENSION ...ttt ettt e ettt e et et e e et e s e et e e eaa e e raneeraneerannees 1382
DROP FOREIGN DATA WRAPPER ...ttt 1383
DROP FOREIGN TABLE ...ttt et ettt e e e e e e e een e eens 1384
DROP FUNCTION ..ottt ettt e e e e e et et e et e e eaa e e eaa e eenaeennanes 1385
DROP GROUP ...ttt ettt et e e e e et e et e et e e ea e e e eeenens 1386
DROP INDEX ...ttt ettt ettt ettt e et e et e eta e e ta e ean e tana e rana e eenaneennaeeeens 1387
DROP LANGUAGE ...ttt ettt ettt e et e e e e e e eena e eenaees 1388
DROP MATERIALIZED VIEW ...ttt ettt e e e e e e ea e 1389
DROP OPERATOR ...ttt ettt ettt e et et et e et e e eeeeeena e eenas 1390
DROP OPERATOR CLASS ... ittt ettt ettt e e e e e ean e ean e eaaees 1391
DROP OPERATOR FAMILY ..ottt ettt et e et et e e s e ea e e e eeee 1392
DROP OWNED ...ttt ettt et ettt et e et e e et e enn e ran e rana e 1393
DROP POLICY ..ttt ettt ettt e et e et e et et e e et e e et e e e et e eeane e eeaneenaneennans 1394
DROP ROLE ...ttt ettt ettt e et e et s e et e et e s e raa e e ran e ennaeees 1395
DROP RULE ...ttt et ettt et e et ettt e et e e et e e et e e taa e e eaaeeraneennaeees 1396
DROP SCHEMA .ttt ettt ettt e et e e e e et e e e e e e ena e e raneeenens 1397
DROP SEQUENCE ..ottt ettt e e e e e e et e e e rea e e ean e eeaaeeeees 1398
DROP SERVER ...ttt ettt ettt e e et e e et e e taa e e ean e eraaeennaeees 1399
DROP TABLE ...ttt ettt et e et ettt e et et e e et e e et e e e e 1400
DROP TABLESPACE ...ttt ettt et e e et e e et e et et e e e e e s eean e eanees 1401
DROP TEXT SEARCH CONFIGURATION ...ttt ettt 1402
DROP TEXT SEARCH DICTIONARYoiiiiiiiiiiiiie ettt ettt en e eea e 1403
DROP TEXT SEARCH PARSER ...ttt ettt 1404
DROP TEXT SEARCH TEMPLATE ...ttt ettt e e e eenees 1405
DROP TRANSFORM ...ttt ettt et e e et e e e een e e enae e eena s 1406
DROP TRIGGER ..ottt ettt et e e et e e et e e ena e ran e erana e 1407
DROP TYPE ..ttt et e e et e e e et e e e e e e et e e ene e eena e 1408
DROP USER ... ittt ettt et e et e ettt et et e et e et e e e e e ran e eans 1409
DROP USER MAPPINGoouiiiiiiiiiieiie ettt ettt e e et et e et e e e e ennaeeees 1410
DROP VIEW L.ttt ettt et et e et e et e et e e e e ren e e ean e eenneeeens 1411
BN D ettt ettt ettt e e e e e e a e eaaaes 1412
EXECUTE ...ttt ettt et e et e et e et e et e et e e ean s eeaae e eeaneeernnnnan 1413
EXPLAIN Lottt ettt et e et s e et e e et e et e e e taa e e taa e e tn e e nn e e an e eena e 1414
|l N K O RS PPPPRPPRTRPN 1419
GRAIN T e ettt ettt et e et e e et e e et et e e ten e e tan e et e een e e e eena s 1423
IMPORT FOREIGN SCHEMA ...ttt ettt et e e e ean e 1430
N S ERT ettt ettt et e et e et e et et et en et e e e e e e e e eaaaes 1432
LIS T EN ettt ettt et e e et e et e e e e et et e ettt e e ran e rana e 1438
LOAD ettt et ettt et et e e e eens 1439
LOCK ettt ettt ettt ettt et et ettt ra e e e naeees 1440
MOVE et ettt ettt e e e et e et e e e e et et et e e e ean e 1442
INOTTIEY ettt ettt e et e et e e et e e et e e taa e e taa e e et e eena e eanaeranaeeennanees 1444
PREPARE ...t ettt ettt et e e et et e e e e e e e e e e anaes 1446
PREPARE TRANSACTION ..ottt ettt et e e e e e e e e e e ran e eean e 1448
REASSIGN OWINEDiiiiiiiiiii ettt ettt e e e et e et e e eeeeenaa e eenas 1450
REFRESH MATERIALIZED VIEW ..ottt e e e eene e eeen 1451
REINDEX ...ttt ettt ettt e e ettt eae e et e e e e e s e e e e eeaaeeraneeeranneennanees 1453
RELEASE SAVEPOINT ...ttt ettt e et e et e et e e een e e ean e eeenes 1455

xiii

PostgreSQL 9.6.23 Documentation

R A OO 1456
REVIOKE .ottt et e et ettt e e et s e et s e et e e et e e taa s e etaa s e etaaseaannseaanneeeens 1457
ROLLBACK ..ttt ettt ettt ettt e et e et e e et e e eaa e e et e e et e eeta e eean s eeannseetanseeennseaenneaeens 1461
ROLLBACK PREPARED ...ttt ettt ettt ettt e et e e tte e e tas e et s e et s e et e e eaneeasaneaes 1462
ROLLBACK TO SAVEPOINT ...ttt ettt et e et s e et e e et e e ea e e et e e et e eeaaeeeanneeeenns 1463
SAVEPOINT .ottt et et e et e e et e e et e e eaa e e et e e tt e etua e etaneeeennseesansaasaneeenanns 1465
SECURITY LABEL ..ottt ettt e et e et e et e e et e e e et s e et s eettseeataeeeanneeennnaes 1467
SE L T ittt ettt e et e et et e e et et e et et e et e aaa e eb e et e et earanas 1469
SELECT INTIO ittt ettt ettt et e ettt e e et e e et s e et s e et s e et s e abaeeeaaneeataneeasaneaasanaas 1487
1S A PP UUPPION 1489
SET CONSTRAINTS ..ottt ettt ettt et ettt e e et e e et e e et s e et e eaba e eaaa s eeaaaseetaaseaennaeens 1492
SET ROLE ..ottt ettt e e et e e et s e et e e et e e et e e et e e et e e et e etba e eannseeennseeeanns 1493
SET SESSION AUTHORIZATTION ...uuiiiiiiiiiiietie ettt et e e et e e et e et e e et e e et e e et e eeaaeeasaeas 1495
SET TRANSACTTION ..ottt ettt ettt et e et e e et s e et e e et e e et s eaaa s eetan s eetaneeasaneaanaeenans 1497
] = (O 1 RO OPPRROTRTRRt 1500
START TRANSACTION ...ttt et ettt e e et e e et e e et e e et e e ata s eetaa s eeanaseaannseannneeens 1502
TRUNGCATE .ottt ettt ettt e et e e et s e et e e e tu s e etu e e et e e et e etta e etsaeeannserannsaesnnaaes 1503
UNLISTEN ettt ettt ettt et e et e et e et b s e e et e ettt e e eaaa s eetaa s eatanseasanaeaansaeesaseensanaees 1505
L0124 B AN TSP OPPT PPN 1506
VACTUUDM ittt ettt ettt e e et e e et s e et e e et e e aaa e e et s eaban s eatunseenaaeesaaeesanaaes 1510
VALUES .ottt ettt e et ettt e et e et e e et e e et e e et e et e et e et e et e aaa e aaans 1513
I1. PostgreSQL Client APPLiCAtIONSciiuiiiiiiiiii e e e e e e e et e e e et e et e e e e senaaannas 1515
CIUSEETAD ..o et et e et s e et e e et e e et e e ea e e et e eebaeeees 1516
o3 4 == 1 7= Te | o T RPN 1519
(oa =< 1 = = 0 Lo A 1522
CTEALEUSEYT ..eeuiiiiii ittt ettt et et e et e et e et e et e ta e et e ean e aue e et eaa e etaneauaeesneesnsaansearneeansranaenneenes 1524
o By 0o I o J S 1528
(6 By} o] £= 12 o [P 1530
6 By 010 1= 1532
704 o Yo F P PP PRRRN 1534
PG DASEDACKUD ettt e e et aa s 1536
9701 0 1=1 s Vol o U 1542
o Yo J o1} 1V o SO OO PPN 1554
o Yo Je L0 N1 o J OO PPPPR TR 1557
o Yo Je Lbha] o T 1 | K PP PRUTPRRRt 1568
1910 B E] = T- Vo | PO TOPPRPPPPRRPRt 1573
DG TECEIVEXIOQ .uuieiiiieiiiee ittt ettt ettt e et e et e et e e e et s e e et e e eeaa e e eaaa s eataa s eatanseaanneeesnnsaesanaaes 1575
o Yo B A=Toa T4 oTe 1 [o}- 1 TP 1578
DU TESTOTE ..ottt ettt et et e e et et e et et e et e et s et e taaetaasean s aaneeanaeetaetnneenneenneeenns 1581
1910 1 S 1589
1IN0 10 1o): (6 1 o ST 1622
VACTUINIAD ..ottt e e et e et e et e et s e et s e et e e eaa e e eaa e eanaeaes 1625
ITI. PostgreSQL Server APPLCAtIONSciiuiiiiieii et e e et e et e e e ea e et e s e aena s 1629
1811 e | o T OO PPPRRPRt 1630
PG ATCRIVECLEATITD ...iiiiniiiiee ettt e e et e et e e et e e et s e et s e et s e eanneeaens 1634
o Yo et0) a1 o) Ko b= 1 - PSPPSRI 1636
o1 21 RO OP PRSPPI 1637
910 B LR 1=] w4 Lo T OO PP PPPPIN 1642
1910 H A=) o Lo OO OP RO PPR 1645
PG EESE FSYTIC ittt ettt e e et et et e et e e e eaa e 1648
Lo I PCT Al w1 0211 o o S PP UP TR PPRRPRUPRt 1649
o Yo JRVY oTo 1 o= Yo [T OPPRU PRI 1652
joTo Jb:4 oo (o Li N 1 o O OTPPRPPRRPPPRRPNt 1659
|10 1 T SRR 1661
0TS m a0 b) =) PN 1668
VN B § o LY o 1 OO TSRS PPRRRPN 1669
49. Overview of PostgreSQL INternalscccouiiiiiiiiiiii e e e e e e e e e e e eaenas 1670
49.1. The Path Of @ QUETY ..ucvuniiiiiiee et e e e et e et e et e e te e e e et e et e e e eaeneerneseneees 1670

Xiv

PostgreSQL 9.6.23 Documentation

50.

49.2. How Connections are Establishedccooiiiiiiiiiiii e, 1670
78S TRC T N o T =) =T =) Al] = Vo [RN 1671
49.4. The PostgreSQL RuUle SYSLEIM ...ccuuiiiiiiiiiiiee e e e e e e e e eaaas 1672
2/ NS TN T = o 0 o T=Y 4/ @)] 01 =) Ot 1672
e ST o =T o1 b L 10) ol PPN 1673
R NTA TN 1 O 1 7 1 o o £ 1675
o O R 0 k7= 74 1o PPN 1675
IS I oYe fl- Yoo b al=To 1=y ot < SUUT O PSR 1676
S R T Yo = I OO 1678
R S Yo Y 1) < IOt 1679
YOS T oY Y 11 o} ate L AN O 1680
o O ST Yo = N ol o e =3 PPN 1681
S O <Y =L o o o < ot = SO OOt 1681
S OIS T ote R ol o e E RN 1683
oYU Yo RO ol T 111 111 oY= ok SN 1685
YO N O T T =1 O U OO UPTUUURIRt 1685
Y R oY B N = =T RO 1686
151000 B oe i ot e M =} i I) o RO PSP 1689
11O ST oY fiolo) oP=) ol ar= K I o | U 1690
YOI T Yo B oTo) o R 72 Y or =k e s WP 1693
S O BT o Te Hic R =0 o Y= =TSN 1693
1S1O I ST oY fie | T ool N = W=} o ik I oL AR 1695
ST O I VAR Yo fie (=5 = B K - Vo U U U 1695
< T eTe H e 1Y oY=t o PSPPSR 1696
ST 00 R IR oTe i 1=Y-Tok ok K o Jul K} s RN USROS 1697
50,20, DG EIIUI ttttiniiiteit ettt et et et e et e e et e et era et st e s et saerneasteraessteraeresernesnesernernenernernerernernns 1698
15T O J07 R oY HR=N72=F ok ol ob o Ko fo 1= o NUU U UORURNt 1698
ST I T =P o= s Yl e} s NP 1699
SO 2AC TN Yo fi el =R Ko s o ie =N of=TEk 14 o=} o) o 1= 5 NN 1700
1SY VY T oo B eb o=k e b o MR =T a7 =3 OO U O O 1700
SO AS T oTe B e Ral = e oo T oE-1 =S PR 1701
YOI T oY i oL 1= 3 OO 1701
YOIV <Y B B oY o= 3 o K o= R U OSSO 1704
ISYO 22 ST oY M B o B il <% o 2= ST 1704
SO I A B Yo M =S Yo A L= T 1= RPNt 1705
ST ORCTO I oY R IR e 1=Te) o s 1= Toi TN U 1706
STORCH B oTo SR =R e =Yo) oy F=Yox il 1= Yo=Y -1 of - EUUU U TP 1706
S O Y o Te B ot oY= o X Yol = NNt 1707
S VNG TS T oY i) o Lol K= Y= SRR 1707
1S O RCT: T o Yo fil) o 1= T o= Lol e} ST U OO PPN 1708
SO RCTo T o Te He) o b =015 N A AN 1709
S OGS T oo A B R =Y s M= o = SOOI 1709
S ORI oY fl < Yo R B K A PPN 1710
YOG T oY Hl o F e Yo RN TS UURURINt 1710
YOGS o Te H o= oL 1= N 1714
SY O O oYo S o=y o B I Wl Nulk Koy s Mo ok Ko & 1 o NOUUU Rt 1715
o IR N R oY ot =3 & ok Iy ot = S U OO UPTURPINt 1715
O o Te B Yo =Y < YN PPN 1716
ST IR 2C TR oY =Y o Lo 1<) o 1= s Y ANUU PPt 1717
(ST VIR ¥ S Yo =) o Yo [=Y-Tob ok o) ok KoY s NN OO UUPUOTPRINt 1718
S O 3 T Yo B0 ¥ 1= Yol K=Y o 1= AU 1718
ST O XS TR oo =3 o= R i K= o K RO 1719
S VIR A Yo B =1 oY R =T=] o F= Yo L= U 1720
SO 2 ST o Yo B uh =B o Y= et = 1 NPT U ORIt 1721
TOIRZ52 JeTe J ook K e fo 1% PP 1721
ST 10 I e i o T ele) o b s Ko AU O PSR 1723

XV

PostgreSQL 9.6.23 Documentation

51.

52.

53.

54.
55.

56.

SO Y IR oo R - T ele) o b K fl (1=} « JUUUUUU PP 1723
S VRSV oY =T & o) U U U UPTURPNt 1724
S ORISR Yo B =T o T B ot =T=F TRt 1724
SRS T T oo R TR o= 11 o B X o = R OO 1725
S RS Te T T oy < 1= SO UTORURTN 1725
S O RS C I oTe MRCE=T=S ol 1 =1 o) < 18 st ARUUU U USRS 1731
50.57. SYSEEIM VIBWS ..euiiiiiiiiiiiiiie et e et e e e e e e et et et e et e et e s e anasasaneanasnaaenaens 1732
50.58. Pg_available Xt eNSIiONS tiiiiiiiiieiiiiieeieiietettetieteetetetertetetaetesnetastesetaerasneraetaenaraerans 1733
50.59. pg_available exXtenSion. VeI SIOMNS wiiiiiiiiiieiiniriierenerereraenenerererereseeareneneearaeneseaasaenens 1733
S VN STV oY i oTo) o & s Ko ARUT T U TP UUURPPRt 1734
S O N R oY B AU ar=To of - SR 1734
SO CY N oo M i B =Y 1= ol o B o Yo = PP 1735
S O SIS T Yo Al o 10) < I O 1735
S O T oY B B o Yo (o3 3= Y= SO U UPTURPINE 1736
S O TS T oo H Ko Te) 3= R 1736
S O ST oY A (1 R o =) = SN 1739
S O WA <Y H < Yo B I Nk K=Y R U OO PPN 1739
50.68. PG _pPrepared _STALEmMENTS tiiiiiiiiiiiieeietitireeeteeteete et eteeneetetneeneeteteenaaensenesneeeneenssneeens 1740
SN IR oo fl oh el o - Bat=Ye Hb <= o) ok - RN USRS 1741
50.70. pg_replication Origin_ StaAtUs tiviiiiiiiiiiiieiterieeieeeeetert e ernereererneraererneraerernerns 1741
5] OV A oTe I 1) o N I eIk o Moy s M= o) ot = U 1742
YO T <Y B e M = Y= T PPN 1743
o R A T <Y o B =Y SO 1744
S R T Yo 1=l K=Y o Y= N - R O OO TORUOt 1744
A T oTe H ==Y o o o U = SN 1745
YO A T oY =1 oF= Yo Lo} AN O PTT 1747
o R A R <Y = =X = U OO 1748
S O T Yo H o= < 1 =Y PRIt 1750
ST RVAS IR o B v B 1=F Te) s Y= TIE=N o) o o = V- RN PO 1751
50.80. PG L IME Z 0TI _NAIMES ttuitiirirnirerneeneternerneterternetersernetaeserneraeaernereternereserteresernertereenernennees 1751
YO o J R T R L =T =Y U U TURURIRt 1751
YOS Y/ oTe MRPT=T=Salll (=1 o) < i s Lo 1= RPNt 1752
o R = 1 T oY v =) = SO 1752
Frontend/Backend ProtOCOLoouiiiiiiiiiii et e e et e e e e e e e e e e e ean e 1754
o I B 0)74 oy V4T A 1754
51.2. MESSAGE FLOW ..iiiiiiiiiiiiiie et e e e et e et e et e et e et e et e aan s et e et aaneaaaaeannas 1755
51.3. Streaming Replication ProtoColcoiiuiiiiiiiiiiiiii e e 1765
51.4. MeSSAFE DAta THPES tuuiirniiiiiiiiiiiitiiie ettt et et et e et e e te e et s et e et aaneeaneaanearnaananes 1770
51.5. MeSSage FOTINAESuiiiniiiiiiiiiie et e e e e et e et e et e et e et e eanaaannas 1771
51.6. Error and Notice Message FieldsScoiuoviiiiiiiiiiiiiiiiiie et 1784
51.7. Summary of Changes since ProtoCol 2.0cccooiiiiiiiiiiiiiiiii e e 1786
PostgreSQL Coding CONVENETIONSivuniiiiiiiiiiiiie et e e e et e ete e e e et e eaneeaaeeeaeeaneeanaees 1788
1o 2220 IR 10 i 110 = 1 1 s Vo PSR 1788
52.2. Reporting Errors Within the Serverccccoiiiiiiiiiiiii e ee s 1788
52.3. Error Message Style GUIAEciuuiiiiiiiiiiiiiiie ettt e e e e e e e e e aaeeeans 1791
52.4. Miscellaneous Coding CONVENTIONSc..iiiuiiiiiiiiiiieiiie et ei e re e e e e eeeeaaeeeans 1795
Native Language SUPPDOTT ...ttt et et e e te et e et e et e et eetneaaneasneannaeanns 1797
53.1. FOr the TransSlatorccciiiiiii et e et e et e et e e s e e aaa e e s aeanans 1797
53.2. FOr the PrOgramiIMerc.iiiiiiiiiiiiiiiie e ettt e te et e et e et e e tae e et e et e et aenaeaneesnaasneannnns 1799
Writing A Procedural Language Handlerccoouiiiiiiiiiiiiiiii et 1802
Writing A Foreign Data@ WIADPET ...ttt et e et e e et et s e e et e e e e eanas 1805
55.1. Foreign Data Wrapper FUNCEIONScccouiiiiiiiiiiiiie et e e e eae e 1805
55.2. Foreign Data Wrapper Callback ROULINESc.ovivuiiiiiiiiiiiiii e 1805
55.3. Foreign Data Wrapper Helper FUNCEIONScoiiiiiiiiiiiiii e 1816
55.4. Foreign Data Wrapper Query Planningcccccoeeiiiiiiiniiiiiiiiiieee et eevi e eaenas 1817
55.5. Row Locking in Foreign Data WIapPeTScceiiuiiiiiiiiiiiieeiie et eee e et e evie e e e eaneeaees 1819
Writing A Table Sampling Methodoouiiiiiiiii e 1821

XVi

PostgreSQL 9.6.23 Documentation

56.1. Sampling Method Support FUNCLIONSccouiiiniiiiie e 1821
57. Writing A Custom SCan ProVIAETcouuiiiiiiiiiie e e e e et e e e e ea e eaenas 1824
57.1. Creating Custom Scan Pathsc.oiiiiiiiiii e e 1824
57.2. Creating Custom ScCan PIANSccouiiiiiiiiiiiiieeiie e e et e e e et e e ae e e e eaans 1825
57.3. EXecuting CUSEOI SCAIS ...ivuiiniiiiiiiiiiie ettt et e e e ee et e e e e eaeaneaneaaannns 1826
58. GenetiC QUETY OPTIIMUIZET ...cuuiiiiiiiiiiiiii e e e et et e e e e e e eae et eane e anaaneenasnnaeneens 1828
58.1. Query Handling as a Complex Optimization Problemc.cccooviiiiiiiiiiiiiiiiiinieeens 1828

1S IV €15 o T=Y mToVAN Lo £} o 1 00 - TR 1828
58.3. Genetic Query Optimization (GEQO) in PostgreSQLcccceiiiiiiiiiiiiiieceeeeeee e, 1829
58.4. FUIther REAMING ..ccuuiiiiiiiiii et e e e et e et e e e e et e et e eaaesnnesanaennnns 1830
59. Index Access Method Interface Definitioncooviiiiiiiiiiiiiiiiii e, 1831
59.1. Basic API Structure for INAEXESoeiiiuiiiiiiiiiii et eeeaees 1831
59.2. Index Access Method FUNCLIONSciiiuiiiiiiiiiiii e 1833
1SRG T B a Lo 1) i Tot=1 o1 1 o RPN 1837
59.4. Index Locking ConsSiderationscceiueiiiiiiiiiiiieiiie e ee e e e e e e e e e e e eaeeannas 1838
59.5. Index Uniqueness CRECKSccuiiiiiiiiiiie et e e e e et e e ae e e e eaneeaeeesaneenns 1839
59.6. Index Cost Estimation FUNCTIONSc..viiiiiiiiiiiiiiiiiie e 1840
60. GENETIiC WAL RECOTAS ..uuiiiiiiiiiieiiiee ettt ettt et et e et e e et s e et s e et e e ean s eaaaeeenaseeaaanaees 1843
B1. GIST INAEKES ..eiuuiiiieeiiiee ettt ettt et e et e et e e et e e ett s e et s e et e e et e eetaneaabaeeennsaesaneennnns 1845
0 IO 4 L 4 o To L o1 o) o A OO 1845
61.2. BUilt-in OpPerator CLAaSSES ...c.uciiuiiiiiiiiiiee et et ie et et e et e e te e e e et e et e eaeeeaeesanesrnaeenneeens 1845

O G TR 5 Y o 531 31) RN 1845
61.4. IMPLeMENtAtION ...iveiiiiiie et e et e et e et e et e e et e ea e a e et aaaaaaeaan 1854

N T 5= 1101 o] (=T S 1854
2. SP-GIST INAEXES ..evuueiiiieiiie ettt ettt e et et e e et e ettt e e et e e et s eetu e ettuneetsasaetsanaaetaeetsaeeennaes 1855
2/ IO 4 L o Lo L T o1 1 o) o RO PP 1855
62.2. BUilt-in OPerator CLASSES ...c.uiiiuiiiiiiiieieeiii et e et et et e et e et e s e et e et e eaeeeaeesanasrnaesnnaeens 1855
LSV T 05 1Y o 531 1) RN 1855
Y T N 00} 0] L= a =Y a1 =Y) o PN 1861
Y A ST 5= 1111 o] (=T S 1862
3. GIN IIAEKES ..eevuuniiiieeiiieeiie ettt ettt ettt e e et e e et e e et s e et e e et e etaa e etaaeetnnseetnnseetnnseasnnsennnnes 1863
3.1, INETOAUCTION ..eviiiiiiiiiiii ettt e e et e e et e e taa e e et e e et e eabaeeenanns 1863
63.2. BUilt-in OpPerator CLlAaSSES ...c.uciiueiiiiiiiiieeii et e e e et et e eteeete e e e et e et e eaeaeaeeeanaernaesnneenns 1863
LS36 T0C T 05 1Y o 531 031 51 RN 1864
L0 T T B a0} 0] = a =Y a1 =Y) o TS 1866
63.5. GIN TipS @nd TTICKS ..icvuiiiiiiiieiiieiiie e et et et e e e et e e e e st e et e et e ereaaaaneeanaeanaeenns 1867
63.6. LIMITATIONS .oeuniiiiiiiiei ettt et et e et et et e e e ea e e e e enas 1868

(36 O 5 <= 1111 o] (=T S 1868
B4, BRIN INAEXES ..uieiiiiiiiiiiiie ettt ettt e et e e et e et e ettt e e et s e etaa s e eta s eataeseaanneeaanneeetanaeeen 1869
N IO 4 L 0 To L o1 1 o) o A OO PRPTPPRRN 1869
64.2. BUilt-in OPerator CLASSES ...c.uciiuiiiiniiiieieeie et e e e et et e et e e te e e e et e et e eaeeeaenesanaernaesnnasens 1869

O NG T 0 1Y o 531 01) RN 1870
65. Database PhySiCal StOTAQEccuuiiiuiiiiiiiieii et e e e et e et e et e e ae e et e st e eaneeennaees 1874
65.1. Database File LayOulcccuiiiiiiiiiiiie et e e e et e et e e e e s e et e e e e aana s 1874
80,2, TOA ST .ottt ettt et ettt e e et e e et e et e et e et et et e e et e et eeaanas 1876
05.3. FIEE SPACE MAD tiuiiniiiiiiiiiiie ettt ettt et e e e e e et e e et et e e e e aans 1878
65.4. VISIDILIEY MAPD .iitiiiiiiiiiiii et ettt e et e e et e e et e e et e e et e e et e eabaeees 1879
65.5. The Initialization FOTKc.uiiiiiiii ettt e e e e e e e eee 1879
65.6. Database Page LayOulcc.coiiiiiiiiiiii ettt e et et a e aaaas 1879
66. BKI Backend INTETTACEcouuiiiiiiiiiiiiei ettt e e et e e et e et e eeeaees 1883
66.1. BKI File FOTIAL ..ceuuiiiiiieiii ettt ettt e et e et e e e e s e et s e et e eeaanes 1883
66.2. BKI COMIMANAS .uuiitiniiiiieiiie ettt et et e e et e e et e e et e e et e e et e eetan e eetanseenaaeenaeeananaees 1883
66.3. Structure of the Bootstrap BKI Filecccouiiiiiiiiiii e 1884

L O <= 1041 o] (= T 1885
67. How the Planner Uses StatiStiCScviiiuiiiiiiiiiiiiiiiie et 1886
67.1. Row Estimation EXampPLesc.oiiiiiiiiiiiiiiiieeie et et e e e e e e et e e e e s e eaeeanaas 1886
67.2. Planner Statistics and SECUTILYoiiuiiiiiiiiiiic e e 1890

AV 0 N o) 1= oL b (=Y SN 1892

xvii

PostgreSQL 9.6.23 Documentation

A. POSEGTeSQL EXTOT COAES ...uuiiniiiiiiiiiiieeeiee et et e et e et e et eete et e et e st e et eannesanesanasanneannasnns 1893
B. Date/Time SUPPOTTE ..oueiiiiii et et e et et e et et et e et ean et e e aaneaneeneannaeneens 1901
B.1. Date/Time Input INterpretationcoiiiiiiiii i e e e 1901
B.2. Handling of Invalid or Ambiguous Timestampscccceueiiiiiiiiiiiiieiieece e 1902
B.3. Date/Time KEY WOTASc.uiiiniiiiiiieiiie et e et et e et e e ae et e et e et e et eaenesanaeaneaannasennns 1902
B.4. Date/Time Configuration FilesSccoiiiiiiiiiiiie e e e e e e 1903
B.5. POSIX Time Zone SPecCifiCationscc.oeiiiiiiiiiiiiiiiece e e e e e 1905
B.6. HiStOTY Of UTIES coiuniiiiiiiii i e et e e e et e e e et e et e et e aaneaaneeannaes 1906
S TR L TN E= o D - L =Y 1907
(O 0) I =) A 0] oo £ 1909
D. SQOL CONIOTINATICE .euinininininiiei ettt ettt ettt ettt ea ettt eneastetnensastetneneastesensneseteensnennnns 1932
D.1. SUPPOTLEA FEATUTES ...ceuiiiiiiiii et e e e e e et e et et e et e et e e e e st e st e sanaasnnaeen 1933
D.2. Unsupported FEAUTEScc.uiiiuiiiiiiiieiii ettt e et e e et e e te e e e et e et e e e e st e eeneesnneeas 1947
| R =Y (=T = I A o] =SS 1960
E. L. REIEASE 9.6.23 ..ot e et e et e et e et e et e et e et e e e e ea et et et araaaaas 1960
E.2. REIEASE 9.6.22 ..ottt e et e et e et e e e et e et e e et aa et e e araaaaanas 1963
E.3. REIEASE 9.6.21 .ottt et e e et e et e et e et e et e e e e et e et e e e e araaaaaaas 1965
E.4. REIEASE 9.6.20 ...ciiniiiiiiiiiiiie et e e e et et e et e et e e e e et e et e et e et e ea e et e e eaa e aaanas 1969
E.5. REIEASE 9.6.10 .ottt e et e et e et e e e et e et et et et et et e aaaaas 1972
E.G. REICASE 9.6.18 ...oeiiiiiiiiiiiii et et e e et e et e et e et e et e e et e et e et e e et e aaaaas 1974
E.7. REIEASE 9.6.17 oottt e e et e e et e et e et e et e et e e et e et et et et araaaaaaas 1977
E.8. REICASE 9.6.10 .ueeiniiiiiiiiiiiii ettt e e et e e et e et e et e st e et e e aa e et e et e e e e aaraaannns 1979
E. 9. ReElIEASE 9.6.15 oot e et e et e et e e e et e et et et et et e e e aaanaas 1983
E.10. REIEASE 9.6.14 ...oeiiiiiiiiii e e e et e et e et e e et e et e et e et e st e st eanaeannesanaarnaarnnns 1985
L I A A=Y (oY= T I TN TR 1 TN 1987
E.12. REIEASE 9.6.12 ..ot e e e et e et e et e e et e et e et e e aa e eanesanaaaneeaneaanaarnaannnns 1989
E.13. REIEASE 9.6. 11 .ot et e et e et e et e et e et e et e et e et e et e e eaneernearnnns 1993
E.14. RelEA@SE 9.6.10 ..ouuiiiiiiiiiiii ettt e e et e et e et e e et e et e et e e aa e eaneeanaeanaaaneannaarnaannnns 1997
E. 15, REIEASE 9.6.9 oot e et e e et e et e et e et e et et et e et et et araaaaas 1999
E.16. REIEASE 9.6.8 ...oeniiiiiiiiiiii et e et e e et e et e et e et e et e e e et e et eaaa e e aaraaannns 2003
E. 17, REIEASE 9.6.7 oeiiiiiiiiiiie ettt e e e et e et et e e te et e et e st e et e aaneean et eaneanaaraarnnns 2004
E.18. REIEASE 9.6.0 .ouceeniiiiiiiiiiiii et e et e e et e et e et e e te et e et e st e et e aaneeanaaanaeanesnnearnasnnnns 2007
E.19. REIEASE 9.6.5 .oeiiiiiiiiiiiiiiii ettt e et e e et e et e et e et e et e et e et e et et e e e aaaanas 2010
E.20. REIEASE 9.6.4 ...oeniiiiiiiiieie ettt e e e et et e et e et e et e et e et e et e e e et et et et araaaaaas 2012
E.21. REIEASE 9.6.3 ..eiiiiiiiiiiiiiiie ettt e e e et e et eete et e et e et e e aa e aaneean et eanaeaaaaraaanns 2017
E.22. REIEASE 9.6.2 ..oiiiiiiiiiiiiii ettt e e et e et e et e et e et e et e et e et e et aa et et araaaaaas 2021
E.23. REIEASE 9.6.1 .ooiiiiiiiiiiiiiii et e et e e et e et e et e et e et e e e et e et et et araaanaas 2026
E.24. REIEASE 9.6 ..cenniiiniiiiiii ettt et e et e et e et e et e et e et e st e et e et e aa e et et aaaaaraaaas 2028
| T o o0) ol A=Y =Y T S 2045
F. Additional Supplied MOAUIESc..iiuniiiiiiiiei e et e e et e e te e e e eaeeae e e e sanaaannas 2046
| U= Yo a0 o Y- Lod : NN 2047
F2. QUL LAY ..o ettt e e e e e e 2048
F.3. QULO @XPLAIN ..iiiiiii et et et e ea e eaa e 2048
| oY (oY) 1o SN 2050
| T o w4 <Y T o 1 o RO 2053
| T o w <YYo)] PPN 2054
o 1 o =T SN 2055
|G T 03 1 ()« AP TNN 2056
LS TR o 11 oY 2058
FoLO. AN Lottt e et et et e et e et e et e eaa e aeas 2062
| I o T v o PP OPPR PPNt 2090
| ¢ 1 Tod) o R P OTPRUOPPRRRE 2090
| G T Y- iy o o = o o =Y 2091
| 1 LT (o L PP PPPRR PP 2093
| ST i b7 4] 1 0 =1 o] o RN 2095
| T 1 1] o) ol = YN 2097
| I 11 < T £ PPN 2103
| IS T a1 < 1 = RPN 2104

xviii

PostgreSQL 9.6.23 Documentation

| TR 1 o E OO P O PRPPRN 2107

| 2 TR (o T PR OPPRPPRRRPNt 2110
| R L o T PP PPPRROTPTRR 2111

| SN2 o T To (=31 0 5 o 1=T o AP 2117

| G T o - 173 V0] oo Lol o T=T o) - PN 2120
F.24. PG DUFETCACRE ..counniiii ettt e e e e e e e 2121

| SN2 TR o T (0])74 0] ¥ o TN 2122
F.26. PO ITEESPACEINAD ..evuuniiiiiiiiieeii ettt ettt ettt e e et e e et e e et e e et e e e et s eetnseatnaseeenneaens 2132

| VAV o To) £ =12 1 1 s R T PR PPTPPR 2133
| T o To 1 0 1 Lo ol : <= 2134
F.29. pg stat StateIMentscoeuiii ettt e e e ees 2135
|G O o T £ = 1 o) [N 2139

| RGN I o To f 1 4 1 4 4 R PP UPT PP 2142

| 8C J2 o To 74 1S3 1 01 5L 7P PP 2146
F.33. POSEGTES AW oottt et et et e et e e et e e et e e e e ea e 2147

| 7 =Y o PSPPI 2152
| T =11 o To 1o | PR 2155

|G T ST o} AP PP PO PTRN 2162
FL37. SSINTO ettt ettt e e et et e et e eea e eeas 2164
F.38. tabDLefUIIC ..oeeiiii ettt et e e e et aa e e 2166

| 0G 1S TR o3 1 AU 2174

| L T o cES Al o £ To oY I o o AU PPRRRRE 2175
| R Y=Y) 4 o] o OO OTRRSTRRRPNt 2175
FlA2. TSN SYSTEINL TOWS ..etiiiiiiiiiiie ittt et et ettt e e et e et e et e etaeeaaeeaneeaneene et setaeeneenneens 2177
FA3. 1S _SYSTEIN TIIME ..ceuniiiiiiiiii ettt ettt et et et e et e e e e et e eneeeaeeanneens 2177
| D s b= Lo o1 < o | A PO OP RPN 2178
| T U LU o R0 T7-] o T 2179
FLAB. XINL2 Lo ettt e et et et ettt e e et e et e et e aaa s 2181

G. Additional SUPPlied PIrOQTamSiiiuiiiieiieeiie e eiee et et et e e e e te et e st e st e et eeaeeennaesnaeanaeanaesnnnns 2186
L0 I O 1Y o L AN o o1 Tok= Y T) =S 2186
(CTRITC) 720 AN o] 01§ (o= 1 1 o) o - PPN 2192

| O =Y = | o o =T SNt 2196
H.1. CLENE INTEITACES .oovuiiiiiiiiiie ettt e et e et e et e e et e e et e eanaens 2196
H.2. Administration TOOLScciiuuiiiiiiiiiii ettt e e et e e et e e et e e eaaeeeaans 2196
H.3. Procedural LanQUagESceeuueeiuriieeieeieeiieeieetnesttaestaestnestnaesnnesenessnaernaeseaessnassneesnnesnns 2196
H.Z. EXEEIISIONS ..euniiiiiiiiiiiiieiie ettt ettt et et et e et et et e et et e et e et s eta s etnnetaneeaneannaaneaaranennnns 2197

I. The Source Code ReEPOSILOTY ..ccuuiiiiiiiiiiiieiiie it et e et e e et e et e et e et e eaea e s e st eeanaeanesnnnes 2198
[.1. Getting The SOUTICE VIA Git ..ccuuiiiniiiiiiii e e e et e e e e e e e e e eaaeeens 2198

N B e o1 bhiaaTc) a1 =1 1) s PP 2199
S B 1o Yol = Lo Yo) - S 2199
IO Ko T] B Rt 2199
J.3. Building The Documentationc.cooiiiiiiiiiiiiiie e e e e et e e e e e eaa e 2203
J.4. Documentation AULhOTINGcoeuniiiiiiii e e e e et e e e e e ees 2206
T 5 72 (ST 0 o 2207

| Vo o0 1 2 1 4 SRR 2209
L0 0) E 0T 1= o 0|7/ PN 2214
300 [c: PP ORI 2216

Xix

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

e PartIis an informal introduction for new users.

e Part Il documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

e Part III describes the installation and administration of the server. Everyone who runs a
PostgreSQL server, be it for private use or for others, should read this part.

e Part IV describes the programming interfaces for PostgreSQL client programs.

e Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

e Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

e Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

¢ complex queries

» foreign keys

* triggers

¢ updatable views

e transactional integrity

¢ multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

* data types

» functions

e operators

* aggregate functions

* index methods

e procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

XX

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Information
Technologies (later merged into Informix, which is now owned by IBM) picked up the code and
commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia 2000
scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

* The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

* The instance-level rule system was removed. Rules were still available as rewrite rules.

* A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

xXxXi

http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (.. .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki contains the project's FAQ (Frequently Asked Questions) list, TODO list, and
detailed information about many more topics.

Web Site
The PostgreSQL web site carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read the
mailing lists and answer questions. If you learn something which is not in the documentation, write
it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

xxii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

5

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more
important things on the agenda. If you need help immediately, consider obtaining a commercial support
contract.

1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

e A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

e A program produces the wrong output for any given input.
* A program refuses to accept valid input (as defined in the documentation).

* A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

¢ PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has
a fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

* The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables. We do
not have the time to reverse-engineer your database schema, and if we are supposed to make up
our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg dump to dump out the table declarations and data needed

xxiii

Preface

to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error
message, show it, even if you do not understand it. If the program terminates with an operating
system error, say which. If nothing at all happens, say so. Even if the result of your test case is a
program crash or otherwise obvious it might not happen on our platform. The easiest thing is to
copy the output from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log error verbosity to verbose so that all details are
logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server's log output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think

it looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information. If
you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the command SELECT version (); to find out the version of
the server you are connected to. Most executable programs also support a -—version option; at
least postgres --version and psql --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.6.23 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support

for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not

XXiv

Preface

5

assume everyone knows what exactly “Debian” contains or that everyone runs on x86 64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have
time to find and share your work-around. Also, once again, do not waste your time guessing why the bug
exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL’, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don't say “the server crashed” when you mean a
single backend process went down, nor vice versa. Also, client programs such as the interactive frontend
“psql” are completely separate from the backend. Please try to be specific about whether the problem
is on the client or server side.

3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@lists.postgresgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@lists.postgresql.org> mailing list.

If your bug report has security implications and you'd prefer that it not become immediately
visible in public archives, don't send it to pgsqgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsgl-sql@lists.postgresgl.org>
or <pgsqgl-general@lists.postgresql.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers' mailing list
<pgsgl-hackers@lists.postgresqgl.org>. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report on pgsgl-hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@lists.postgresql.org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug 1is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@lists.postgresgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXV

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://lists.postgresql.org/

Part |. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction
to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

* A server process, which manages the database files, accepts connections to the database from
client applications, and performs database actions on behalf of the clients. The database server
program is called postgres.

¢ The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, a web server that accesses the database to display web pages, or a specialized
database maintenance tool. Some client applications are supplied with the PostgreSQL distribution;
most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Getting Started

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:
$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such
file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

joe"

createdb: could not connect to database postgres: FATAL: role does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to create
the first user account. It could also be that you were assigned a PostgreSQL user name that is different
from your operating system user name; in that case you need to use the -u switch or set the PGUSER
environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as.

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

! Asan explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a database, you can choose
what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a PostgreSQL user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the -U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the PostgreSQL interactive terminal program, called psql, which allows you to
interactively enter, edit, and execute SQL commands.

* Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

¢ Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part IV.

You probably want to start up psgl to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psgl mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (9.6.23)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls. For
the purposes of this tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psqgl is the prompt, and it indicates that psqgl is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT version();
version
PostgreSQL 9.6.23 on x86_64-pc-linux—-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2, 64-
bit
(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

Getting Started

mydb=> SELECT 2 + 2;
?column?

(1 row)

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including melt93 and date97. You should be aware that some PostgreSQL language
features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory src/
tutorial/. (Binary distributions of PostgreSQL might not provide those files.) To use those files, first
change to that directory and run make:

$ ed .../src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psgl's —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

The SQL Language

You can enter this into psgl with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a rich set
of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point
)i
The point type is an example of a PostgreSQL-specific data type.
Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.
The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)"');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

The SQL Language

COPY weather FROM '/home/user/weather.txt';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here * is a shorthand for “all columns”. ! So the same result would be had with:

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;
The output should be:

city | temp_lo | temp_hi | prcp | date
——————————————— it e ettt E e it
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ +__________+____________
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the As clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather

WHERE city = 'San Francisco' AND prcp > 0.0;
Result:
city | temp_lo | temp_hi | prcp | date
——————————————— it s S it
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date

! While sErECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

The SQL Language

——————————————— et T e
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once,
or access the same table in such a way that multiple rows of the table are being processed at the same
time. A query that accesses multiple rows of the same or different tables at one time is called a join query.
As an example, say you wish to list all the weather records together with the location of the associated
city. To do that, we need to compare the city column of each row of the weather table with the name
column of all rows in the cities table, and select the pairs of rows where these values match.

Note

This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date \ name | location
——————————————— e T e A e

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

Observe two things about the result set:

¢ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see
shortly how this can be fixed.

2 In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DISTINCT causes the rows to be ordered.

The SQL Language

¢ There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WwHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— s sttt
Hayward \ 37 | 54 | | 1994-11-29 |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a selfjoin. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all other
weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

10

The SQL Language

city | low | high | city | low | high
——————————————— s s ettt LR
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward \ 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

46
(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GRour BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
_______________ o
Hayward | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

11

The SQL Language

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
777777777 +77777
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1o0 values below 40. Finally, if we
only care about cities whose names begin with “s”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE 'sS$'H
GROUP BY city
HAVING max (temp_lo) < 40;

The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28"';

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— -t
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

12

The SQL Language

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et s e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form
DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management and
prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT name, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weather table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the cities table to check if a matching record exists,
and then inserting or rejecting the new weather records. This approach has a number of problems and
is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
name varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities (name),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:

14

Advanced Features

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint
"weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use
of foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00

WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00

WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and coMMIT commands. So our banking transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00

15

Advanced Features

WHERE name = 'Alice';
—-— etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of commIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) commIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a
transaction block.

Note

Some client libraries issue BEGIN and coMMIT commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use
of savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing
the rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back to
it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance
WHERE name = 'Bob';

-— oops ... forget that and use Wally's account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Wally';

COMMIT;

balance + 100.00

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

16

Advanced Features

But unlike regular aggregate functions, use of a window function does not cause rows to become grouped
into a single output row — the rows retain their separate identities. Behind the scenes, the window
function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e e
develop \ 11 | 5200 | 5020.0000000000000000
develop \ 7 4200 | 5020.0000000000000000
develop \ 9 | 4500 | 5020.0000000000000000
develop \ 8 | 6000 | 5020.0000000000000000
develop \ 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales \ 3 | 4800 | 4866.6666666666666667
sales \ 1 | 5000 | 4866.6666666666666667
sales \ 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the oviEr clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The oVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY list within OVER specifies dividing the rows into groups, or partitions, that
share the same values of the PARTITION BY expression(s). For each row, the window function is computed
across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
——————————— R
develop \ 8 | 6000 | 1
develop \ 10 | 5200 | 2
develop \ 11 | 5200 | 2
develop \ 9 | 4500 | 4
develop \ 7 4200 | 5
personnel | 2| 3900 | 1
personnel | 5 | 3500 | 2
sales \ 1| 5000 | 1
sales \ 4 | 4800 | 2
sales \ 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row's partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the ovER clause.

17

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FrROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways by means of different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on the
rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the
frame consists of all rows from the start of the partition up through the current row, plus any following
rows that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. ! Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;
salary | sum
,,,,,,,, I
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
________ I
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the sSELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after regular aggregate

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

18

Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a wINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

elevation int, -— (in ft)
state char (2)

)i

CREATE TABLE non_capitals (

name text,
population real,
elevation 1int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, elevation FROM capitals
UNION
SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.
A better solution is this:

CREATE TABLE cities (
name text,

19

Advanced Features

population real,
elevation int —— (in ft)
)i

CREATE TABLE capitals (
state char (2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its parent,
cities. The type of the column name is text, a native PostgreSQL type for variable length character
strings. The capitals table has an additional column, state, which shows its state abbreviation. In
PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

which returns:

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953
Madison \ 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ o
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

20

https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a complete
description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in src/
include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

22

SQL Syntax

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this creates
an ambiguity with the operator «. Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "data" could be written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UEscaprclause
after the string, for example:

U&"d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F00, foo, and "foo" are considered the same by PostgreSQL, but "Foo"
and "roo" are different from these three and each other. (The folding of unquoted names to lower case
in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be folded
to upper case. Thus, foo should be equivalent to "FoO" not "foo" according to the standard. If you want
to write portable applications you are advised to always quote a particular name or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

23

SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'

'bar';

is equivalent to:

SELECT 'foobar';

but:

SELECT 'foo' 'bar’';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E' foo'. (When continuing an escape string constant across lines, write £ only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (o =0-7) octal byte value

\xh, \xhh(h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9,A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \ ', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007r) can be specified. Both the 4-
digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 8-digit form technically makes this
unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first combined
into a single code point that is then encoded in UTF-8.)

24

SQL Syntax

Caution

If the configuration parameter standard conforming strings is off, then PostgreSQL recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters
escape string warning and backslash quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us'foo'. (Note that this creates an ambiguity with the operator «. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string 'data' could be written as

U&'d\0061t\+000061"'
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us'\0441\043B\043E\043D"'

If a different escape character than backslash is desired, it can be specified using the UEscaprclause
after the string, for example:

U&'d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into a single code
point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard conforming strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security issues.
If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another way,
called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar

25

SQL Syntax

sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of
characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne's horse” using
dollar quoting:

$$Dianne's horses
$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$function$
BEGIN
RETURN ($1 ~ $gS[\t\r\n\v\\]1$qg$);
END;
$function$

Here, the sequence gs [\t\r\n\v\\]g represents a dollar-quoted literal string [\t\r\n\v\\1, which
will be recognized when the function body is executed by PostgreSQL. But since the sequence does not
match the outer dollar quoting delimiter $functions, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagstring contentStag is correct, but
$TAGSString content$tag$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written as
four backslashes, which would be reduced to two backslashes in parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., 8'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X' 1FF'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:

digits

digits.[digits] [e[+-]1digits]
[digits].digits|e[+-]1digits]
digitse[+-]1digits

26

SQL Syntax

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

4?2

3.5

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL '1.23' —-- string style
1.23::REAL —— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type
CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, casT (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

'string' syntax is that it does not work for array types; use :: or CAsT () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type 'string' syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax with : :
is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:

27

SQL Syntax

4.

+-*¥/<>=~1@#% " &| ?
There are a few restrictions on operator names, however:

* ——and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~1@#% "~ &|?

For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@, you cannot write x*@y; you must write x* @Y to ensure that PostgreSQL reads it as two operator
names not one.

1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

* A dollar sign (s) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

* Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

* Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

* Commas (,) are used in some syntactical constructs to separate the elements of a list.

* The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

* The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

* The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

* The period (.) is used in numeric constants, and to separate schema, table, and column names.

1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.qg.:

—— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment

* with nesting: /* nested block comment */

*/
where the comment begins with /* and extends to the matching occurrence of */. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

28

SQL Syntax

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.
4.1.6. Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[] left array element selection
+ - right unary plus, unary minus
A left exponentiation
* /% left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN IN LIKE ILIKE SIMILAR range containment, set
membership, string matching
<> =<=>=<> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS
DISTINCT FROM, etc
NOT right logical negation
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR () .

29

SQL Syntax

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; Is tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator precedence warning turned on to see if
any warnings are logged.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

A constant or literal value
A column reference

A positional parameter reference, in the body of a function definition or prepared statement
A subscripted expression

A field selection expression
An operator invocation

A function call

An aggregate expression

A window function call

A type cast

A collation expression

A scalar subquery

An array constructor

A row constructor

Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the Is NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

30

SQL Syntax

correlation.columnname

correlationisthe name of a table (possibly qualified with a schema name), or an alias for a table defined
by means of a FroM clause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression|[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which will
be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn (4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield

31

SQL Syntax

(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:
(compositecol) .*

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name (|lexpression [, expression ... 1])

For example, the following computes the square root of 2:

sqgrt (2)
The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard but
is provided in PostgreSQL because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by clause]) [FILTER
(WHERE filter clause)]
aggregate_name (ALL expression [, ... 1 [order_by_clause]) [FILTER

(WHERE filter clause)]

32

SQL Syntax

aggregate_name (DISTINCT expression [, ...] [order_by clause]) [FILTER
(WHERE filter clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate_name ([expression [, ... 1 1) WITHIN GROUP (order_by_ clause) [FILTER

(WHERE filter clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since aLL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count (*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yields the total number of input rows; count (f1) yields the number of input
rows in which f£1 is non-null, since count ignores nulls; and count (distinct f1) yields the number of
distinct non-null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs
in. However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the oRDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ',') FROM table; —-- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DIsTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DISTINCT list.

Note

The ability to specify both DISTINCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

Placing orDER BY within the aggregate's regular argument list, as described so far, is used when
ordering the input rows for a “normal” aggregate for which ordering is optional. There is a subclass of
aggregate functions called ordered-set aggregates for which an order_by_clause is required, usually
because the aggregate's computation is only sensible in terms of a specific ordering of its input
rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an

33

SQL Syntax

ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown in the
final syntax alternative above. The expressions in the order_by_clause are evaluated once per input
row just like normal aggregate arguments, sorted as per the order by clause's requirements, and
fed to the aggregate function as input arguments. (This is unlike the case for a non-WITHIN GROUP
order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from
the aggregated arguments listed in the order_by_clause. Unlike normal aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for
things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*). (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
TOWS.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row)

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the
aggregate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVING clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row's group according
to the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

34

SQL Syntax

function_name (lexpression [, expression ...]]) [FILTER (WHERE filter_clause) |
OVER window_name

function_name (lexpression [, expression ...]]) [FILTER (WHERE filter_clause) |
OVER (window_definition)

function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

where window_definition has the syntax

[existing_window_name]

[PARTITION BY expression [, ...] 1

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
[r «..1 1]

[frame_clause]
and the optional frame_clause can be one of

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_ start AND frame_end

where frame start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's wINDow clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the winDow clause; see the SELECT reference page for details. It's worth
pointing out that OVER wname is not exactly equivalent to OVER (wname); the latter implies copying and
modifying the window definition, and will be rejected if the referenced window specification includes
a frame clause.

The PARTITION BY option groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY option
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROWS mode; in either case, it runs from the frame_start to the
frame_end. If frame_end is omitted, it defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition.

In RANGE mode, a frame_start of CURRENT ROW means the frame starts with the current row's first peer
row (a row that ORDER BY considers equivalent to the current row), while a frame_end of CURRENT ROW
means the frame ends with the last equivalent ORDER BY peer. In ROWS mode, CURRENT ROW simply means
the current row.

The value PRECEDING and value FOLLOWING cases are currently only allowed in Rows mode. They indicate
that the frame starts or ends the specified number of rows before or after the current row. value must

35

SQL Syntax

4

be an integer expression not containing any variables, aggregate functions, or window functions. The
value must not be null or negative; but it can be zero, which just selects the current row.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, all rows of the partition
are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED
PRECEDING, and the frame_end choice cannot appear earlier in the above list than the frame_start
choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is not allowed.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.56. Other window functions can be added by the
user. Also, any built-in or user-defined normal aggregate function can be used as a window function.
Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count (*) OVER (PARTITION BY x ORDER BY vy). The asterisk (*) is customarily not used for
non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the sSELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent float8 can. Also, the names interval, time,
and timestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be
avoided.

36

SQL Syntax

Note

The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The coLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the cOLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';
But this is an error:
SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

37

SQL Syntax

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word arRRrAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNTON or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,41];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,1[3,411;

{{1,2},4{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]1]1, ARRAY[[5,6],17,811);
SELECT ARRAY[fl, f2, '{{9,10},{11,12}}"'::int[]] FROM arr;

array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

38

SQL Syntax

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ArRrAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, 1i*2] FROM generate_series(1,5) AS a(i));

{1,2},4{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with aArRrAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word row, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5, 'this is a test');
The key word row is optional when there is more than one expression in the list.
A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements

of the row value, just as occurs when the .* syntax is used at the top level of a SeELECT list (see
Section 8.16.5). For example, if table t has columns £1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note

Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW (t.*, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . *, for instance rROW (t, 42).

By default, the value created by a rRow expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl int, f2 float, £f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS 'SELECT $1.fl1' LANGUAGE SQL;

—— No cast needed since only one getfl () exists
SELECT getfl (ROW(1,2.5,"'this is a test'));
getfl

39

SQL Syntax

1
(1 row)

CREATE TYPE myrowtype AS (fl1 int, f2 text, f3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

—— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5, 'this is a test'));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1,2.5, 'this is a test')::mytable);
getfl

SELECT getfl (CAST(ROW (11, 'this is a test',2.5) AS myrowtype));
getfl

11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with Is NULL or Is NOT NULL, for example:

SELECT ROW(1,2.5, 'this is a test') = ROW(1l, 3, 'not the same');

SELECT ROW (table.*) IS NULL FROM table; —-— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(anD/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

40

SQL Syntax

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A cask construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 36.6, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in the table has x > 0 so that the EL.SE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min (). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$S

41

SQL Syntax

SELECT CASE
WHEN $3 THEN UPPER(S1 || " ' || $2)
ELSE LOWER(S$1 || " ' || $2)
END;
$S
LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper ('Hello', 'World', true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello', 'World');
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
concat_lower_or_upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

42

SQL Syntax

SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');
concat_lower_or_upper

HELLO WORLD

(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello', 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD

(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

43

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers,
numeric for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day
values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named first_column
and has a data type of text; the second column has the name second_column and the type integer.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i

(The numeric type can store fractional components, as would be typical of monetary amounts.)

44

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for

the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default
of CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval ('products_product_no_seq'),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (

45

Data Definition

product_no SERIAL,

)i

The SeErRIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that
would violate a constraint, an error is raised. This applies even if the value came from the default value
definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)

So, to specify a named constraint, use the key word coNsTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

46

Data Definition

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could
also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)
)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNIQUE, EXCLUDE, or FOREIGN KEY constraints to express cross-row and
cross-table restrictions.

47

Data Definition

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/reload problem because pg dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (

)i

product_no integer NOT NULL,
name text NOT NULL,
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way:.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

)i

product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (

)i

product_no integer NULL,
name text NULL,
price numeric NULL

and then insert the NOT key word where desired.

48

Data Definition

Tip

In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric
)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful
when developing applications that are intended to be portable.

5.3.4. Primary Keys

49

Data Definition

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

50

Data Definition

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer
)i
because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i
Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of a
tree structure, you could write

CREATE TABLE tree (
node_id integer PRIMARY KEY,
parent_id integer REFERENCES tree,
name text,

)i

A top-level node would have NULL parent_id, but non-NULL parent_id entries would be constrained
to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

51

Data Definition

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

* Disallow deleting a referenced product
* Delete the orders as well
¢ Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO acTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to oN DELETE there is also ON UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same. In this case, CASCADE means that the updated values of
the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

52

Data Definition

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too.
Because this is not always needed, and there are many choices available on how to index, declaration of
a foreign key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

oid

The object identifier (object ID) of a row. This column is only present if the table was created using
WITH 01DS, or if the default with oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.18 for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it's difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.
xmin
The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)
cmin

The command identifier (starting at zero) within the inserting transaction.

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

53

Data Definition

cmax

The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used
to locate the row version very quickly, a row's ctid will change if it is updated or moved by vacuum
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

¢ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 232 (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

* QOIDs should never be assumed to be unique across tables; use the combination of tableocid and
row OID if you need a database-wide identifier.

* Of course, the tables in question must be created wiTH 01DS. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 24
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

¢ Add columns

¢ Remove columns

¢ Add constraints

¢ Remove constraints

* Change default values

¢ Change column data types
¢ Rename columns

¢ Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

54

Data Definition

5.5.1. Adding a Column

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ApD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Tip
Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you

intend to fill the column with mostly nondefault values, it's best to add the column with no default,
insert the correct values using UpDATE, and then add any desired default as described below.

5.5.2. Removing a Column
To remove a column, use a command like:
ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by
adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quote it to make it a valid identifier.)

55

Data Definition

As with dropping a column, you need to add cascaADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column's Default Value
To set a new default for a column, use a command like:
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;
This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.
5.5.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object vary
depending on the object's type (table, function, etc). For complete information on the different types
of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections and
chapters will also show you how those privileges are used.

56

Data Definition

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g., ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details
see Chapter 21.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves as well as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptions to this rule are 1eakproof functions, which
are guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the
row-security check.) Rows for which the expression does not return t rue will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

57

Data Definition

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using ORr, so that a row is accessible
if any policy allows it. This is similar to the rule that a given role has the privileges of all roles that they
are a member of.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, Or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name pUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a sELECT command, these two policies are combined using ORr, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

—— Simple passwd-file based example
CREATE TABLE passwd (
user_name text UNIQUE NOT NULL,

58

Data Definition

pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; —-- Administrator
CREATE ROLE bob; —— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table
INSERT INTO passwd VALUES

('admin', 'xxx',0,0, "Admin', '111-222-3333"',null, '/root', '/bin/dash"');
INSERT INTO passwd VALUES

('bob', 'xxx',1,1, 'Bob', '123-456-7890"',null, ' /home/bob', ' /bin/zsh'");
INSERT INTO passwd VALUES

('alice', 'xxx',2,1,"'Alice"','098-765-4321"',null, '/home/alice', '/bin/zsh'");

—-— Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies

—— Administrator can see all rows and add any rows

CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—— Normal users can view all rows

CREATE POLICY all_view ON passwd FOR SELECT USING (true);

—-— Normal users can update their own records, but

—— limit which shells a normal user is allowed to set

CREATE POLICY user_mod ON passwd FOR UPDATE

USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND

shell IN ('/bin/bash', '/bin/sh','/bin/dash', '/bin/zsh','/bin/tcsh')
)i

—— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—-— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—— admin can view all rows and fields
postgres=> set role admin;

SET
postgres=> table passwd;
user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir
shell

59

Data Definition

——————————— e Tt Tttt

admin | xxx \ 0 | 0 | Admin | 111-222-3333 | | /root

| /bin/dash

bob | xxx \ 1 | 1 | Bob | 123-456-7890 | | /home/bob

| /bin/zsh

alice | xxx \ 2 1 | Alice | 098-765-4321 | | /home/alice
| /bin/zsh

(3 rows)

—— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for relation passwd

postgres=> select user_name, real_name, home_phone,extra_info,home_dir, shell from passwd;

user_name real_name home_phone extra_info home_dir shell
——————————— Rttt e e e
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for relation passwd
—— Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE O
postgres=> update passwd set shell = '/bin/xx';

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for relation passwd

postgres=> insert into passwd (user_name) values ('xxx');

ERROR: permission denied for relation passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';

UPDATE 1

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through such
referential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row security configuration parameter to of£. This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work this way. If it is necessary to consult other rows or other tables to make a
policy decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS, in the
policy expressions. Be aware however that such accesses can create race conditions that could allow
information leakage if care is not taken. As an example, consider the following table design:

—— definition of privilege groups

60

Data Definition

CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL) ;

INSERT INTO groups VALUES

(1, 'low'),
(2, 'medium'),
(5, 'high');
GRANT ALL ON groups TO alice; -—- alice is the administrator

GRANT SELECT ON groups TO public;

—— definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
('alice', 5),
("bob', 2),
('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

—— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
('barely secret', 1),
('slightly secret', 2),
('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

—— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory';

UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice's does. It blocks waiting for
alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.

61

Data Definition

However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the
referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock
on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update of
the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases
in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects
in any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
* To allow many users to use one database without interfering with each other.
* To organize database objects into logical groups to make them more manageable.

* Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

62

Data Definition

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
)i

To drop a schema if it's empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to search_path effectively trusts all users having
CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create objects
in a schema of your search path can take control and execute arbitrary SQL functions as though you
executed them.

63

Data Definition

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema, public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on

64

Data Definition

the schema public. This allows all users that are able to connect to a given database to create objects
in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a
secure schema usage pattern, users wishing to securely query that database would take protective action
at the beginning of each session. Specifically, they would begin each session by setting search_path to
the empty string or otherwise removing non-superuser-writable schemas from search_path. There are
a few usage patterns easily supported by the default configuration:

* Constrain ordinary users to user-private schemas. To implement this, iSsue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that user.
Recall that the default search path starts with $Suser, which resolves to the user name. Therefore,
if each user has a separate schema, they access their own schemas by default. After adopting this
pattern in a database where untrusted users had already logged in, consider auditing the public
schema for objects named like objects in schema pg_catalog. This pattern is a secure schema
usage pattern unless an untrusted user is the database owner or holds the CREATEROLE privilege, in
which case no secure schema usage pattern exists.

* Remove the public schema from the default search path, by modifying postgresgl.conf or by
issuing ALTER ROLE ALL SET search_path = "$user". Everyone retains the ability to create
objects in the public schema, but only qualified names will choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If
you create functions or extensions in the public schema, use the first pattern instead. Otherwise,
like the first pattern, this is secure unless an untrusted user is the database owner or holds the
CREATEROLE privilege.

¢ Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or a few mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to allow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search path,
as they choose.

65

Data Definition

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user_name.table_name. This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (

name text,
population float,
elevation int -— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | elevation
___________ +___________
Las Vegas | 2174
Mariposa | 1953
Madison \ 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

66

Data Definition

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ +___________
Las Vegas | 2174
Mariposa | 1953

Here the onLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the oNLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT name, elevation
FROM cities*
WHERE elevation > 500;

Writing * is not necessary, since this behavior is the default (unless you have changed the setting of the
sql inheritance configuration option). However writing * might be useful to emphasize that additional
tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

which returns:

tableoid | name | elevation

__________ IO
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities c, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

relname | name | elevation
__________ SO
cities | Las Vegas | 2174

cities | Mariposa | 1953

capitals | Madison | 845

Another way to get the same effect is to use the regclass pseudo-type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

67

Data Definition

INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with N0 INHERIT clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-
null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the cAscape
option (see Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as
well, when they are accessed through cities. This preserves the appearance that the data is (also)
in the parent table. But the capitals table could not be updated directly without an additional grant.
Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables are
always checked, whether they are processed directly or recursively via those commands performed on
the parent table.

In a similar way, the parent table's row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table's policies, if any, are applied only when it is the
table explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

68

Data Definition

5.9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child tables
and support the oNLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

* If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

* Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

* Specifying that another table's column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care
is needed in deciding whether inheritance is useful for your application.

5.10. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

¢ Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

* When queries or updates access a large percentage of a single partition, performance can be
improved by taking advantage of sequential scan of that partition instead of using an index and
random access reads scattered across the whole table.

* Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far faster
than a bulk operation. These commands also entirely avoid the vAcuuM overhead caused by a bulk
DELETE.

* Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent

69

Data Definition

the entire data set. You should be familiar with inheritance (see Section 5.9) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:
Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.10.2. Implementing Partitioning
To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables
(or, possibly, foreign tables).
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghamshire', 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might want.
(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint exclusion configuration parameter is not disabled in postgresqgl.conf. If
it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want
a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

70

Data Definition

)i

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data.

In this situation we can use partitioning to help us meet all of our different requirements for the
measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007ml1l1 () INHERITS (measurement);
CREATE TABLE measurement_y2007ml12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month's data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01"')
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01')
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01")
) INHERITS (measurement);

4. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l1_logdate ON measurement_y2008m01 (logdate);

We choose not to add further indexes at this time.

5. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN

71

Data Definition

INSERT INTO measurement_y2008m0l1 VALUES (NEW.*);
RETURN NULL;

END;

$S

LANGUAGE plpgsqgl;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
BEFORE INSERT ON measurement
FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();

We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE '2006-02-01'"' AND
NEW.logdate < DATE '2006-03-01"') THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.*);
ELSIF (NEW.logdate >= DATE '2006-03-01"' AND
NEW.logdate < DATE '2006-04-01') THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.*);

ELSIF (NEW.logdate >= DATE '2008-01-01' AND

NEW.logdate < DATE '2008-02-01') THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger ()
function!';
END IF;
RETURN NULL;
END;

$9
LANGUAGE plpgsqgl;

The trigger definition is the same as before. Note that each 1r test must exactly match the cHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger's tests in the same order as in other parts
of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for

72

Data Definition

new data. One of the most important advantages of partitioning is precisely that it allows this otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01"')
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior
to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01'");
\copy measurement_y2008m02 from 'measurement_y2008m02"
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01"';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and
try to prove that the partition need not be scanned because it could not contain any rows meeting the
query's WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXxPLAIN command to show the difference between a plan with constraint_exclusion
on and a plan with it off. A typical unoptimized plan for this type of table setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01";

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= '2008-01-01"'::date)

73

Data Definition

-> Seqg Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543
width=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seqg Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543
width=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seqg Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543
width=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seqg Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543
width=0)

Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)

-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= '2008-01-01"'::date)
—-> Seqg Scan on measurement_y2008m01 measurement (cost=0.00..30.38 rows=543

width=0)
Filter: (logdate >= '2008-01-01"'::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn't necessary to define indexes on the key columns. Whether an index needs to be created
for a given partition depends on whether you expect that queries that scan the partition will generally
scan a large part of the partition or just a small part. An index will be helpful in the latter case but not
the former.

The default (and recommended) setting of constraint exclusion is actually neither on nor off, but an
intermediate setting called partition, which causes the technique to be applied only to queries that are
likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.10.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01"')
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.*);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01"')
DO INSTEAD

INSERT INTO measurement_y2008m0l1 VALUES (NEW.*);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however,
the trigger method will offer better performance.

74

Data Definition

Be aware that copy ignores rules. If you want to use copy to insert data, you'll need to copy into the
correct partition table rather than into the master. cory does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT * FROM measurement_y2006m02
UNION ALL SELECT * FROM measurement_y2006m03

UNION ALL SELECT * FROM measurement_y2007mll
UNION ALL SELECT * FROM measurement_y2007ml2
UNION ALL SELECT * FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.10.6. Caveats

The following caveats apply to partitioned tables:

* There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than
to write each by hand.

* The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts to
do that will fail because of the CHECK constraints. If you need to handle such cases, you can put
suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

* If you are using manual VACUUM or ANALYZE commands, don't forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

* INSERT statements with oN CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child
relations.

The following caveats apply to constraint exclusion:

* Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

* Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don't need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators.

* All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don't try to use
many thousands of partitions.

5.11. Foreign Data

75

Data Definition

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 55.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

* Views

¢ Functions and operators

* Data types and domains

* Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;
ERROR: cannot drop table products because other objects depend on it

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

76

Data Definition

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In
this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there
because nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE
will do, run prop without cAscaDE and read the DETAIL output.)

Almost all broP commands in PostgreSQL support specifying cascabpe. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE
to get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note

According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT Or CASCADE varies across systems.

If a brOP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of a foreign key
referencing tab1 from tab2 would not mean that cASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-
visible properties, such as its argument and result types, but not dependencies that could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
'SELECT note FROM my_colors WHERE color = $1'
LANGUAGE SOQL;

(See Section 36.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping the
function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

77

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric
)i
An example command to insert a row would be:
INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today';

78

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as

flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word upDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the wHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WwHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the seT clause. For example:

UPDATE mytable SET a = 5, b =3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

79

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use
of RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table in
order.

In an 1NSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = 'today'
RETURNING *;

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

80

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort
specification. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM tablel;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if tablel has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tablel;
(assuming that b and ¢ are of a numerical data type). See Section 7.3 for more details.
FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions can

be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FrROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FroM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The rroM Clause

The the section called “FroM Clause” derives a table from one or more other tables given in a comma-
separated table reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FrROM

81

Queries

clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).
The result of the FroM list is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word oNLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing oNLY before the table name, you can write * after the table name to explicitly specify
that descendant tables are included. Writing * is not necessary since that behavior is the default (unless
you have changed the setting of the sql inheritance configuration option). However writing * might be
useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join_type T2 [join_condition]
Joins of all types can be chained together, or nested: either or both 77 and 72 can be joined tables.
Parentheses can be used around JoIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.
Join Types
Cross join

T1 CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see below). It is also
equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because JoIn
binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER JOIN T3 ON
condition is not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference 71 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

82

Queries

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the ON expression
evaluates to true.

The UsING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining 77 and 72 with USING (a, b) produces the join condition ON T1.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JoIN oN produces all columns
from 71 followed by all columns from 72, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from 71, followed by
any remaining columns from 72.

Finally, NATURAL is a shorthand form of UsING: it forms a USING list consisting of all column names
that appear in both input tables. As with UsING, these columns appear only once in the output table.
If there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE, producing
a cross-product join.

Note

USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t1:

83

Queries

num | value
_____ +_______
1] xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM tl1 CROSS JOIN t2;
num | name | num value

XXX
Yyy
ZZZ
XXX
Yyy
ZZZ
XXX

Yyy
ZZZ

=> SELECT * FROM tl1 INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S
11 a \ 1 | xxx
3] c \ 31 yyy
(2 rows)

=> SELECT * FROM tl1 INNER JOIN t2 USING (num);

_____ +______+_______
11 a | xxx
3 1 c | yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ +______+_______
11 a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S

11 a \ 1 | xxx

2 1 b \ \

3] c \ 3 |1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ +______+_______
11 a | xxx
2 1 b \
3 c | yyy
(3 rows)

84

Queries

=> SELECT * FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
1] a \ 1] xxx
3] c \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT * FROM tl1 FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
11 a \ 1 | xxx
2 1 b \
3] c \ 31 yyy
\ 5| zzz
(4 rows)

The join condition specified with oN can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx';
num | name | num | value
_____ +______ —_—— —_———— e —
11 a \ 1 | xxx
2 1 Db \ \
3 1 c \ \
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = 'xxx';

name num value

This is because a restriction placed in the oN clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters

a lot with outer joins.
7.2.1.2. Table and Column Aliases
A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.
To create a table alias, write
FROM table reference AS alias
or
FROM table_reference alias
The as key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id =

a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

85

Queries

SELECT * FROM my_table AS m WHERE my_table.a > 5; —-— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a Jo1N clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'Jjones'), ('joe', 'blow'))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FroM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the rRoOwWws FROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... 1)]1]

86

Queries

ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
[, .. 1)11

If the wITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the ordinal
column is called ordinality, but a different column name can be assigned to it using an aAs clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
r oo 1)1]

Ifno table_aliasis specified, the function name is used as the table name; in the case of a ROWS FROM ()
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS S
SELECT * FROM foo WHERE fooid = $1;
$S LANGUAGE SQL;

SELECT * FROM getfoo(l) AS t1;

SELECT * FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record with no ouT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the rows FROM() syntax, the column_definition list replaces the column alias list
that could otherwise be attached to the FroOM item; the names in the column definitions serve as
column aliases. When using the ROwS FROM () syntax, a column_definition list can be attached to each
member function separately; or if there is only one member function and no WITH ORDINALITY clause, a
column_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:

SELECT *

87

Queries

FROM dblink ('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
AS tl (proname name, prosrc text)
WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
(
json_to_recordset ('[{"a":40, "b":"foo"},{"a":"100","b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series (1, 3)
) AS x (p, 49, s)

ORDER BY p;
p I a | s
_____ +_____ —_—
40 | foo | 1
100 | bar | 2
\ | 3

It joins two functions into a single FrROM target. json_to_recordset () is instructed to return two
columns, the first integer and the second text. The result of generate_series () is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FroM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other rFroM item.)

Table functions appearing in FrROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at top level in the FroM list, or within a JoIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JoIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FrROM items providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vi1, v2

88

Queries

FROM polygons pl, polygons p2,
LATERAL vertices(pl.poly) vi,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vi1, v2

FROM polygons pl CROSS JOIN LATERAL vertices (pl.poly) vi,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id '= p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names ()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause
The syntax of the the section called “wHERE Clause” is
WHERE search_condition
where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.
After the processing of the FroM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one

column of the table generated in the FrROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the Jo1IN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FroM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FroM clause. The ON or USING
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

89

Queries

SELECT ... FROM fdt WHERE cl1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FroM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as £dt.c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GroUP RY and HAVING Clauses

After passing the wHERE filter, the derived input table might be subject to grouping, using the GrRour BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_1list
FROM
[WHERE ...]
GROUP BY grouping column_reference [, grouping_column_reference]...

The the section called “Group BY Clause” is used to group together those rows in a table that have the
same values in all the columns listed. The order in which the columns are listed does not matter. The
effect is to combine each set of rows having common values into one group row that represents all rows
in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM testl;

(3 rows)

In the second query, we could not have written SELECT * FROM testl GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;
X | sum
___+ _____

90

Queries

4
b | 5
c | 2
(3 rows)
Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the D1STINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GrROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GroUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GroUuP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
e
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c';

X | sum
e
a | 4
b | 5
(2 rows)

Again, a more realistic example:

91

Queries

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FrROM and WHERE clauses is grouped separately by each specified
grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then the
results returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ +______+_______
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
(size), ());

brand | size | sum
_______ +______+_____
Foo \ | 30
Bar | | 20
| L | 15
| M | 35
\ | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GRouP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping sets in which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.55.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
(el, e2, e3, ...),

92

Queries

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPING SETS (

4

4

(a, b, c),
(a, b)y
(a, c)y
(a)y
(b, ¢),
(b)
()
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPING SETS (
(a, b, ¢, d)
(a, b)y
(c, d)
()

)

and

ROLLUP (a, (b, c), d)
is equivalent to

GROUPING SETS (
(a, b, ¢, d),
(a, b, c),
(a)
()

14

)

The cuBk and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c¢), GROUPING SETS ((d), (e))

93

Queries

is equivalent to

GROUP BY GROUPING SETS (

(a, b, ¢, d), (a, b, c, &),
(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the Group
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are
the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in a
single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering
of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
table is finally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbll.a, tbl2.a, tbll.b FROM ...

94

Queries

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbll.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table_name. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference

any columns in the table expression of the FrROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified using As, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The as keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM ...
but this does:
SELECT a "value", b + ¢ AS sum FROM ...

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FrROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The D1STINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_1list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns

95

Queries

to guarantee a unique ordering of the rows arriving at the p1sTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GRoUuP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] queryZ
queryl INTERSECT [ALL] queryZ2
queryl EXCEPT [ALL] queryZ

queryl and query?2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION queryZ2 UNION query3
which is executed as:

(queryl UNION queryZ2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional Asc or peEsc keyword
to set the sort direction to ascending or descending. Asc order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. !

! Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for Asc and pEsc. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

96

Queries

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum + c; -— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use As to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_1list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. oOFFsSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the L.TMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for L.1MIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with orRDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an orrFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

97

Queries

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must
have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, 'one'), (2, 'two'), (3, 'three');
will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columnl, 'one' AS column2
UNION ALL

SELECT 2, 'two'

UNION ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names columni, column2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently, so
it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num, letter);
num | letter
,,,,, o
1 | one
2 | two
3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:
SELECT select_1list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WIiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a wWITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, Or DELETE.

7.8.1. SELECT in WITH
The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)

98

Queries

)

SELECT region,

product,

SUM (quantity) AS product_units,

SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WwITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used in
top_regions and the output of top_regions is used in the primary SELECT query. This example could
have been written without wiTH, but we'd have needed two levels of nested sub-sELECTs. It's a bit easier
to follow this way.

The optional RECURSIVE modifier changes WwiTH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For uNION (but not UNION ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. Solong as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For uNn1IoN (but not uNION ALL), discard duplicate rows and rows that
duplicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology chosen
by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
UNION ALL

99

Queries

SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_guantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just
one or a few fields to see if the same point has been reached before. The standard method for handling
such situations is to compute an array of the already-visited values. For example, consider the following
query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,

g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and f2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW(g.fl, g.f2)],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.f1, g.f2),
ROW(g.fl1l, g.f2) = ANY (path)
FROM graph g, search_graph sg

100

Queries

WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip
Omit the rOW () syntax in the common case where only one field needs to be checked to recognize a
cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order. You

can display the results in depth-first search order by making the outer query orRDER BY a “path”
column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a L.IMIT in the
parent query. For example, this query would loop forever without the L.TMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l1 FROM t
)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL's implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the wiTH query's output anyway.

A useful property of wITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling wITH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a WITH query to avoid redundant
work. Another possible application is to prevent unwanted multiple evaluations of functions with side-
effects. However, the other side of this coin is that the optimizer is less able to push restrictions from
the parent query down into a WITH query than an ordinary subquery. The wiTH query will generally be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

The examples above only show wiTH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in wITH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in wITH. This allows you to perform
several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= '2010-10-01"' AND
"date" < '2010-11-01"
RETURNING *

101

Queries

INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_log.

A fine point of the above example is that the wiTH clause is attached to the INSERT, not the sub-SELECT
within the 1NSERT. This is necessary because data-modifying statements are only allowed in wITH clauses
that are attached to the top-level statement. However, normal wiTH visibility rules apply, so it is possible
to refer to the wiTH statement's output from the sub-sELECT.

Data-modifying statements in wITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying
statement, that forms the temporary table that can be referred to by the rest of the query. If a data-
modifying statement in wITH lacks a RETURNING clause, then it forms no temporary table and cannot be
referred to in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-
useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive witTH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WwITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WwiTH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in wiTH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “see” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNING data is the only
way to communicate changes between different wiTH sub-statements and the main query. An example
of this is that in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)

SELECT * FROM products;

the outer seLECT would return the original prices before the action of the UPDATE, while in

102

Queries

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)

SELECT * FROM t;

the outer seLECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also
applies to deleting a row that was already updated in the same statement: only the update is performed.
Therefore you should generally avoid trying to modify a single row twice in a single statement. In
particular avoid writing wiTH sub-statements that could affect the same rows changed by the main
statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in wITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

103

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [n) variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) 1 varchar [(n)] variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float$8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields 1 [(p)] time span

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s) exact numeric of selectable
precision

path geometric path on a plane

pg_lsn PostgreSQL Log Sequence
Number

point geometric point on a plane

polygon closed geometric path on a plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

104

Data Types

Name Aliases Description

smallserial serial? autoincrementing two-byte
integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time time of day (no time zone)

zone |

time [(p)] with time zone |[timetz time of day, including time zone

timestamp [(p)] [without date and time (no time zone)

time zone]

timestamp [(p)] with time|timestamptz date and time, including time

zone zone

tsquery text search query

tsvector text search document

txid_snapshot user-level transaction ID
snapshot

uuid universally unique identifier

xml XML data

time zone), xml.

Compatibility

The following types (or spellings thereof) are specified by SQL: bigint, bit, bit varying, boolean,
char, character varying, character, varchar, date, double precision, integer, interval,
numeric, decimal, real, smallint, time (with or without time zone), timestamp (with or without

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy

when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for integer|-2147483648 to
+2147483647

bigint 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807

decimal variable user-specified precision,|up to 131072 digits

exact before the decimal point;

up to 16383 digits after
the decimal point

105

Data Types

8

Name Storage Size Description Range
numeric variable user-specified precision,|up to 131072 digits
exact before the decimal point;
up to 16383 digits after
the decimal point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes variable-precision, 15 decimal digits
inexact precision
smallserial 2 bytes small autoincrementing|1 to 32767
integer
serial 4 bytes autoincrementing 1to 2147483647
integer
bigserial 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (Oor int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
numeric values yield exact results where possible, e.g., addition, subtraction, multiplication. However,
calculations on numeric values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: the precision of a numeric is the total count of significant digits in the
whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERTC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values

106

Data Types

to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a
bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000; NUMERIC
without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = 'NaN'. On input, the
string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including naN). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:

SELECT x,
round (x::numeric) AS num_round,
round (x: :double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | num_round | dbl_round
,,,,,, SO
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 -0
0.5 | 1 | 0
1.5 | 2 | 2
2.5 | 3 | 2
3.5 | 4 | 4

(8 rows)

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic
(single and double precision, respectively), to the extent that the underlying processor, operating system,
and compiler support it.

107

Data Types

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

* If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

* Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least
6 decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

Note

The extra float digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of 0, the output is the
same on every platform supported by PostgreSQL. Increasing it will produce output that more
accurately represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
-Infinity
NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”,
respectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will
probably not work as expected.) When writing these values as constants in an SQL command, you must
put quotes around them, for example UPDATE table SET x = 'Infinity'. On input, these strings are
recognized in a case-insensitive manner.

Note

IEEE754 specifies that NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. f1oat with no precision specified is
taken to mean double precision.

Note

The assumption that real and double precision have exactly 24 and 53 bits in the mantissa
respectively is correct for IEEE-standard floating point implementations. On non-IEEE platforms
it might be off a little, but for simplicity the same ranges of p are used on all platforms.

108

Data Types

8.1.4. Serial Types

The data types smallserial, serial and bigserial are not true types, but merely a notational
convenience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval ('tablename_colname_seq"')
)
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;
Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate

values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Because smallserial, serial and bigserial are implemented using sequences, there may be
"holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval () in Section 9.16 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns
in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial should
be used if you anticipate the use of more than 23! identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and floating-
point literals, as well as typical currency formatting, such as 's1,000.00'. Output is generally in the
latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size Description Range
money ytes currency amount - .
8b 92233720368547758.08
to
+92233720368547758.0]

y

109

Data Types

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real and
double precision data types can be done by casting to numeric first, for example:

SELECT '12.34'::float8::numeric: :money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8§;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a

money value is divided by another money value, the result is double precision (i.e., a pure number, not
money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit
character(n), char(n) fixed-length, blank padded
text variable unlimited length

Table 8.4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n is a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store the
shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length value will
be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character (1) . If character varyingis
used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregarded
when comparing two values of type character. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C" < E'a
\n'::CHAR (2) returns true, even though c locale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a character value to one of the other string types. Note
that trailing spaces are semantically significant in character varying and text values, and when using
pattern matching, that is L.IKE and regular expressions.

110

Data Types

The characters that can be stored in any of these data types are determined by the database character
set, which is selected when the database is created. Regardless of the specific character set, the
character with code zero (sometimes called NUL) cannot be stored. For more information refer to
Section 23.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use text
or character varying without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character (n) is usually the

slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok'");

SELECT a, char_length(a) FROM testl; —--
a | char_length

______ +_____________

ok \ 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok');

INSERT INTO test2 VALUES ('good ")

INSERT INTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES ('too long'::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length
_______ +_____________
ok \ 2
good | 5
too 1 | 5

The char_length function is discus