bert
Here are 1,938 public repositories matching this topic...
-
Updated
Jul 25, 2021 - Jupyter Notebook
-
Updated
Jul 1, 2021 - Python
-
Updated
Oct 22, 2020
-
Updated
Nov 4, 2021 - Python
-
Updated
Nov 29, 2021 - Rust
chooses 15% of token
From paper, it mentioned
Instead, the training data generator chooses 15% of tokens at random, e.g., in the sentence my
dog is hairy it chooses hairy.
It means that 15% of token will be choose for sure.
From https://github.com/codertimo/BERT-pytorch/blob/master/bert_pytorch/dataset/dataset.py#L68,
for every single token, it has 15% of chance that go though the followup procedure.
PositionalEmbedding
-
Updated
Nov 15, 2021 - Python
-
Updated
Feb 24, 2021 - Python
-
Updated
Oct 22, 2020 - Python
-
Updated
Sep 25, 2021 - Python
-
Updated
Jul 15, 2021 - Jupyter Notebook
-
Updated
Nov 26, 2021 - Python
-
Updated
Sep 12, 2021 - Python
While running the tutorials is not rare to meet with UserWarnings that are caused by underlying dependencies like transformers or pytorch. I think UserWarnings that are triggered by Haystack's or the user's code should stay visible, but those coming from dependencies could be hidden, as there's nothing we or the final users can do about it.
Examples:
- Tutorial 1: `/home/sara/work/hayst
-
Updated
Nov 30, 2021 - Scala
-
Updated
Nov 11, 2021 - Python
文档增加tokenizer类别及样例建议
欢迎您反馈PaddleNLP使用问题,非常感谢您对PaddleNLP的贡献!
在留下您的问题时,辛苦您同步提供如下信息:
- 版本、环境信息
1)PaddleNLP和PaddlePaddle版本:请提供您的PaddleNLP和PaddlePaddle版本号,例如PaddleNLP 2.0.4,PaddlePaddle2.1.1
2)系统环境:请您描述系统类型,例如Linux/Windows/MacOS/,python版本 - 复现信息:如为报错,请给出复现环境、复现步骤
paddle版本2.0.8 paddlenlp版本2.1.0
建议,能否在paddlenlp文档中,整理列出各个模型的tokenizer是基于什么类别的based,如bert tokenizer是word piece的,xlnet tokenizer是sentence piece的,以及对应的输入输出样例
-
Updated
Jun 19, 2021 - Python
-
Updated
Jul 9, 2021 - Python
-
Updated
Aug 26, 2021 - Python
-
Updated
Apr 23, 2021 - Python
-
Updated
Jul 8, 2021 - Python
-
Updated
Nov 13, 2021 - Python
-
Updated
Nov 30, 2021 - Cuda
-
Updated
Nov 21, 2021 - Python
-
Updated
Mar 21, 2021
-
Updated
Sep 23, 2021 - Python
-
Updated
Nov 26, 2021 - Python
Improve this page
Add a description, image, and links to the bert topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the bert topic, visit your repo's landing page and select "manage topics."
Currently, the
EncoderDecoderModelclass in PyTorch automatically creates thedecoder_input_idsbased on thelabelsprovided by the user (similar to how this is done for T5/BART). This should also be implemented forTFEncoderDecoderModel, because currently users should manually providedecoder_input_idsto the model.One can take a look at the TF implementation