Postgres Pro 9.5.20.1
Documentation

The PostgreSQL Global Development Group
Postgres Professional

https://postgrespro.com

https://postgrespro.com

Postgres Pro 9.5.20.1 Documentation

The PostgreSQL Global Development Group

Postgres Professional
Copyright © 1996-2019 The PostgreSQL Global Development Group

Copyright © 2015-2019 Postgres Professional

| 24 =Y = o] < ST XX

1. What iS POSEGTES PTO?iiiiiiiiiiiiii et e e et e e e et e et e et e et e st e et saanessnasanesanaesnneeennns XX
2. Difference between Postgres Pro and PostgreSQLc..oiiiiiiiiiiiiiie e e e XX
3. A Brief History of PoStgreSQL ..o e e e e et e e a e et r e a e aens xxi
3.1. The Berkeley POSTGRES PIOJECE ...ccuuiiiiiiiiiiieiiie et ee et e e et e et e e e et e e s e e s e eaneeanns xxi

G I o151 e) 4 =T 1 1 TP xxii

G TR TR =0 1S3 0 1 4 =11 O) IRt xxii

4. CONVENETIONS «.euiiiiiiiieiie ittt et ettt et e et e et et e et e et e eta s etuaetaaetaneeaneaneaasasesnsesneenneesnereneen xxii
5. Further INFOTMAatIoNoouuiiiiiiiie ettt e et e et s e et e e et e e eaa e eeaan e xxiii
6. Bug Reporting GUIAELNEScuuiiiiiiiieii e et e et e et e et e e e et e et e e et e eaeeaae e s esenaenns xxiii
6.1. TAentifyiNg BUgS ..oiuniiiiiiiiiie et e et e et e et e et e et e et e et e et e e e et eaaaanaarenns xxiii
STV o P) A o T 2 U)o 10) o PN XXiv
6.3. Where t0 REPOTE BUGS c.uiiiniiiiiieiiieiie ettt e et e et e et e et e e e e st e et e ean e aeeeanasannees XXVi

| B I 01 o) i T 1 RO OP PR PPRRPTRRRPR 1
I LY o o o S =Y =T 2
I T 5T =Y < L o) s OO TPPOTR PPN 2
1.2. Architectural FUNAamentalsccoouuiiiiiiiiiii ettt et e et e e e e 2
1.3. Creating @ Dat@basec..ciiuiiiiiiiieiiie e e et e et e et e et e e e et e et e e e e et aanaas 2
1.4. AccesSing @ Data@basecouiiiiiiiiiii i a e eaans 4

N N T 1@] I - oo 1D =Y [T S 6
P20 I § 01 0 1o L1 (o o) o KOOSR PPNt 6
W 00 1 1o1<)] o] %SO 6
2.3. Creating @ NEW Tablecoouiiiiiiiiiiee et e et et e et e e e et e et e e s e st e st e eanaeannns 6
2.4. Populating a Table With ROWSciiuiiiiiiiiiie e e e e e et e er e e e e e et e e e eeens 7
S T O 10 1=Y v o o = T K= 1 o) £ YN 8
2.6. JOINS BEtWEEN TaAbIES ..cuuiiiiiiiiiiiei et et e e e e et e e e et e et e et e s e et e et aaeeaanaees 9
2.7. Aggregate FUNCEIONS ...t et e et e e et et e e e e e e e e eans 11
PR & T U o Y b= 1 - SN 12
P8 B B 1= (<] 5 L) o T T OO OPPRUUPPRPRt 12

3. AdVANCEA FEATUTES ..ceuuniiiiiiiiii ettt ettt e et e et e e et e e et e e et s e e et s eenbseeenaeeeens 14
G 700 I § 0 1 0 1o 11 (o v o) + KPP PP 14
32, VB ittt ittt et ettt et et e et e e e et e et e et et e et e et e th e th et a et et e eha e et et e th e taeeanaaneanes 14

G TR TR 10} 4 =) o 1 s B =) £ TP 14
3.4, TTANSACEIONS ..eeniiiiiiiieeiie ettt et et ettt et e et e et et e et e et s ean e etnaeeraseeneannaenaaarasesnaennnns 15
3.5. WINAOW FUNCEIONS ..itiniiiiiiiie ittt ettt e et e ettt e e et e e et s e et e eebaeeeannaes 16
3.6, INNETIEATICE ..euiiiiiiiie ettt e et e et e e et e e et e e et e e aba e e et s eeebaaees 19
I 00 s Tod 11 153 (o) s KPP 20

L TSR T I I o U 1 - Vo £SO 21
T 1 0) I 4 01 - - QPPN 22
4.1, LeXiCaAl SETUCTUTE ...uuiiiiiiiiiieieii ettt et ettt e et e et s e et s e et e e et e eana e eaaaseennans 22
VA NV TSI b 4 0} =TT 0) o - 30
G T OF-Y 15 Vo B Vs Lod [0 F= SN 41

5. Data DEfINITION c.uuiiiiiiiiiiieii ettt et e et e et e e et e et e e et e e et e e eb e e et eeaaa e 44
5.1, TADLE BASICS teuuiiiiiiiiiietiiiie ettt e et e e et ettt e et e e et e et e et e et e e et e eab e 44
5.2, DEfaull VAIUES ...cuniiiieiiie ettt e et e e et e e et s e et e e et e e eea e eena e 45
5.3, COMSITAINES .oeuniiiiii ettt e et et e e et e et e et e et eebaeeaneeenneenaanaananas 46
5.4, SYSEEIM COIUITIIIS ...cvuniiiiiiiiiii it et e e et e et e et et e et e et e tt e st eetneatanesnnasenasanasanssnnessnsssnnssnneeen 52
T T\ (oo b7 b Vo B =Y o) (=SS 53

o T o 7 1 (=T [T 55
5.7. ROW SECUTILY POLICIES .uuiiuiiiiiiiiiii et e e et e e et e et e s e st e et e eaeaeseneeenneen 56
RS T o 1 1< o < 1< SO OTPTRTPTPPPR 61
5.9, INNETILATICE «.euiiiiii ettt e et e et e e et s e et s e et e e eba e e et s eeebaaaes 65

T O o= o i (o) a1 o o [P 68

L A O o) ' o R B L - PP 74
5.12. Other Database ODJECES ...ccuuiiiiii e e e et e e e e et e e e eaneeaans 75
ST G T D 1= oY= o [=3 0 Lo VA I = Yod L« 1 o o N 75

6. Data ManipuUlationcoiuiiiiiie e e et e et e et e et et e et e et e et e et e et et e e raaaas 77
6.1, INSETTING DAt cuuivniiniiiiii ettt et et et st te et e e s e et et seneeaaanaaneeaaenns 77

iii

Postgres Pro 9.5.20.1

Documentation
ST U o Yo k= 1k Vo B D 1<) - 78
LS TC T B TCY =] o Yo D - 1 - Nt 78
6.4. Returning Data From Modified ROWScciuuiiiiiiiiiiiieii et e e e e e 79
0 1§ 1<) o 1Y SN 80
T 1. OVEIVIEW L.ttt ettt ettt ettt et e et e et e et e et e et e eaa e eba s ean s eanneesaeeen s eanneanaeasasesnesnneens 80
A - Vo) (ST b q o} =TS (o) o - 80
I T 1= (= To Al I £ TP PPPN 93
7.4. CombiniNg QUETIESiiniiiiiiie ittt e et e et e e te e st e et e etaaete e anneeanesaneeanssnnasrnaarnnns 94
7.5, SOTEIIIG ROWS ..iuiiiiiiiiii ettt ettt et e ettt e e e et et et e et et et aaaanaeneaneaanaenesnanns 94
A T T I - T @] 95
7.7, VALUES LISES .itiiiiiiiiiii ettt ettt ettt ettt et e et e et e et e e et e e eea e e eean s eatanseetaneeasanaaennnans 96
7.8. W TH Queries (Common Table EXPIreSSIONS) ...cc.iiiiiiiiiiiieiiieeiie e eeieeeiee e e eaeeae e e eeanaas 96
T D F 1 = T Y 01T SN 102
T A 01 s 0 =) o (o 7 o 1= T PP 103
I LY o) aTc) =1 oy A 7 o 1= T RN 107
TG T O o ¥ = Yo =Y a5 1= SNt 108
8.4. BINATY Data TyDES couiiniiiiiiiiiiit ettt et e ee et et et e et et e e e et et e e e et eaneaanas 109
TR D E T b s Lo 4 0 1= T PP 111
I T 5 To o] L= N B 74 o 1= TN 120
8.7. ENUMETAtEA THPES .ueiniiiiiiiiiiiii et e et ee et e e et e et e e te e st e st e et e sa e st estnaasneaenasenesannees 121
8.8. GEOMEITIC T PES tiuiiiiiiiii ittt ettt et et et e et e eae et et e et et eaneaaaaneansaneaensenaaneeannenns 123
8.9. NetWOTK AAATESS THPES .ucevuiiiiiiiiiii it et et e e e e et e et e et e et e et e et e et eaeneseneeanaesnasnnasennns 125
T O = s vt o Lo B I 01T ST 127
T =) AT Y- B o] o 7 o 1= TSR 127
B.12. TUID THDE tuuiitineiiiieeti ettt ettt et e et e e et e ettt e e et e e etaa s e etaa s eatue s eatanseasnnaessasaeetansaesneennnnaes 130
TR T €1 I I 74 o1 TP PR PPN 130
814, JSON THPDES -utttuetiiiietii ettt ettt e et e et e e et e e et e ettt s e ettt s eataa e atta e aann s eeaaneeetanseasaeaasanaes 132
T TR AN ol = 7/~ SN 138
8.16. COMPOSITE TYPES .euniuniiniiiiiieeiieie ettt e et eee et et et et eaa et et eansaneanassnsenesneeeneeneennenns 146
T A - a o [74 01T TP 151
TR T O] oy =Ton Al Ko o) 1 i =Y il 7 o =T TNt 156
LTS T o o J £S5 s N 4 o 1 T PP 157
T R 7= o [l 7 o 1= S 157
1O 2 VE o Toa o) a F= NaTe MO o1=Y = 1 o) =S 159
1S BRI o Yo Tt Y B @ o T=) i< 1 o) PR 159
9.2, COmMPATISON OPETALOTS ..euuiuiiiiiiiieiieeitt ettt etete e et eae et etaeaaetnaetaeeneenesnasrsenesneesnsenseneenns 159
9.3. Mathematical Functions and OpPeratorsccc.ceeiiiiiiiiiiiiiie e e e e e e reeean e 161
9.4. String Functions and OPEeTatorseeiiiiiiiiiiieiii e et et e e et e et e e e eaneeaneeanns 164
9.5. Binary String Functions and OPeratorsccccuiiiiiiiiiiiieieiee e e e e e e e 176
9.6. Bit String Functions and OPeratorsccceiiiiiiiiiiiiiieiie et e e e e e e e e e eannaes 178
1S IR o< 1 =Y o A =Y] 1 T S 179
9.8. Data Type Formatting FUNCEIONScouiiiiiiiiii e e e e e e ees 192
9.9. Date/Time Functions and OPeTratorsccc.eeiiiiiiiiiiiieiie e e e e e et e e e aanaes 198
9.10. Enum SUuppOTrt FUNCEIONS ..cvuiiiiiiiiii e et e et e e et e e e et e e e eneeanaans 209
9.11. Geometric Functions and OPeratorscccuiiiuiiiiiiiiieii e e et e e e e e e e e eens 210
9.12. Network Address Functions and Operatorsccevueeviiiiiieiiieiiieeiie e eeve e e eaaa s 213
9.13. Text Search Functions and OPeTatorsccc.cevieiiiiiiiiiiiiieeiie et e e e e e e e e e e eenas 215
.14, XML FUINCEIOIIS ..ttuiiiiieiieiieii ettt et et et e et e et e et e et e eaueetteeata e et etanetnneenaeeeneeaneennsennnns 219
9.15. JSON Functions and OPETratorsScccuueeiiieiiieiieeiee e tieeete et e st eeteeereaereerseraeeanaesnnnes 227
9.16. Sequence Manipulation FUNCLIONSoiiuiiiiiiiiiii e e 234
9.17. Conditional EXPIreSSIONS ...cuuiiiuiiiiiiiiiiiie it et et e et e e et e e te e s e st e et e et ereeeaneeanaeanns 236
9.18. Array Functions and OPETatorscciiiuiiiiiiiiiiiiie et e e et e et e e e et e e ae e e e eeeeaaaeaes 239
9.19. Range Functions and OPETatorsSceiiueiiiieiieeiieeiiee et eeieeiee et e eteeeeeenaesteeaneesnaernnaees 242
9.20. Aggregate FUNCEIONSc.oiiiiiiiiii ettt et et et e et et e e e et et eenseneaenaansannns 243
9.21. WINdOW FUNCEIONS ..iuuiiiiiiiiiiie ittt ettt e et e e et e e et s e et s eeeaeeeens 249
9.22. SUDQUETY EXPIESSIONS ..cvuiiiiiiiiiiiiiieiie et et e et e e te et et e ete et e st e st estnaesnaeannesenasanaeenesens 251
9.23. RowW and Array COMPATISOIS ...uiiuuiireiiieiieetieetneeteeetieetneeteeenssnaesrneernasrnaessessaersnesnnesens 253
9.24. Set Returning FUNCTIONSouiiiiiiiiii et e et et e e e eae s e e e e aanas 256

iv

Postgres Pro 9.5.20.1

Documentation

9.25. System Information FUNCEIONSccuniiiiiiiiii e e eae e 259
9.26. System Administration FUNCLIONSccuniiiiiiiiii e e e 270

1 727NN b o [0 £ ol 21 0B o] 1 (o) o < SRS 282
9.28. Event Trigger FUNCEIONS ...c.iiiiiiii ettt et e e e e e e e e e e e e eans 282
O 74 o TR 0] 1177 /= 0) o PP 286
L0.1. OVEIVIEW ..ttt ettt et ettt et e et e et e e tu e ta e taa e et etae e et setaseaneenneesaeeeneanneennaenes 286
IO @) 013 =1 Mo) o PP 287

J G TR 1 o Lo (o) o < S T TSRO PPRU PP 290
O VY LD TR o) i< L £ RN 294
10.5. UNI ON, CASE, and Related CONSEIUCESuviiiiniiiiiieiii ettt e e s 294
R 1T 1) = TP OPRR TR 297
) 00 PR a1 oo Yo 1 o v (o) s PP 297
1 o =l 7 o 1= T SN 298
11.3. MulticOlumNn INAEXES ..ceuuiiiiiiiiiieiie ettt et e et e et e et et e e et s e et e eeeanes 300
11.4. Indexes and ORDER BY ...c.uuiiiiuiiiiiiiiii ettt e et e et e et s e et s e et e e eaiseaaaneeeaanaes 300
11.5. Combining MUultiple INAEXEScouiiiiiiiiiiiei e e e e e e et eea e e e e aaeeens 301
L T U o b o O TR Y0 o) =Y 302
11.7. IndeXeS ON EXPIESSIONS ..ovuuiiiniiiieiiieeiieeiieeteete et et eete et e et estaeetnaasnesenessnassnaeanaesnnasnnnes 302
11.8. Parti@l INAEXES ...ccuuiiiiiiiiiiieei ettt ettt et et e e et e e et e e et s e et s e et s e et eaanaeaenanaees 303
11.9. Operator Classes and Operator Familiescceveeiiiiiiiiiiiiiiii e, 305
11.10. Indexes and COLlAtiONScouuiiiiiiiiiie et ettt e et e e et s eeaa e eeaanes 306
11.11. Examining INAeX USAQE ...ccuuiiiniiiiiiiiiiiiieii et et e e eieete e e st e et eeanseanesanaeaneesnassnnasnnnns 306
12, FUll TEXE SEATCI ..uniiiiii ettt e et e e et s e et s e et e eeaanes 308
D200 IR a1 /o Yo 1 Toa v (o) s SO PR 308
12.2. Tables and INAEXESuiiiuuiiiii ittt ettt e et e e et e e et s e et s eeaaeeeens 311
12.3. Controlling TeXt SEATCRciuiiii e et e e e ea e eaanas 313
12.4. AddItional FEATUTES ...cccuuiiiiiiiiiie ettt et e e et e et e et e e et e e eaa e eaaans 318
12,5, PATSETS ..ttt ettt et et e e e et e et e et e ea e et s et e th e e b et et et e eaa e aaneanaes 323
12.6. DICLIOTIATIES .uevuniiiiiitieiiieiie ettt et et e et e et e et e et e etaetteeetaseaneetnetnneesaseenaenneenasesasesnnenns 325
12.7. Configuration EXAIMPLEccouiiiiiiiiiiiiie e e e ee et e e e e et e et e st e st e eaae e s e senaaaanas 333
12.8. Testing and Debugging Text S€arcChccccooiiiiiiiiiii e 334
12.9. GIN and GiST INAEX TYPES .ueeuniiuniiiiiiieeieeiieeeieetie et e et e ete et e st e et saeaeseaestnaernaernaerenasen 338

{2 O o 1Yo | U] o Yo i APt 338
12,17, LIMIEAETIONS ..eeiiiiiiiieiii et ettt ettt et e et e et e et e eb e et e e e eaneebeeaaeeanaens 341
12.12. Migration from Pre-8.3 TexXt S€arChcoivuiiiiiiiiiiii e e 341
IRCT 70} Toi ¥ hiu =Y o Loyt A o) s 1 o'] EEU SN 343
G 00 I a1 /o Yo 1 Fon v (o) s SRR 343
13.2. Transaction ISOLATIONceiiuuiiiiiii et ettt e et e e ee e e eaa e 343
IRCTRC TN 25" o] § (o3 | A o Yo -« 1 o o [Nt 348
13.4. Data Consistency Checks at the Application Levelccooviiiiiiiiiiiiiiiiieee e, 353
RS I T O 17T | SO OO TR PPN 354
13.6. LoCKING @Nd INAEXES ...uoiiniiiiiiiiiiii et e et e e e et e e te e et e et e e s e et e et eeanaeanerenesenneen 355
[oY o) a =N o Lo T I o1 356
14.7. USING EXPLAIL N ..ottt ettt ettt et e et e et e e et e e eea e e et s eetan s eetaeeasaseeeanseennans 356
14.2. Statistics Used Dy the PLannerccoiiiiiiiiiiie et e e e e e eaeeaanas 366
14.3. Controlling the Planner with Explicit JO N ClauSesccccoeviviiiiiiiieeiieiiieeieeeie e e, 367
14.4. Populating @ Databasecceiiiiiiiiiiiiiie et e e eaa e 369
14.5. Non-Durable Settingscccuiiiiiiiiiiiii e et e e et e e a e e e e e e e e e e eaens 371
ITI. Server AdMINISTTATION ...uiiii ittt e e et e e et e e et e e eeae e e et e e et e eebaeeaannsaas 372
15. Postgres Pro Installation from Source Codec.couiiviiiiiiiiiiiiiiii e 373
15,1, SROTE VEISION .utiiiiiiiiiiiiiii ettt e et e e et e e et s e et e e et e e et e eaaaeeenanaees 373
15.2. REQUITEINEIIES ..ouiiiiiiiiiiiieiieiie et et ettt e et e e et et et etaean et st sanetnesnsansanssnaasnsanssnsennsens 373
15.3. GettiNg The SOUTCEcvvuiiiiiiiieii ettt et e e e et e et e et e et e st e st e et e st esanaesnaaannns 375
15.4. Installation PTOCEAUTEc...viiiiiiiiiiiii ettt ettt e e e e e et e e et e eeaaees 375
15.5. Post-INStallation SELUD ...ccvniiiiiiiiei et e e e e e et e e e aaaaas 385
T ST 1o i o o)) =T RN 386
15,7, WHRAE NOW? ittt ettt e et e e et e e e et e ettt e e et s e et s eeta e eataeeeaanneeesnneeenanaeees 386
[RSTRTIST0Y o] o o) Yo B K= o) o 00 Tt 387

Postgres Pro 9.5.20.1

Documentation
15.9. Platform-SpecCifiC INOLES ...iiuiiiiii e e e e e et e e e e et e et e e e e e eeens 387
16. Installation from Source Code 0N WINAOWSciiiuiiiiiiiiiiiiiniiiie et e e e eeaans 396
16.1. Building with Visual C++ or the Microsoft Windows SDKccooviiiiiiiiiiiiiiiiiieeeeene, 396
16.2. Building libpg with Visual C++ or Borland CH+4c.coeiiiiiiiiiiiiie e 400
17. Server Setup and OPETAtionccciuiiiiiiiiiiiiii e e e et e et e et e e e et e eaae e s e st e saneesaaees 402
17.1. The Postgres Pro USEIr ACCOUNLccuuiiiuiiiiiiii et et et e e et e e et e e ae e s e eaesaneesaaeannns 402
17.2. Creating a Database ClUSLETiiiiiiii e e e e e e eaaaeas 402
17.3. Starting the Database SEIVET ... et e e e eaa e 403
17.4. Managing Kernel RESOUTCESccuuiiiiiiiiiiiiieiii e et et e e et e et e e e e st e ea e e e eanneeans 406
17.5. Shutting DOWN the SETVETciniiiiii e e e e e e e et e e e e s e eanaas 414
17.6. Upgrading a Postgres Pro CIUSLETccuiiiiiiiieii et e e e e e eaaes 415
17.7. Preventing Server SPOOLINGoiiiiiiiiiii et e e e e e e e et e e e e e aaaa s 417
I T 25 s Lol oy 74 01w 10} A B @] o] 10} s 1~ SN 417
17.9. Secure TCP/IP Connections With SSL ..ot 418
17.10. Secure TCP/IP Connections with SSH Tunnelsc.c.ooiuiiiiiiiiiiiiiiii e, 421
17.11. Registering Event Log 0N WINAOWSccuiiiiiiiiiiecie e et e e e e e ea e eaaaas 422
18. Server Configurationcooueiiiiiiiiii e et e e e et e e te e et e st e st e eanaeanneeannees 423
18.1. SettiNg ParamElerS ..ouuiiiiiiiiii it et et et e ee et et et e et e it e e et eaneaneaneeaneens 423
18.2. File LOCATIONS ..cetuiiiiiiieiie ettt ettt e et e et e et e e e et e e et s e eta s eetaeeeenneeeens 426
18.3. Connections and AuthentiCationccceiiiuiiiiiiiiiiii e 427
18.4. ResSoOUICe CONSUIMPEIOTL tuuivuiiniiiiiiitie ittt te e et et e te et et et et et eaneeneesnsaneeneenneenernesnneensens 431
[T T4 L AN Y=Y o B o Yo Nt 436
[T T A V=Y o) Tok=1 L) o P 441
R T @10 1Y oy v o F a1 o o PR 444
18.8. Error Reporting and LOGQingccuceiieiiiiiiiieiiie et e e et et e e e et e et e et e et e et e e s aannnas 448
18.9. RUnN-time STATISTICS ..ivuuiieiiiiiiiii ettt et e et e e e e e e eenes 456
18.10. AutomatiC VACUUIIIIQ t.uivuiiiiiiiiiiiie et e e et et e e e et et e e e et et eenseaaenaenaannns 457
18.11. Client Connection Defaultsooiiiiiiiiiiiiiii e 459
ST D2 o o LY, K- N = Vo 1= 00 =Y o N 466
18.13. Version and Platform Compatibilitycocouiiiiiiiiii e 467
RS 700 7 S 5 v oo 3 ol = o 1 0 o P 469
RS T B TR o 4 T Y A) o] o) o - S PN 469
18.16. CUStOMIZEA OPLIONIS ..vvniiiiiiiiie et e et e et e et e e e e een e st e eaneeansennesanaennnns 471
18.17. DEVEIOPET OPEIONIS ..iiuniiiiiieiiie ittt et e et e et e et e e e e et e et e e s e st eeanasanaasnnssenassnaerneeen 471
TR R T o o) it A) o] T) o TSNt 473
19. Client AUthentiCAtION .. .couueiiiiiiiii ettt e et e e et e e et e e et e e eaaeeeanaeeeanns 475
19.1. The pg_hba. CONT File oeuniiiiiiieie et e e et e e e e e et e e ae e e e snaaannas 475
19.2. USET NAIME MADS tiuiiuiiiiiiiiiiiiiit ettt ettt e ee et et et et et sanaatttnetneatataneeneennteaseneesneens 481
19.3. Authentication Methodsooiiiiiiiiiiii et et eeas 482
19.4. Authentication Problemsoouiiiiiiiiii e e 488
20. DAtabase ROLEScuuiiiiiieiie et ettt e e et e e e e aa e aaans 490
20.1. DAtabase ROIESciiuiiiiiiiiiiie et et ettt et e et e et e e e e eeas 490
20.2. ROLE ATETIDULES ..citiiiiiei ittt ettt s e et e e et e e et e e ae s e e et e e et aees 491
O T 2 oY (oI (=Y 0 o 1= =] o 1 o PP 492
O D) /o] o) 01 h Yo N 2 Vo 1= T SRR 493
20.5. FUNCEION SECUTILY ..vuiiiniiiiiiiiiiie e ettt e et e et et e et et e e e e aaasaneaneeanaaneannees 494
21. Managing Dat@abasEsccuiiiiiiiiii et e e e e e e r e et aa e aaaaaaas 495
210, OVEIVIEW ittt ettt et et et e et e et et e et et e et e et e et eeaaeeaasean s eannetrataaeannaenaeananesnnennnas 495
21.2. Creating @ Databasecccuuiiiiiiiiie e e e e e et e e e 495
21.3. Template DatabasEsccuiiiiiiiiiie e et e e e e e et e e e e e e e e e 496
21.4. Database Configurationccccoeiiiiiii i e e et eaa s 497
21.5. Destroying @ Databasecieuiiiiiiiiiieiiie e et e e e aaas 497
B B ST -1 o] (=T o ¥ Vol Y 498
AV o Tol-1 b 21 n o) o HE PRI 500
P T e Vo Y (SR 10} o) 10) o PR Nt 500
A OFo Y 1 - 1o To) N TV 1 o] o Yo i AU 502
22.3. Character St SUPPOTT ...uuiiiiiii et e e te e e e e e et e e s e saeeaneeraenes 504
23. Routine Database Maintenance TasSKScviiuuiiiiiiiiiiieriie et eaaees 511

vi

Postgres Pro 9.5.20.1

Documentation

23.1. ROUTINE VACUUINIIIG t.uivuiiniiiiiiiiiie ittt et ei et et ete et e et et et s ene et sansansensensensenasensensennsenns 511
23.2. RoOUtINe REINAEXING ..uiivniiiiiiiiiiiieie et e e et e e e et e e te e s e et e eaneeaneaenns 518
23.3. Log File MaiNtENANCEcivuniiiiiiiieiieeie e e e e et e et e et e et e et e et e e s e et eeaneeanaeenneeens 518
24. BacKup and RESEOTEcuuiiiiiiiiiiiiie ittt ettt e et et eete et e et e et e et e aan e et e saneannesenasrnaannnns 520
24. 1. SQL DUIND tttuttiitiitiiiet ettt ettt ettt et e e et s e et s e eti e e eaaa s e et e ettan e aetaneeetaeeannseesanseannnns 520
24.2. File System Level BACKUDcovuiiiiiiieii ettt e e e e e e et e e e e aan s 522
24.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccccevviiiiiiiieiiieiieceeeeen, 523
25. High Availability, Load Balancing, and Replicationcccccoovviiiiiiiiiiiiiieee e 533
25.1. Comparison of Different SOIULIONSccouiiiniiiiiiiiii e e 533
25.2. Log-Shipping Standby SEIVETSc..ciiiiiiiiieiiie et e e et e e e et e e a e annas 536
25.3. FAIlOVET ..ottt e e et e et e e e e et et b e et e e et e aba s 543
25.4. Alternative Method for Log Shippingcceoiiiiiiiiiii e 544
A T T (o) = Lo I o720t 545
26. Recovery Configurationccooiiiiiiiiiiiii et e e e e e e e e et e e r e e e e aans 552
26.1. Archive ReCOVETY SELEINQS c.uuiiiniiiiiiii ittt e et e et e et e e e et e e e e e e aenas 552
26.2. Recovery Target SEtEINQS ..o.oiiiir ittt e e e e e e e e ee e e e e e eneeanaans 553
26.3. Standby Server SEettiNgScccviiiiiiiiiiiie e e e e e e e aans 554
27. Monitoring Database ACEIVILYccuuiiiiiiiiiiii e e e e e e e et e e e eaans 556
27.1. Standard UnixX TOOLSiiiiiiiiiiiii ettt et e et e et s e et e e et e eaaa s 556
27.2. The StatistiCs COllECTOTiiiuiiiii et e e e e et e e e eeeaas 557
ARG T VA T=2 7 1 Vo B 0 Yo -« T 571
PAVAR: TR D)2 0 TV o N (o I o= Lol 1 1o AP 571
28. Monitoring DiSK USAQGE ...ccuuiiiuiiiiiiiiiiie ittt ee e et e e et e et e et e et e et e et e ean e st eanasnnasenaarnnns 581
28.1. Determining DiSK USAQE c.uuiiuniiiiiiiiiiiiieiiieiiieeiee et e e e et e e e et e e ae et e st e saaeeaaesnnaernaannnns 581
28.2. DiSK FUIl FAIIUTE ..ceuuiiiiiiiiiieiiie et ettt e e et s e et e e et e e et e e eana e 582
29. Reliability and the Write-Ahead LOgccuuiiiiiiiiiiee e et e et e e e e e eaans 583
20,1, REHADIIEY cetuniiiiiiiie et e et e et e et e e et e et e et e e e e e aa e eeaaees 583
29.2. Write-Ahead Logging (WAL) ...couuiiiiiiieii et e e e e e et e e et e st e eaneeaasennesanaannnas 584
29.3. AsSynchronous COMIMILiiiiiiiiiiiie e e e e et e e r e e e e et e st e eanaeaeesnnesenaennnns 585
29.4. WAL Configurationccoueiiiiiiiiii et e et e e et e et e et e st e st e eaae e e eeenaeens 586
20.5. WAL INEEITIALS ...ttt ettt et e e e et e et e e e et e e et s e et s e etaeeaanneeennn e 589
30. REGTESSION TESES .iuiiiiiiiiiii ittt et et et et e te et et e e e et eaa et et eaneaneanasnseneanasnnaenaens 590
30.1. RUNNING The TeSES couniiiiiiiiii e e et e et e et e et e sa e et e e e s st e eanaeraaesnnaeen 590
30.2. TeSt EVAlUATION .euuiiiiiiiii ettt et et e et e e et s e et e e e e e e eeas 592
30.3. Variant CompariSOn FileSccuiiiiiiiiiiiieiiie e e et e e e e e et e et e e e e aaaaas 594
0.4, TAP TeSES teutiiiiiiiiiie ettt ettt et e et e e et s e et e et e e et e e et e e et e et e et e aaa e eaaanae 595
30.5. Test Coverage ExXaminationcooviiiiiiiiiiiiiiiiir e e e et e e e eaeeae e e eaneaanas 595

TV, CLIENE INEETTACES ..unieiiiiiiiee ettt e et e et e et s e e ta e e et e e et s e et e eaaneaenannas 596
NI 10 oo S O BN 1 o) -) o7 597
31.1. Database Connection Control FUNCEIONScc.oviiiuiiiiiiiiiiiiiiiie et 597
31.2. Connection Status FUNCLIONScouuiiiiiiiiiiiii e e 607
31.3. Command Execution FUNCLIONSccoiuiiiiiiiiiiiii ettt aae e 612
31.4. Asynchronous Command PrOCESSINGccuuiiuuiiinieiiieiiieiiieiiie et et e eieeteereeeeeeraeraeeaneeens 625
31.5. Retrieving Query Results ROW-BY-ROWciiuiiiiiiiiiii et eaaas 628
31.6. Canceling QUETIES IN PrOQgTESS ..ciuuiiiuiiiiiieeiieeee et e eiee e et e st e ete et e st esrnaeseaereaeeenessnnees 629
31.7. The Fast-Path INTETTACEccieiuniiiiiiiii et eae s 630
31.8. Asynchronous NOtIfiCationccouiiiiiiii e e 631
31.9. Functions Associated with the COPY Commandcoeevuiviiiiiiiiiiiniiiinniiii e, 631
31.10. CONtrol FUNCEIONS ...civuiiiiiiiiiiieieii ettt et e et e e et e e et e e et s e et e eebaeeeanaas 635
31.11. Miscellaneous FUNCLIONSiiiiiiiiiiiiiiie ettt et e e e e et e e eea e eeaan e 636
31.12. NOTICE PrOCESSINIQ ..iuuiiiiiiiiiiiiiiii ittt et e e e et e et et e e e et eanaeneanaeaneanaeneeaneens 638

G R T T c) o L 7451 V<) 1 0 PP 639
31.14. Environment Variablesooo ittt 645
31.15. The PasSWOTA File ...ccouuiiiiiiiiiiiiiie ettt e e e e e eee e eeaans 646
31.16. The Connection ServiCe Fileccuiiiiiiiiiiiiiiiiii et 647
31.17. LDAP Lookup of Connection Parametersccccueiiieiiiiiiiiiiiieeiieeie e e eieere e e e e eeannas 647
G I S 1] I 1) 0 o 10) ol PP 648
31.19. Behavior in Threaded Programsccccuiiiiiiiiieiiieiii e eeiee e eteere e e e et e st e eaneeannaeanees 651

vii

Postgres Pro 9.5.20.1

Documentation
31.20. Building libpPg PTOQTaIMScvuiiiiiiiiiiii et e et e et e et e e e et e et e e e e saeerneeraneees 652
N IRV I =5 & 10 o] (ST o0 o Yo 1 =Y 4 =S 653
GV IR 1 oo [T 0] o [T o] S 663
G120 IR § o o o 1§ Toa v o) o U 663
32.2. Implementation FEAtUTEScccuiiiiiiiii et e e e e et e e e e e eaas 663
G I T O 1Y o L 31 =) o ir= o - SRR 663
32.4. Server-side FUNCLIONSoiiiiiiiiiie et e et e e e et e et e et e et e e e e e e eaanas 667
Y AN TN 5= 100} o] (T o o o i< 11 s NSRRI 668
33. ECPG - Embedded SQL in € ..ottt et e et e et e e e e eeas e eebaeeees 673
G 6 T I I s L= T o) s o] o) AP 673
33.2. Managing Database CONNECLIONScccuuiiiiiiiiiiiiiii e e e e e e e eaaas 673
33.3. Running SQL COMMANAS ...ccuuiiuniiiieiiieeiieeiie e et e ete et eeieete et estaestestnesraaesenesenessnassnaesnnaes 676
33.4. Using HOSt Variablesocuiiiiiiiiiee et e et e e e e e et e e e e eens 678
G0 28 TR B2 0 o 0§ (o 1 ©) N 690
G T O T oTo 10 74 o =TI IR o) -) 7 ANt 692
33.7. USING DESCTIPLOT ATEAS ..euiiniiiiiiiiieiie ettt ettt et e e et et e et et et e e et eaneanaeeseneenneens 703
ICTC 7= TR 5 ol) alll & = 1o 1 o o 1Nt 715
33.9. PreproCesSSOT DITECTIVESiiuiiiiiiiiieiii et e e e et e e e et e e e et et e eae e eanaans 721
33.10. Processing Embedded SQL Programsccccuuiiiniiiieeiieeiieeieeieeieeieeaeeaneesneeeneennneees 722
G 76 T N U 5 o) = iy 0 0 T T) o T P 723
6 T IR oo (R @) o [T o1 =S RNt 724
ICTC 0 B T O TE V.Y o) o] § of 1 (o) s 1= SNt 725
33.14. Embedded SQL COMINATIIAS t.iuiuiiinininietiinineet ettt ettt et eaete et easasteenensasteenensaeeaenens 729
33.15. Informix Compatibility MOdecivvniiiiiiieii e e 750
G 6 T G T 1 1Y o o = 1 =N 763
34. The Information SCREIMAiiiniiiiiiee e e e et e e et e et e e et e st e eaaaeannas 765
O N s L= o 1Y oo - RN 765
G N D -1 = B 74 o =T T PP 765
34.3. informati on_schema_cat al 0g NaAME ..ot e e e e e e e ees 766
34.4. adnministrable role authori Zati ONS ..oo.iiiiiiiiii i ae e 766
7 o T Yol o I A oX=1 o | T o] == PP 766
34.6. At LT DUL S ittt e et et et e e e e e e ea e eaeans 767
7 A o o - T - Yot =T =Y =Y A= ST 769
34.8. check _CONStrai Nt _FOULTi NE _USAQGE ciuiuiriiniiiiieiiieeee e ee e e e e e et et eeeae e sneaeresneaneanans 770
G 7 ® I od o= Tod S ol o] 4 13 A -V 1) A= SRS 771
34.10. COI T AT ONS ceaiiieeiie ettt et et et et et e et e et e et e et e et etaeenaseeneaanneenneenaeeennaens 771
34.11. col lation_character_set _applicabi l ity i 772
G 7 o oo WY o g e FoT ¢ - VI o J U S = Vo [PN 772
G 7 0 G T oo ¥ T o o o o o] 1= T PPN 772
34.14. COlL UMM_PIi Vil BOBS iiniiiiiiiiieiiie ettt e et e et et et e et et e e s et et eensaneasnaansanaeanns 773
G o o oo WY o U o | AU LY Vo = PR 773
34.16. COI UMMS ettt ettt ettt et et e e et e et e et s etaetaa e eaa e eaneeneeetaeetasesneanneenneseneenneenns 774
34.17. CONSET Al Nt _COl UNTI_USAQE tuiniiiieiiiiiieineieet et eteteetetetesteaetesnesnetasnesnetastesnssastesnesnssesnnen 778
34.18. conStrai Nt _tabl @ USAQE .iuiiniiiiiii it et e et e e e e et e e e eaens 778
34.19. dat @_t Y PE_Pri Vil BOES ittt et et et e et et e e e et et e e e e et e e e aaaanas 779
34.20. dOMBI N_CONSE I AI NME S 1ttt ie ettt e e et et et et et etestesnetastesnasnenasnesnerasnesnenns 780
7 0 e (o] a0 U o U (o | AR U LY Vo = PR 780
34.22. OB NS ettt ettt et et et et e et e et e et e et s etu e et e eaa e eanetneeenaeetasetnetnneeraeeeneennaenns 780
7 A T =TI =Y 111 o L A 00V o 1= N 783
7 =T o F-1 o I =To I o] I =T ST 785
34.25. forei gn_dat a_ W appPer _OPL i ONS ..iiuiiiiiiiiiiie ettt et e et et et e ene et eansaaeenaanes 786
7 A S T o L =TI [e = L= W =Y o] o L= = PR 786
34.27. fOrel GN_SEIVEI _OPL i ONS tiuiiiiiiiiiiie ettt ettt et e e e e e et e e e e et eaneenaeneaneaneeneeenaens 786
G X T o] =T [Y= VA= TP 787
34.29. forei gn_t abl @_0Pti ONS .ot e e e e e e aaas 787
7 e T O B o] =TI [T A= L o] =T SRS 787
34.31. KEY_COl UMM _USBOE .iuiiiiniiiiieii ettt e te e et et e tte et e e et eaeaa e e saasnsanesnaaensenssnaanneaneens 788
7 G N o T =11) =T G TN 788

viii

Postgres Pro 9.5.20.1

Documentation

34.33. referential _CONSTT Al NS .ot et e e e e et e te s et et sneaeaasnnan 791
34.34. 10l ©_COl UMM ANt S 1iuiiiiiiiiiiiit ettt et et e et et e e e et et e e eanaaneeneaanaansenaeneaneens 791
34.35. 10l € T OUL T NME _GF ANE S 1ttt e e e et e e et et et eaa e e eaaanaaneanesnesnsannsanees 792
34.36. 10l ©_tabl @ _gr ANt S ouniiniiiiiiiiii it e e e et e et e e e aaaas 792
7 NG I o] = Lo Ao | =V 4 | A T PSPPI 793
34.38. IOl @ _USAGE _gF @NT S iiuiiniiiiiiiiii ettt ettt e et et et et e et et ean et et sansetstnsensaneesnsanseneeenns 794
34.39. TOULT NE_PIi Vil ©OBS ciniiiiiiiii ittt et e ettt e e e et et et e et e e e e e aaaaneeneannaanaens 794
34,40, FOUL T NS iiuiitiii ettt et ettt et e et e et e et e et e et e eta e eauaetaaseaneauseanaeatasetnetnneesneeenseenseennns 795
K Y o 1= 112 L - L USROS UPRPPRURt 800
R Y Yo 1= o (o = PSP 800
R G =Y o | I T L AT =Y PP 801
34.44. sql _impl @mMBNt At i ON_i N Ottt et e e e e e e 801
7 R N =Y o | I B Ua o [- Vo = N 802
G R S T Y o | I o T- Ued €= Vo 1= PP 803
R = Yo | I o T- Y A= PP 803
G R =Y | =Y 4 I [N 803
7 e =Y o | I B4 I o o T o] oo 1 =T S PN 804
7 YO A= o] I T T o] 1 13 A 4 VI | 08NN 804
7 I - Lo] I = T o G B VA I =T TP 805
34,02, 1A B ittt et et ettt e e it et et e eb e een e e aana s 805
34,03, LT ANST OF B ettt et ettt et et e et et e et e et e ta e eaa e ean e eaneeneeneeaaeans 806
34.54. triggered_updat @ _COl UMNS ..ottt et e et e e e e et e e e eae e e e e e e aanaens 807
7 e T T A e o = = PPNt 807
7 N 1O T T o LA o] g IRV A T =Y = T PN 809
G W 1= T- Vo [I o T G B VA I =T o [P 809
7 o T BT (Y=Y e =) AT aT=Yo J 00 VA o = 1 S PP 810
34.59. USEer _IMBPPI NO_OPL T ONS ittt ettt et et et et e et e et et ettt etnsanettestnsaneraasansensaneesarenns 811
7 G O T I =Y g 1 1Y o] oL g o [RN 812
34.61. Vi EW _COl UMM _USAOE .ituiiniiniiiiieieiie ettt ettt et ettt et seteetastastnsttastnsanseeasensensenessasenseneeenns 812
34.62. Vi EW T OUL T NE_USAOE tiuiiniiiiiniiiiiieeie et ee ettt ettt et e enaatttaetuaaanetnetneestansensssnteneeneesereneens 813
G G PRV I AV -V I Y U LY Vo = PR 813
T G SV I - PRI PPPRINt 814
AV T=) a77=) all e To 1=V 0N 011 o o ER PPN 815
G T 25 ¢ =Y o b a o 1 816
35.1. How ExXtensibility WOTKSciiuiiiiiiiiiiie et e e e e et e et e e e et e e a e e e e aanaas 816
35.2. The Postgres Pro TYPE SYSLEIMiiniiiiiiiiiieeie et e et e e e et e et e e ae e e eeens 816
35.3. User-defined FUNCEIONSiiuniiiiiiii ettt e e e e et e e e e et e st e eanaeannas 817
35.4. Query Language (SQL) FUNCLIONS ..cvuiiiniiiiiiiieiie et e et e ea e e e eeanes 818
CTo T T 2V b o wTo) o @ A7 Y ol o Vo o o RN 830
35.6. Function Volatility CategoTiesuiiiuiiiiiiiiieiiieiie et e e e et e e et e eae e s aeanaas 831
35.7. Procedural Language FUNCLIONSooviiiiiiiiiiie et e e aeas 832
35.8. Internal FUNCLIONS ...c.uiiiiiiiiice e et e et e e e e et e et e et e et e erasanneaenaeanns 832
35.9. C-Language FUNCEIONSoiuiiiiiiiiie et e e e e e e et e e e e e et e e e e e aanaenns 833
35.10. User-defined AQQTegatesc.ueiiuiiiiiiieeie et e et e et et e e e et e et e e et eeanesaneeaaeanns 853
35.11. USer-defiNed TYPES ..ocvuiiiiiiiiiiieiiie ettt e e et e et e e e e et e st e et e esaneeanaesnasanaesnesennes 859
35.12. User-defined OPETALOTSccuuiiiiiiiiiiiiie et e e e et e et e et e st e s s esanesaneaanaannnns 863
35.13. Operator Optimization INformationc.cceiiiiiiiiiiiii e 864
35.14. Interfacing Extensions TO INAEXESc.coiiiiiiiiiiiiiiieiie e e e e e e e e e eaaaas 867
35.15. Packaging Related Objects into an EXtensioncccccoeiiiiiiiiiiiiiiiniin e 879
35.16. Extension Building INfrastruCtureooiiiiiiiiiiiie e eaas 884
GG T 5 o o [0 (=) TN 888
36.1. Overview of Trigger Behaviorceiiiiiiiiiiiii et e e et e e e e e eens 888
36.2. Visibility of Data CRangesc.c.eiiuiiiiiiieeiie e e et e e et e e e e e e aaeeannas 890
36.3. Writing Trigger FUNCEIONS 1N Coouiiiiiiiii et et e eae et e e e e e e e e e eanas 891
36.4. A Complete Trigger EXAMPLEccouniiiniiiiiiiiii e e e e e et e e e e e e ea e e e eaens 893
G I A v/ L I 0 o [0 1) SRR 897
37.1. Overview of Event Trigger BEhaviorc.cceiiiiiiiiiiiii e 897
37.2. Event Trigger FiliNg MatTiXccociieiiiiiiiiie et et et eae et e e et easeneaaaeansaneeanaes 898

ix

Postgres Pro 9.5.20.1

Documentation
37.3. Writing Event Trigger FUNctions in Cccoiiiiiiiiiiiiin e e e 901
37.4. A Complete Event Trigger EXampleooouiiiiiiiiiiiiiece e e e e e e e 902
37.5. A Table Rewrite Event Trigger EXampleccooiviiiiiiiiiiiiiicieeee et e 903
G T N o LT AU F LT 4] 1Y oo N 905
38.1. The QUETY TIEE ..ouiieiiiiiiieeiie ettt e et e e et e et e et e et e et e st estnastnaernnesenasanaeanaaennasenns 905
38.2. Views and the Rule SYStEIMccuiiiiniiiiiiii e et e e e e e e eaes 906
38.3. MaterialiZed VIBWS ...c.uuiiiiiiiiiiiiieiie ettt ettt e et e e et e e et e e et e e eaa e eaaaeees 912
38.4. Rules on | NSERT, UPDATE, and DELETEcccuiiiiiiiiiiiieii ettt eetie et e eeie e 915
38.5. Rules and PriVIIEgESccuuiiiiiiiiiii ettt et e e e et e et e et e e e e b e aaaans 924
38.6. Rules and Command SEAtUScceeuuiiiiiiriiiieiiir ettt e et e et e e e e e e e eeeaans 926
38.7. RULES VETSUS TTIGGETS .uuiruiiiniiiieiiieeiiee et e etee et e et e et e et e et eatestneatnassnesnnessnassnaaenaeannnes 926
39. Procedural LanQUagESociuueiiiieiieiieeie et et et eete et e st e stneetnesunestaaasnasrnesenestnassnaesnnssnnessnns 929
39.1. Installing Procedural LanQUagesceeuueiiueiieeiieeiieeiieeeiieeieesieeeaneeaneeenessnaesnaesnaesnnaees 929
40. PL/pgSQL - SQL Procedural LanQUagecccuueiiueeiieeieeieeieeiieeeie et esteestneeanaernesnnessnesanesnns 931
0.1, OVEIVIEW ..eiiiieiieii ettt et et et e et e et e et e et e et e etu e et e taa s eaueaueeasaaetnseaneennearneeenseenneenneenes 931
40.2. Structure of PL/PGSQL ..ot e et e et e et e e e e et e st e et e s e et e sanaeanaaannaes 932
Z OGO D T=Tod F = 1 () o 1 TP 933
I o 4 0} ST 1T 10) s £ SRR PRUPRN 938
40.5. BaSIC STAtEIMEIIELS ..cuuiiiiiiiiii ettt et e e et et e e e e eanns 939
40.6. CONLTOL SITUCLUTES ...eiiiiiiiiieiii ettt et e et s e et e et s e eaa e e eaan s eananeees 946
ZU0.7. CUTSOTS ..ttuituitiette et ettt et e et e et etu e et e et s etaetasetaaeteaseanaennatnesatasetaetnneenneesnseenseeneeennnes 958
40.8. ETTOrsS And MESSAGES ..ouevuniiiniiineiiieeiieetiaeeteetaetnaesenettasanesensteestasstnaernneseessnessnesenaesenaes 963
/LTS T I o T o (=Yl o 0 Yol <o LU bl Y= RPN 965
40.10. PL/pgSQL Under the HOOGccuuiiiiiiiiiiiieiiiie ettt et e e et e eeieeeenae e 972
40.11. Tips for Developing in PL/PGSQLouiiniiiii et e et e e e et e e v e e saeeaaaas 975
40.12. Porting from Oracle PL/SQLcouiiiiiiiie e e et e e e e s e s e e aaeaanas 978
41. PL/Tcl - Tcl Procedural LanQUAagEc.eevueiunieinieiieeiieeiieetteetieetie et estnessnaeanessnassnesenassnnessnassnnns 987
1.1, OVEIVIEW ..ttt ettt e et et e et e et e et e et s et s etu e et e taa e eaueaueeataeetaseaneenneneneeenseenneennsenns 987
41.2. PL/Tcl Functions and ATQUINENTScccuuiiiiieiiiiiieeieeiiee e eteeteeee e st e et eereeesnnesanaeanaaannns 987
41.3. Data Values In PLITCL ...ccuuniiiiiiii ettt e e et e e et e e e e e e eeie e e 988
41.4. Global Data in PL/TCL ...ciuiiiieiiiiie ettt ettt e et e et e e et s e eeb e e eean e 988
41.5. Database Access from PL/ITCLc...iiiiiiiiiiiii ettt 989
41.6. Trigger Procedures in PL/TCLcoiiiiiiiiiii et e e et e et e et e e e eaaas 991
41.7. Event Trigger Procedures in PL/TClccouniiiniiiiiiicie ettt et e e 992
41.8. Modules and the unknown Commandceeeiurieiiriiiiieeiiie et e e e e e eeian e 993
41.9. Tcl ProCeAUIE INAIIES ..c.uniiiiiiiiiieeeii ettt ettt e et e et e e et e e et s e et e eeaa e eeeaaeeeeaans 993
42. PL/Perl - Perl Procedural LanQUageccceuuiiuniiiniiiieiiee e iieeie et e et eetneetaeesenestneeanessnesnnaannnns 994
42.1. PL/Per]l Functions and ATGUMENTEScouiiiiiiiiiiiiieie e e et et e e et e et e e e e aaneeannees 994
42.2. Data Values in PLPETLcoouiiiiiiiiiiie et et et e et e e et e enie e 997
42.3. BUilt-In FUNCEIONS ..eiiiiiiiii ettt et ettt e et e e et s e et s e eaaeeeens 997
42.4. Global Values in PL/PETLc..oiiiiiiiiiiieiie ettt e e e e e e 1001
42.5. Trusted and Untrusted PL/PeTLccoouiiiiiiiiii ettt 1002
2 ST o IV = ol B o T o =3 = 1003
42.7. PL/PEr] EVENE TTIGUETS ..uuiiniiiieiieiiie et et et e et e e e et e et e eae e st e st e st e sansaeneesnaesneesnnasnnnes 1005
42.8. PL/Per]l Under the HOOQooiiiiiiiiie ettt e e e eeeas 1005
43. PL/Python - Python Procedural LanQUAagEceeeuniiunieinieiiieiiieeieeieeeeeeieeeteereereesenesaneenens 1007
43.1. Python 2 vs. PYLRON 3 ...t e e et et e e e e e aans 1007
43.2. PL/PYthon FUNCLIONS ...civniiiiieie et e e e et e e e e e et e e ae e et e et e et e eanneeenaeen 1008
43.3. DAta VAIUES ..uiiiiiiiiieeiiie ettt ettt et et et eaa e aeas 1009
TG T Y ¥= Y oo o J B - - NN 1013
43.5. AnNonymous Code BIOCKScouiiiiiiiiiiiiie et et e et e e e e et e e a e e e eas 1013
ZZSCTUOTINI B o To {0 =) ol 2k V1 o Vo w0) 1< PP PRRPN 1014
43.7. DAtADASE ACCESS ..uuiiiuniiiiieeiie ettt ettt ettt et e e et e et e et e et e et e ta e ta e eaaaaes 1014
43.8. EXplicit SUDLTAnSACLIONS ...ccvuiiiiiiiiei e e e e e e et e e e e e e et e eaanas 1017
43.9. UtIlity FUNCEIONS ..ovuiiiiiiiiii et e e e e e et e et e et e st e st e eaaeereneeenaeen 1019
43.10. Environment Variablesco.iiiiiiiiiii e 1019
44, Server Programming INEETTACEccouniiiiiiiii e e e e 1021
44.1. Interface FUNCEIONS ...cuuuiiiiiiiiiii ettt e e e e et e et e e et e eaaa e eeeans 1021

Postgres Pro 9.5.20.1

Documentation

44.2. Interface SUPPOTt FUNCLIONScouiiiiiii e e e e 1053
AV G TLY (=Y 0 aTo) VAN =N a o Yo o) 00 1<) o | AP 1061
44 .4, Visibility of Data Changesc.cciuiiiiiiiieiiieeee et e e e st e e a e et e e e eaaeeanns 1070
O T b ¢V 1]) (YN 1070
45. Background WOTKET PIOCESSESccuuiiiniiiiiiiieiiieeieeie et et e ete et e st e st e et eeaeeeanesanasanaesnasennes 1074
2 L GT o Yo s o= B D 1= ToTo o b hia Lo S 1077
46.1. Logical Decoding EXamMPIEScccuiiiuiiiiiiiiiiiiiee et et e e e et e et e e e et e e ae e e e saaeannas 1077
46.2. Logical Decoding CONCEPES ...uuiiuiiiiiiiiieii e et e et e et e e te e s e st e et e e e e aeneeann e 1079
46.3. Streaming Replication Protocol Interfaceccccoviiiiiiiiiiiiiiece e, 1080
46.4. Logical Decoding SQL INterfacecccueiiuiiiiiiiiiiii e e e s 1080
46.5. System Catalogs Related to Logical Decodingccooeveiiiiiiiiiiiieiiie e, 1080
46.6. Logical Decoding Output PIUGINSccoiiniiiiiiiii e e e e 1080
46.7. Logical Decoding OutpuUt WIILET'Scviniiiiii e e 1083
46.8. Synchronous Replication Support for Logical Decodingcccceeveveiiiiiieiieiinnennnnnnn. 1083
47. Replication Progress TTaCKITIQciuueiieiiieiiie et e e e ee e et e e ete et e st e et e et ernasenesaneeanesennns 1084
VI, RETETEIICE ..ouniiiiiiiii ettt et e et e et e e tb e e et s e e et s e et s e ata e e eaaeeeaaneeananaes 1085
| ST) I O} a0} 00 T< 1 s Lo - JUTPRN 1086
PN 20)24 OO OPPPOPPRUPPRN 1087
ALTER AGGREGATE ...ttt et ettt e et e e et s e et s e et e e aaa e e aaaseeaaans 1088
ALTER COLLATTON .ottt ettt ettt et et e e et e e et s e et s e eea e e ean s eeban s eetaneaesasaaenneeenns 1090
ALTER CONVERSION ...ttt et ettt e et e et e et e et e e et s e et s eetanseetnneeaennaeenns 1091
ALTER DATABASE ..ottt ettt ettt e et e et e et e e et e e et e e aa s e eaa s eetanseatansaannnnas 1092
ALTER DEFAULT PRIVILEGES ...ttt ettt et e et e et e e et e e et e e eaane s 1094
ALTER DOMALIN ...ttt ettt ettt e et e et e e et s e et e e et e etta e e aean s eeaanseetaneeasnnaaanans 1097
ALTER EVENT TRIGGERouiiiiiiiiiiiiie ettt et e et e e et e e tes e e ean e eabaeeeen 1100
ALTER EXTENSION .ottt ettt et e et e et e et e e et e e et e e eean s e eaaa s eeaan s eetanseesnneeesnseeenns 1101
ALTER FOREIGN DATA WRAPPER ...ttt ettt ettt et e e et e e e e eeaas 1104
ALTER FOREIGN TABLE ..ottt et e et e et e et s e et e e et e e et e e eaaneeabaaees 1106
ALTER FUNCTION ...ttt ettt et et ettt e et e et e e et s e et s e et e e tta e eaanneeetaneeatanaeasnnnas 1111
ALTER GROURP ..ottt ettt e e et e e et e et e e e et e e et e eab e eenaeeeennaes 1114
ALTER INDEX ottt ittt ettt ettt e et e e the ettt e e et e e et s e et s eataneeaanseeeaaaeesaaeasaaeees 1115
ALTER LANGUAGE ...ttt ettt ettt e et e e et e e et s e et e e eaa e e eaneeebaeeesaeeees 1117
ALTER LARGE OBJECT ..ottt ettt et et ettt e e et e e et s e et e e et e eabaeeeenaeeanans 1118
ALTER MATERIALIZED VIEW ..ottt ettt e et e e et e e et s e et e e et e e ea s e et s eetaeeenanas 1119
ALTER OPERATOR ...ttt ettt et e e et s e et s e et e e et e e eaa s e et e eebaeeasanas 1121
ALTER OPERATOR CLASS ..ottt ettt et ettt e e et s e et s e et e e et e e eaaeeenanaees 1122
ALTER OPERATOR FAMILY .oitiiiiiiiiittiie ettt et ettt e e et s et s e ete e e aaeseeasaeebseeanaaeees 1123
ALTER POLICY ittt et e et e et e e et e e et e e et e e et s e et s e et e eeaaeeennneeenans 1127
ALTER ROLE ..ottt ettt et e e et e ettt e ettt e e tea s e et e e et e eabaeeasaeeeaasaeesaaaes 1128
ALTER RULE ..ottt ettt e e e et s e et e e et e e tea e e et s e et s eata e eesaeeennsaeenns 1131
ALTER SCHEMA Lottt et e e e et e e et e et e ettt e e eaa s e et s eatanseasnneaennneaenns 1132
ALTER SEQUENCE ..ottt ettt et e e ettt e e et e e et s e et s e et s eaaaeeeanneennns 1133
ALTER SERVER ..ottt ettt e et e e et e e et s e et e e et e e taa s eeebseeasaaeees 1136
ALTER SYSTEM ..ttt ettt et et e et e et e e et e e et e e e et s e ett s eettseeanaseeanneaeannaes 1137
ALTER TABLE ..ottt ettt e et e e et e e et e e et s e et e e et e e ana e etaaseetbaseaenaeaeens 1138
ALTER TABLESPACE ..ottt ettt et e et e et e e tae e e ta e e et s e eta s e etbeeeanneeeennaes 1149
ALTER TEXT SEARCH CONFIGURATION ..ottt ettt e e et e et e e eeieeeees 1150
ALTER TEXT SEARCH DICTIONARY ...ttt ettt et e et e et e et e et e eeieeeees 1152
ALTER TEXT SEARCH PARSER ...ttt ettt et e e e e e et e e e 1154
ALTER TEXT SEARCH TEMPLATEoiiiiiiiiiiiiiiiie ettt ettt et e et e e et e e eei e e eaa e 1155
ALTER TRIGGER ...ttt et e et e et e et e e et e e et s e et s e et e eeennaeeens 1156
ALTER TYPE .ttt et e et e et e e et s e et s e et e e et s e eaa s eetaneeataneaananas 1157
ALTER USER oottt ettt e et e e et s e et e e et s e et s e eean s eetaseatnnseannneaens 1160
ALTER USER MAPPING ..ottt ettt et e e e et e e et s e et s e et s e et s eeaaneaasanaeeen 1161
ALTER VIEW Lottt ettt et e et e et e et e e et e e et s e et s e et e e aaan e eeaanaeetaaaasanaeees 1162
AN ALY ZE ottt ettt ettt e e et et e et et a e et e et e ebeeaaa e aeaaas 1164
57 X 5\ O UPSRTPPPI 1166
CHECKPOINT ..ottt et ettt e e et e e et s e et s eeta s eata e eaaaeettaeeasaneeasaeeannsaeennaes 1168

xi

Postgres Pro 9.5.20.1

Documentation
L0 1700 1 R 1169
(O L0) N 1170
(O 1Y 1Y 1 0\ N 1172
(0010 11 11 1 5 1176
COMMIT PREPARED ..ottt ettt ettt e e e e e et et e e et e ea e e aeenerneaenns 1177
(00) 1178
CREATE AGGREGATE ...ttt ettt ettt e e et et e e s e e e aeeneaneans 1187
(O R N O N 3 N 1193
CREATE COLLATION .ottt ettt e e e e e et e et e e e a e e et eae e e e eaeeneanenenss 1197
CREATE CONVERSION ..uiitiiiitiiii ettt et e e e e e et et e a et e e rn e e eaeeneeneaeenes 1199
CREATE DAT ABASE .ottt ettt e et e e e e e e e e eaneneenss 1201
(O R N D D 1@ 11 7N 1204
CREATE EVENT TRIGGER ..ottt ettt et e e e e e e e enas 1207
CREATE EXTENSION ..ttt ettt e e e e e et et e et e e e e a e e st ene s eaneneenenenenes 1209
CREATE FOREIGN DATA WRAPPER ..ottt eaas 1211
CREATE FOREIGN TABLE ..ottt ettt ettt e e e et e et e e e e aens 1213
(O R N A O\ L O 0) 1216
CREATE GROUDP ettt ettt et e e e e e e e eaeaas 1223
(O R N AV D 1224
CREATE LANGUAGE ..ottt et e e et e et e e et et e e e e e e aneans 1230
CREATE MATERIALIZED VIEW .ottt ettt e e e e e ene e 1233
CREATE OPERATOR ..ottt ettt et et e et e et e e e e eneanenes 1235
CREATE OPERATOR CLASS .ottt ettt e et e e e e e e e aens 1238
CREATE OPERATOR FAMILY oottt ettt et e e e e e e e aneans 1241
(O R 2 D 0 I K N 1242
(O R N A T) I 1247
CREATE RULE ..ottt et et e et e e et et e e e et ea et e aene e eaeneenss 1251
CREATE SCHEDMA ..ottt et e et e e et e e et et s e e e e eneaneaaenes 1254
CREATE SEQUENRCE ...oeiiiiiiiie ettt ettt et e et e et e e et e et e ene e eaeeneenss 1256
CREATE SERVER ..ottt ettt e et e et e e e e e ae e eaneanes 1259
(O R N 7 2) I 1261
CREATE T ABLE AS ottt et e et e e et e e a e e e e eaeeneanenaenes 1275
CREATE TABLESPAGCE ...ttt ettt e et e e et e e e e e eanens 1278
CREATE TEXT SEARCH CONFIGURATION ...ouititiiiii et e e ens 1280
CREATE TEXT SEARCH DICTIONARY ...ouititiiiiii ettt e ens 1281
CREATE TEXT SEARCH PARSER ..ottt ettt e eeaas 1283
CREATE TEXT SEARCH TEMPLATE ..ottt e e 1285
CREATE TRANSFORM ...ttt ettt et et e et et e e e a e rneanens 1286
CREATE TRIGGER ..ottt ettt e e et e e e e aeeneaeaenes 1288
(O R N A 48 = 1293
(O R N 1 0 N 1301
CREATE USER MAPPING ..ottt ettt e e et e e et e e e enens 1302
(O R N Y/ . 1303
[) N I 10 LN N 1307
|3) 0 - 0 R 1308
|3 N I N 1311
L) 51 O N 2) L 1314
5 1 N 1315
DROP AGGREGATE ..ottt ettt ettt e e et et e et e a e e e e nerneanens 1316
[) 2@ S O N 3 N 1318
|5) 2@ S O) I 17N 1 O) N 1319
DROP CONVERSION ..uiitiiiiiiet ettt ettt e e et et ea et e e eaeen e e eaeeneenenenees 1320
DRODP DATABASE ..ottt ettt e e e et et e e aas 1321
DRODP DOMAIN .ottt ettt e et et et e e et ea e eaera e eaenerneaeneeneanns 1322
DROP EVENT TRIGGER ...ttt ettt e et e e e e e eanens 1323
DRODP EXTENSION ..ttt ettt et et e et e et e e ea e e st ea st e e eas e eanenerneenenennes 1324
DROP FOREIGN DATA WRAPPER ...ttt e 1325
DRODP FOREIGN TABLE ..ottt ettt e et e e e e e e e eaeneenss 1326

xii

Postgres Pro 9.5.20.1

Documentation
DRODP FUNC CTION ..ottt ettt e et e e et e e a et e eaern e eneenenneaeneanennns 1327
DRODP GROUDP ettt e et e et e et et e s e e e saeeneeneaenns 1328
DRODP INDEX .oeiiiiiiiiiiii ettt et et e e e et e e e e et e e e a st e e a e e aneaeneeneanes 1329
DRODP LANGUAGE ..ottt ettt e et e e e e e e e et enerneanes 1330
DROP MATERIALIZED VIEW ..ottt ettt ettt e e e e e e aneans 1331
DRODP OPERATOR ..ceeiiii ettt ettt ettt e e et e e et e e e e e e aeeneenennes 1332
DRODP OPERATOR CLASS ..ottt ettt e e e e e e e e eae e e enenes 1333
DROP OPERATOR FAMILY oottt ettt et e e e et e e e e e ae e e eneanes 1334
DROP OWINED ..ottt ettt e et e et et e a e et e e e e st en e e eaeenerneaenees 1335
DRODP POLICY ottt ettt et ettt et et e e e a et e e ea et s e eaern s enrneaenerneanenns 1336
|) 2@ S R I R 1337
DRODP RULE ..ottt ettt et e e et e e e et e e ea e e e e ene e e e eneneen 1338
DRODP SCHEMA ..ottt ettt ettt et e et e e a et e e e en e e eaeeneeneneennen 1339
DROP SEQUENGCEE ...ouiiiiitiiii ettt et e e e e e et et e e s e n e e e eaeeneanens 1340
DRODP SERVER ..ottt ettt et e et e et e e e e e e aeene e ennens 1341
|) 2@ S 7 2) I N 1342
DRODP TABLESPACE ...ttt ettt et e et e e et e e e e e eneeneaenes 1343
DROP TEXT SEARCH CONFIGURATION ...ouiuiiniiiiii ettt en et e e e aeaaes 1344
DROP TEXT SEARCH DICTIONARY ..ottt ettt e e aeanes 1345
DROP TEXT SEARCH PARSER ..ottt ettt e e enes 1346
DROP TEXT SEARCH TEMPLATE ..ottt e e eaas 1347
DRODP TRANSFORM ...ttt ettt ettt e et e e e et e e e e e e eaeenereans 1348
DRODP TRIGGER ...ceoeiiiiie ettt ettt e et et e e et e e e e e e e e eaenees 1349
1) 2 S 4 = N 1350
| D) 2@ S Y 0 1351
DRODP USER MAPPING ..ottt ettt e e et e e et e e en e eaeene e e eneenss 1352
|) 2@ S VA N 1353
| 5 R 1354
| O 1 1355
| Y\ R 1356
S o O = N 1361
R AN T e ettt et ettt ea—aas 1365
IMPORT FOREIGN SCHEMA ..ottt ettt e e e e e e eneanes 1372
LN S 0 1374
I 1 0 N 1380
| N 1381
K0 L N 1382
1% Y P 1384
| 2 1 4N 1386
| R N 1388
PREPARE TRANSACTION .uittiiiiiiii ettt ettt e e e et et e e en e e e e enerneanenns 1390
REASSIGN OWINED .oiiiiiiitiie ettt ettt e e et e e et et e e e e e ae e e e eneenens 1392
REFRESH MATERIALIZED VIEW .ottt ettt et e eaeanes 1393
L 1) N 1395
RELEASE SAVE P OINT oottt ettt et e et e e e e e e a s e eaene e eaneneenss 1397
R) 1398
REVOKE ..ottt et ettt e e e et e et e e e e e a et et e a e e aea e e enens 1399
|20) I I 2 7N 3 1403
ROLLBACK PREPARED ..ottt ettt ettt et e e e e e e aenas 1404
ROLLBACK TO SAVEPOINT ..oeiiiii ettt ettt et e et e e e e e e e enernennes 1405
1Y 0 2O 15\ N 1407
SECURITY LABEL ..ottt ettt et et e e e et e e e e e e eaerneaennen 1409
1S 2 I X O R 1411
1S 2 I O 111 O N 1429
1S 1431
SET CONS ST RAINTS .ottt ettt e e et et e e e ea s e e ene e eanenrneanennens 1434
1S A 2) I 1435
SET SESSION AUTHORIZATION ...ouiniiiitiieie ettt et e et e e e e enerneaenns 1437

xiii

Postgres Pro 9.5.20.1

Documentation

SET TRANSACTTION ..ottt ettt ettt e et e e et e e et e e et e e et s e et s e et seetaneeasaneaanaeeeans 1439
] = (O 1O OPPRRSTRTRRt 1442
START TRANSACTION ...ttt ettt ettt e e et e e et s e et e e et e e et s e etaa s eeanaseaanaseaanneeens 1444
TRUNGCATE ...ttt et e et e et e e et s e e tb e eta e eeaa s e et s eetan s eataneaesaeeesaaennns 1445
UNLISTEN ettt ettt et e et e et e et b e e et et aaa e e et s eetaa s eatanseasnnaeaansaeenaseensanaees 1447
UPDATE .ottt ettt e et e e et s e et e e et e e et e e e ta s e et s e atb e e et e e ean e e eheeahaae 1448
VACTUUDM Lottt ettt ettt e e et e e et s e et s e eta e e eaa e e tta e eata e ettaseeanasesannsaennnaes 1452
B I 6 2 SO OPPTPPPRPRE 1454
II. Postgres Pro Client APPLCAtIONSoiiuniiiiiie e e e et e e e e e et e e e e aan s 1456
Lod LI ES] 1] oo | o T PPN 1457
T3 4 == 1 =T | o TP 1460
(oa <Y< 1 = = o Lo 1463
CTEALEUSEYT ..eeuniiiiii ittt ettt et ettt et e et e et et e et e ean e eaueeeba et etaneauaeesnsetnsaanseenaetanranaenneenes 1465
6 By} 076 1 o J 1469
(6 By} o] £= 2 o [P 1471
6 By} 010 F=1=Y 1473
704 o Yo E P PP PRRN 1475
PG DASEDACKUD ettt e e et e e 1477
9701 0 1=1 s Vol o U 1483
oTo J o1} 1 Vi (o E PRSP 1493
o Yo Je L0 Na'] o J OO PPPPRRPPRRRPN 1496
o Yo Je Lbha] o¥- 1 | KPP PRRTPTRRt 1506
1910 B E] A= T- Vo | PO TOPPRPPPPRRPRt 1511
DG TECEIVEXIOQ .uutiiiiiiiiee ettt ettt ettt et e et e et e e e et s e etb e e etaa e e eaan s eataa s eatanseaanneeeenneaesanaaes 1513
o Yo B A=Toa T4 o Te 1 [o}- 1 U OIS 1516
DU TESTOTE ..ottt ettt ettt et et e et et e et e et e e tn e eaaetaasean s eaueeanaeetnsetnseanneenneeenns 1519
1910 1 N 1526
130010 125 (6 | o PSPPI 1556
VACUUINAD ..ottt et e e et e et e et s e et s e et e e eaa e e et e ean e 1559
ITI. Postgres Pro Server APPIiCAtIONSiiiuiiiiiii e e e e et e et e e e e aenas 1562
1811 e | o TP PPPRRPRt 1563
PG ATCRIVECLEATITD ..iiiiniiiiie ittt et e e et e et e et e e et s e et s e etaseeaaneeaens 1567
PG CONETOLAAETA ..ueiiiieiiieeii ettt ettt et e e et e e et s e et e e et e e et e eenseeebaseeesaneeens 1569
o1 2 1 RO PP PRSPPIt 1570
910 B LR 1=] w4 Lo T OO PPPRPPPPIN 1575
910 B A=) o Lo OO PSR PPPR PP 1577
PG EESE FSYTIC ettt ettt e e et e et et b e et e eea e eaa s 1580
o Jo ST A 0011 o o S PP UP TP PPRUPRURt 1581
o Yo JVY o Yo 1 o= Vo [T TP OTPRUOPPRRR: 1584
joTe) o) Ao RV oTo 1= Yo [T PP PPTRPPPRRPPIN: 1591
foTo JD:4 oo (o Li N 1} o O RO T PP P PPTRPPPRRPNt 1593
[0 1 T PR 1595
TS m a0 b) =) PN 1601
VIL INEETTIALS oeiniiiiiiiie ettt ettt ettt e et e e et e e et s e et e e eea e e eaaa s eetaa s aetanseaannseasnnaassnnaes 1602
48. Overview of Postgres Pro INTETNalscouuniiiiiiiiiii et e e e e 1603
48.1. The Path Of @ QUETY ..ucvuniiiiiiee et e e et e e e et e et e s e et e et e e e e aeneeanesrneees 1603
48.2. How Connections are Establishedccooiiiiiiiiiiiiiiiiii e, 1603
48.3. The ParSeT STAgE ..ccuiiiiiiiiiiieiiie et e et et e et e et e et e et e e s e aenesanasanasanassnnaernaannnns 1604
48.4. The Postgres Pro RUle SYSteIMciiiiiiiiiiiiii e et e e e e e e e eaa e 1605
48.5. Planner/OPtimiZeTiiun i e e e et e e e et e e e et e et e e e e e aaaaas 1605
A8.6. EXCCULOT .ottt et ettt et et e e et et et et e ea e eaeeaa e 1606
S T A1 =y B O -1 [Yo £ TSN 1608
9.1, OVETVIEW ..ttt ettt ettt ettt et e et e et s eta e et e taa e eeuetueeataeetasetnsatnnaasneeaneanseenanenanns 1608
RS I o To - Yo [o | g =To - U = PP 1609
e TG T o To - 1 1 (RPN 1611
e I o To -V 1 o] o J PPN 1613
7L IR T o 1o =11 ¢ o] e IR 1614
7 ST o To - LA A e = PPN 1614

Xiv

Postgres Pro 9.5.20.1

Documentation
e A o To - LS A I 11 | = PP 1615
7 I T o To - LU | A oV o I PR 1617
ZZRe e I o To - U o o T 111 11 1= G T PP PP 1618
Z e I O R o o [o> Y= AP 1619
7 I I I o o T o = (== S PPN 1620
Z/Re I 7 o o T o o] B - 1 o] o PP 1623
7L T G TR o o R o o] 1= A - U | SRR 1624
7 I I S o o R o o] V4 =T =] o] o PRSPPI 1626
e I S T o o o - A= | o - =Y TP 1627
ZZ8e I G T o Yo e | o N o] =TT =1 A S T Lo TR 1628
2280 I A o o o =Y = 10 | I - U PR 1629
78S I It S T o o [0 [=Y o 1= o Lo SO PT 1629
ZZRe I e IR o Yo e [=E Yot I o A o] o PPN 1631
Z e I O IR o o T =Y 2 10 1 4 PN 1631
Z e I I o o J AV =T o | O O G o [= PPN 1632
e I o o T -3 A A=1 4 F-7 o o PPPR P 1632
2280 I T o To I oY g = TN [Yo F= A= W =V o o 1= SRR 1633
e I o o Lo I e Y= T e L =T =T V4] PPN 1634
Z e A T o o T e Y= T e T A=Y o] B = TR 1634
2 e I T o o T 4 Ve [PRSPPI 1635
2R A A o o TR T 01 =] g I A= PP 1637
ZIRe A S T o o T =Yg (o [0 - Vo =T PP 1637
ZZRe IR e IR o Lo T BV o [=To] o] I =Y o3 AU 1639
49.30. pg_| ar geobj €Ct _IMBL AU0AL @ .ivuiiuiiiiiii et e et e e e et e e e e et et e e aaaanas 1639
e T I o o T g - Y0121 o - (o < TP 1639
Z/8e T 1 o o [o o o3 B- T3 PPN 1640
ZZ8e TG 16 T o o [o] o 1=1 o= 1 Ao] SR PP 1640
ZRe IR 7 S o o T o] o) 1= U 1 T 1 A PP 1641
2R T 1o T o o T o] I =T 1 1] = L A = PRSP 1642
2R TG T o o [o o] I N o) VPP 1642
Z RS TG 3 o o [o] e [PN 1643
Z e G T S T o o [-2 [o [PPN 1647
49.39. Pg_repliCati ON_OF i Qi N it e e te e et e ee et et e e e e eaneeneeneennaaneens 1647
7 IO T o o T =LY G T = T PPN 1647
e I I o o =Y =Yod - | o 1= PP 1648
Z/Re I3 o o TR =] o o [=T o I=1 o o IR PP 1649
Z/8e I3 T o o T~ a o 1= =Y o g I o] A o] o SRS 1650
49.44. PY_SNSECI ADEI .eeeiiii et e et e e e e 1650
e I S T o o =Y = LS] A N PP 1651
2R I T o o T A=Y o I =T o = U] = PRSPPI 1652
Z/Re I oy A o o T A =V 1= o] 4 PSPPI 1653
7S I S T o o [A g o o = S PPN 1653
Z/Re I T o o [=T X 0] o) A o PP 1655
ZZRe oY R o Lo T AT oo] o} o T 11 1 o PPN 1655
7L IR I o o R AT o | o3 S PPN 1656
e Y o Lo T T o T- L= =] PP 1656
ZLe IR Ye T o Lo T T A =T 01] - L = TN 1657
e IR T o o [B8 Y/ o 1 PPN 1657
ZIRe Yo T o o IRV =T ol 402 o] o L o o [P UPPRP 1663
49.56. SYSTEIN VIBWS .ttt ettt ettt et et e et et et e it et e ete et et s en et st aaneaaaannns 1664
49.57. pg_avai | abl @_eXt @NST ONS ..ottt ettt a e aaaas 1665
49.58. pg_avai |l abl e_eXt NST ON_VEI ST ONS ..ouiiuiiiiiiiiiiiieie et ee e et e aeee et een e e eanes 1665
7 IR oY e IR o o T o U1 =Y o] PPN 1665
Z e YO o Lo T A =TT = 1 O A 1 o = PPN 1666
Z e N I o o [o o 11 « PPN 1667
2 Y o o TR 4T [=S PPN 1667
7 Y6 T o o T I o Tod <= T PPN 1668
e 7 S o o T 1 £ L ARV A =N PP 1670

XV

Postgres Pro 9.5.20.1

Documentation
e Yo T o o T o o] BN T o 1 == PP 1671
49.66. PO_Prepar €0d_St Al EIMBNE S .ottt et et et e et e e e et e e et e e e aas 1671
49.67. PO_PrEPAN €U _XACE S 1uiiuiiiiiiiiiiiietit ittt ee ettt tte et et s tneteastnsaneraastnstnsenesrasansenersarenns 1672
49.68. pg_replicati ON_Ori gi N_St At US iueiiiiiiiiiiiiiiie et e et e it e ene et et e e e e eaeaneaanas 1673
49.69. PO_repliCati ON_SI Ot S ittt et e e e e e et e e e e e aans 1673
2 A O I o o [o] = 1= S PPN 1674
e T O o o [V1 = T S PPN 1675
e I o o T =Y = Yol B L o 1= B PP 1675
e TG TR o o T =T =Y O A T ¢ o = PP 1676
Z e R S o o T~ o = o [0 11 PP 1678
e R T o o [- L A= TP PPN 1679
e R T o o [- o] I =TSP 1681
49.77. PO_ti MBZONE_AbDI @VS .iiniiiiiiiiiiii et ettt et et et e e et e e e e e e eaaanaes 1682
49.78. PO_L i MBZONE_NAITES .uiuniiiiniiuiiieetetetteetetneeteetestnrtnettastnsaneteaststnessastasenseserrasansenersaranns 1682
e A TR o o [U -1 =T PN 1682
49.80. PY_USEI _IMBPPI NOS ttuttnituetutinttnettettetnetueetaetnstnettstnstnetuasenstnstuesssestnersassnseesrassnssssrases 1683
e I 3 I o o [V I = 1.~ S PPN 1683
50. Frontend/Backend ProtoColcoouuiiiiiiiiii ettt e 1685
50,1, OVEIVIEW .euiiiiiiiiiii ettt et et ettt et et e et e et et e eaa e et e ean e tbe e et s eanetnaannaennaeaneenns 1685
50.2. MESSAGE FLOW ..iiiiiiiiiiiiiie ettt et e et e et e e te et e st e et e e s esenastnaeanaeaneeaenaaannns 1686
50.3. Streaming Replication ProtoColccoouiiiiiiiiiiiii e 1696
50.4. MeSSAGE DAta TYDES cuuiuniiiiiiiiiii ettt e e e eans 1701
50.5. MeSSAgE FOTINALS c.uiiuiiiiiiiiii et et et e et et e et e e s eaeea et eaneaaaanes 1701
50.6. Error and Notice Message Fieldscocuiiiiiiiiiiiiiiiiii et ea e 1715
50.7. Summary of Changes since Protocol 2.0cccouiiiiiiiiiiiiii e 1716
51. Postgres Pro Coding CONVENTIONSoivuiiiiiiiiiiiiieiie e e e e e e e et e et e e e e annas 1718
oY IR I o) o 0 2 = 1 1 4 Lo [UPRNN 1718
51.2. Reporting Errors Within the SeTVeTcccuiiiiiiiiiii e 1718
51.3. Error Message Style GUIAEccouiiiiiiiiiii et e e et e e e e e e a e eens 1721
52. Native Language SUDPPOTT ...ttt et e et e it e e e et e e eanesaeesaeneannees 1725
52.1. FOr the TTanSIatoroviiiiiiiiiei ettt et e et e et e e e e e e et e eeaaees 1725
52.2. FOT the PrOgramIMeTciiuiiiiiiiiieii e et e et e e e e et e e te e st e st e st eensannesanaernaasnnns 1727
53. Writing A Procedural Language Handlerccooouiiiiiiiiiiiiii e 1730
54. Writing A Foreign Data WIADDETcouuiiiiiiiiiiiiiiie ettt et et et et e e e ee et e e e e eaeannas 1733
54.1. Foreign Data Wrapper FUNCEIONS ...c.ciiiiiiiiiiiie e e e e e 1733
54.2. Foreign Data Wrapper Callback ROUtINEScovvniiiiiiiiiiiiiee e, 1733
54.3. Foreign Data Wrapper Helper FUNCLIONSc.c.eiiiiiiiiiiiiiie e 1741
54.4. Foreign Data Wrapper Query Planningc.c.ceeiiiiiiiiiiiniiiiiieeee e 1742
54.5. Row Locking in Foreign Data WTIapPETScccuiiiuiiiiiiieieeiieeeiieeie et e eieereeraeeeeneeaneeaens 1743
55. Writing A Table Sampling Methodcccouiiiiiiiiiii e e 1745
55.1. Sampling Method Support FUNCLIONSccovniiiniiiiie e 1745
56. Writing A Custom Scan ProvViderccc.uciiiiiiiiiiiiiiii et e e e e e a e e e e e eaan e 1748
56.1. Creating Custom Scan Pathsc.coiiiiiiiiii e e 1748
56.2. Creating Custom ScCan PIAnScccoiiiiiiiiiiiie e e e e e e e r e e ae e e e eanns 1749
56.3. Executing CUSLOI SCAIS ...ivuiiiiiiiiiiiiiiie ettt et ettt et e ee et et e ene et eaneaneaanaanns 1750
57. GenetiC QUETY OPTIIMUIZET ...cuuiiiiiiiiiiieie ettt e et e et et e e e e eanean e e aaaaneenaennaeneens 1752
57.1. Query Handling as a Complex Optimization Problemc.cccoovviiiiiiiiiiiiiiiiinieeeens 1752
WAV ©1=) o 11 nTolFAN Lo £} o 1 00 -SSP 1752
57.3. Genetic Query Optimization (GEQO) in Postgres Proccccceeiviieiiieiiieeieeeeeeveeen, 1753
57.4. FUIther REAMING ..ccvuiiiiiiiiiiie ettt et e et e et e et e e et e et e et e e s eaenesenaeannns 1754
58. Index Access Method Interface Definitionccoooeiuiiiiiiiiiiiiiiii e 1755
58.1. Catalog Entries for INAEXEScciuuiiiiiiiieiii e et e e e e e e a e e e e eens 1755
58.2. Index Access Method FUNCLIONSoiiiiiiiiiiiiiiiiie e 1756
TS TG T B a Lo 1) i Tot=1 a1 12 o RPN 1759
58.4. Index Locking Considerationscceiuieiieiiiiiiiie it eie e e eae e e s e e e eaaeeaenas 1760
58.5. Index Uniqueness CRECKSccuiiiiiiiiiiieei et e e e e et e e e e e e eaeeaeesaneeens 1761
58.6. Index Cost Estimation FUNCTIONSviiiuiiiiiiiiiiiiiiie e e 1763
D9, GIST INAEKES ..eeuuiiiieeiiie ettt ettt ettt e et e et s e et e e et e e et e e eaa s eatas e eetaneeabaeeennsaesanseannnns 1765

XVi

Postgres Pro 9.5.20.1

Documentation

Fo1e TR IO 4 L o Yo L T 1 o) o AP T PR 1765
59.2. BUilt-in OpPerator CLASSESuciiuiiiiniiiiiieeiie et e e e et et e eteete e s e et e et e eaeeeaeesanaernaesnnasens 1765
o1 G TR 5 1Y o 531 31 1 RN 1765
59.4. IMPLeMENtAtION ...iieniiiiii e et e et e et et e e et e et e e e et aaaaaaeaan 1773

o1 ST 5= 1101 o] (=T S 1774
0. SP-GIST INAEXES .evuueiiiiiiiiee ettt ettt ettt e et e et e ettt e e et s e et s e et e ettuneeesanaetsanaeetneetsaeaeennaes 1775
B0.1. INETOAUCTION .eviiiiiiiieiii ettt et e e et s e et e e et e et e e e et e e et s entaeeenanns 1775
60.2. BUilt-in OPerator CLASSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e et et e et e et e eaeaeaeesanasrnaesnneenns 1775

LS O JC TR 5 Y o 53 31) RN 1775
60.4. IMPLEMENtAtION ...cveniiiiiie et e e et e et e et e e e et e et e e e et araaaaaaan 1781

S 0T 5= 1001 o] (=T S 1782
1. GIN INAEKES ..eeruuiiiieiiii ettt ettt ettt ettt e e et e e et e e et e e et ee et e etha e ettaeetnnseetnnseasanseasnnsennnnas 1783
0 IO 4 L 4 o To L o1 o) o A PO 1783
61.2. BUilt-in OpPerator CLlAaSSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e e te e s e et e et e eaeeeaeesanaernaesnneenns 1783

O NG TR 5 Y o 153 31) RPN 1784
I 00} 0] Lo a =Y a1 =Y) o PN 1786
61.5. GIN TipS @nd TTICKS ..ccuuiiiuiiiiiiiiieiiie e e et e e e et e et et e et e e e e eaeeesaneeaneeanaeenns 1787
61.6. LIMITATIONS .oeuniiiiiiiiei et ettt et e e et e et e et e e e e eb e een e ean e e eenas 1788

N I 5= 1111 o] (= T 1788
B2, BRIN INAEXES ..uieiiiiiiiieiiiie ettt ettt et e e et e e et e ettt e e et s e et s e eta s eatansaaennaeaanneeasanaenes 1789
2/ IO 4 L o Lo L T o1 1 o) o A OO PO 1789
62.2. BUilt-in OpPerator CLASSES ...c.uiiiuiiiiiiiiiieeie et e e e e e et eete et e et e et e eaeeeaeesanasanaesnnasens 1789
LSV C T 0 1Y o 531 031) RN 1790
63. Database PhySiCal StOTAQEccuuiiiuiiiiiiii ettt et e e et e et e et e et e st e st e eaneernnaees 1794
63.1. Database File LayOulcccuiiiiiiiiiiiiie e e et e e et e et e e e e et e et e e e e aena s 1794
83,2, TOA ST .ottt e e et ettt e e et e e et e et e et et et e et e et e et eaaanas 1796
03.3. FIEE SPACE MAPD tiuiiniiiiiiiiiie ettt et e e et et e et et e e e et e e e e e e ea e e aans 1798
63.4. VISIDILIEY MAPD tiituiiiiiiiiiei ettt ettt e et e e e e et e et e et e e aa e eaaas 1799
63.5. The Initialization FOTKc..iiiiiiiii ettt e e e e e e eee 1799
63.6. Database Page LayOulcc.ciiiiiiiiiici et et e et a e aaas 1799
64. BKI Backend INTETTACEcouuiiiiiiiiiiiiiii ettt e e et e e et e et e eeaaees 1802
64.1. BKI File FOITNAT ...ttt ettt e e et e et e e e et s e e et s e eeaeeees 1802
64.2. BKI COMINANAS .uuiiiiniiiiieeiiie et eei et e et e e et e e et e e et e e ata s e et s eataeeeataneeesaeeenaeeasanaees 1802
64.3. Structure of the Bootstrap BKI Filecccouiiiiiiiiiiii e 1803
L <= 1011 0] (= S 1803
65. How the Planner Uses STatiStiCScviiiuiiiiiiiiiiiiiiii et 1805
65.1. Row Estimation EXampPlesc.oiiuiiiiiiiiiiiiiecie et e e e e e et e e e e e e e e eaaaas 1805
65.2. Planner Statistics and SECUTILYcciiuiiiiiiiiiii e e 1809

AV 0 N o) 1= oL b (=Y SN 1811
FAWN =053 o =TSR 20 w0 T 2 o o) 010 Yo L= SN 1812
B. Date/Time SUPPOTTE «.ouniiiiii et et e e e e et e et et e e e et et e tae e aaneaneeneannaeneens 1820
B.1. Date/Time Input INterpretationooiiiiiiiiii i e e e 1820
B.2. Handling of Invalid or Ambiguous Timestampscccccueiiiiiiiiiiiiieii e e 1821
B.3. Date/Time KEY WOTASccuiiiuiiiiiieiiie et e et e e et e e ae et e et e et e et eannesenesanaaannasennns 1821
B.4. Date/Time Configuration Filesccc.ciiiiiiiiiiiiii e e e ae e 1822

o TR T] o) oy o) U4 N 1824
(OO) I =) A 0] oo £ 1826
D. SQOL CONLOTINATICE .euiniinininintiei ettt ettt ettt e ea ettt eneastetaensastetnensastesseneneseteensnsnnnns 1848
D.1. SUPPOTLEd FEALUIESeiniiiiieiieiee e et et e et e e te e e et e et e e ae e s eeeneeaneeanns 1849
D.2. Unsupported FEATUTES ...c.uuiiiniiiiiiieii ettt et e e e e e et e e et e e e e s e eeesaaeennnns 1863

E. ReELEASE INOTES ..ottt et et e et e e et e e et e e et e e et e e et e e et e eetaeeenanns 1876
E.1. PosStgres Pro 9.5.20.1 ...ttt ettt et e e e e e e e e e aans 1876
E.2. POStgres Pro 9.5.10.2 L ittt et a e e ans 1876
E.3. PoStgres Pro 9.5.10. 0 Lottt e e e aans 1877
E.4. PosStgres Pro 9.5.18.1 ..ot et e et a e ans 1878
E.5. POStgres Pro 9.5.1 7.0 .ottt et et et et e et a e e e e aans 1878
E.G. POStgres Pro 9.5.16.1 .ottt e et e e e e e e e e aans 1879
E.7. POStgres Pro 9.5.1 5.0 Lottt et e et e e et e e e ans 1880

xvii

Postgres Pro 9.5.20.1

Documentation
E.8. POStgres Pro 9.5.14.1 ..ot e et e et et e e e e e e e aans 1881
E.O. PoStgres Pro 9.5.13. 0 .ottt et e e e e a e aans 1882
E.10. POSEGTEs PTo 9.5.1 2.1 .t e e e et e e e et e e e e e e e eneaanaans 1883
E.11. POSETes Pro 9.5.1 1.1 ottt e et e te e et e e e e e e e e e e eanaans 1883
E.12. PoSEgres Pro 9.5.10.1 ..ot e e e et e et et e e e et e e e e e e aanaans 1884
E.13. POSEGTES Pro 9.50.0. 0 Lot e et e et e e et e e e e e ea e e e e e aans 1885
E.14. POSEGTES PTO 9.5.8. 0 .ot e et e et e e et e e e ee et aan e e eanaans 1885
E.15. POSEGTES PrO 9.0.7 .2 ittt e et e et e e e e e et e e e ee et aan e e annanns 1886
E.16. POSEGTES PTO 9.0, 7.0 Lottt et e et e e et e e e e e et e e e ee et aaneaneannaans 1886
E.17. POSEGTES PTO 9.5.6.1 .iniiiiiiiii et e et e e et et et et e e e e e et aan e e annaans 1887
E.18. POSEGTES PrO 9.0.0. 0 Lottt e et e e et et et et e e e ee et ean e e aaaans 1887
E.19. POSEGTES PTO 9.5.4.1 L. oeiiiiiiiiii ettt e ettt e e e et e et e e e e e et aan e e annanns 1888
E.20. POSEGTES PrO 9.0.3.2 Lottt e et e it e e et e et e e e ee et e e e e anaans 1888
E.21. POSETES PTO 9.5.3. 0 Lottt e et e et e e et et e e e aeeaeaneaneaananns 1889
E.22. POSETES PTO 9.0, 2.0 Lottt e et e e et et et et e e e ee et e e e e anaans 1889
E.23. POSEGTES PrO 9.0, 0.2 ittt e et e et e e et ea e e e ee et e e e e anaans 1890
E.24. POSEgTES PTO 9.5.0.0 .ottt e et e et e e et et e e e e e et e e e e e aans 1890
E.25. ReELEASE 9.5.20 .euiiiiiiiiiiiii ettt ettt e e et et e e et e e e et e eaaans 1892
E.26. ReElE@SE 9.5.10 Lottt ettt et et ettt e e et e et e eaaans 1896
E.27. ReElE@SE 9.5.18 oottt ettt et et e ettt e et e it e e e 1897
E.28. RELEASE 9.5, 17 oottt ettt et e et e ettt e et et et e eaaans 1898
E.29. RELEASE 9.5.16 .uuiiiiiiiiiiiiii ettt ettt et e e et e et e e et et e et e et e et e eaaans 1901
E.30. ReELEASE 9.5, 15 ottt ettt ettt e et e et e e et e et e et e e et e et eenaans 1904
E.31. RelE@SE 9.5.14 oottt ettt et e et e et et e et e e et e et e eaaans 1907
E.32. RelEaSE 9.5, 13 oot ettt et e e e ettt e e e e et e et e enaans 1910
E.33. RELEASE 9.5, 12 oottt ettt ettt et ettt e e et e it e eaaans 1913
E.34. RelE@SE 9.5.11 .ottt ettt e e e e et et e et e e et e it e eaaans 1914
E.35. RELEASE 9.5.10 .euiiiiiiiiieiiii ettt ettt e et e et e et e et e e et e e e e et eeaaans 1917
E.36. ReELEASE 9.5, ittt ettt ettt e it e et e e aaans 1919
E.37. RELEASE 9.5.8 .ottt et et et a e et e e e 1921
B .38, RELEASE 9.5, 7 ittt ettt ettt et et e et e et e eaaans 1925
E.39. RELEASE 9.5.0 ouuiiiiiiiiiiieii ettt ettt e e e ettt e e et e et e et e eaaaes 1929
EL40. RElEASE 9.5.0 ittt ettt e et ettt e e e et e e naans 1933
ELAL. RELEASE 9.5.4 .ottt et e e et e et et et e et e et e et e eaaans 1937
B4, RElEASE 9.5, ittt ettt ettt e e ettt e et et e et e enaans 1940
EL43. RElEASE 9.5.2 ittt ettt ettt e et e et e e aaans 1942
EL44. ReElE@SE 9.5, oottt ettt et e e e et et e et e it e et e enaans 1945
EL45. RELEASE 9.0 Lottt et ettt et e et e et e eaaaas 1946
F. Additional Supplied MOGUIESc..oiiiniiiiiiiiii et et e e e e et e e e e st e eae e e e saneannnas 1959
| U= Yo a0 o Y- Lod : NN 1960
F2. QUL LAY ..o ettt e e e e e e 1961
F.3. QUEO @XPLAIN ..iiiiiii et et et e et e ea e eaa e 1961
| o w4 <YYo 1 o RPN 1963
| T o w4 <YYo)] PPN 1963
| ST o 1 o =TT SN 1964
| 1 =)« A O PRSPPI 1965
| R S T o1 1 SO PPR 1967
FLO. dBINK ottt e e e e et e et e et e aaa e aaas 1970
| TR e T v o | PR OPPR PRt 1997
| ¢ 1 Tod 5 o R PPN OUPRRRE 1997
| ¢ L ha1 Y o 1 < | PPN 1998
F.13. €arthdiSTamCe ...ccuuiiiiiiii ettt e et e et e e et e e e e e e et e eabaeeees 2000
| 1 LT (o L PP PPPRR PP 2002
| ST i b7 4] 1 0 =1 o] o RN 2004
| ST 4 11 70) ol SO OURPPPRRRt 2006
F.17. Hunspell Dictionaries MOAULEScouiiiiiiiiiiiiie et e e e e e e e e e e ee 2012
| I T a1 < T £ PPN 2013
| S TR a1 = 1 = PPN 2014

xviii

Postgres Pro 9.5.20.1
Documentation

| O B £ « B PP PP PP
| R 1~ LU= o) PPN
| 2 (o TP OPRRPTRRRPN
| T L o T S PSP OPPRUOTRTRRt
| RN o T Lo (=31 4 S 01T o AP
| A T o =TT oA o) oo Lol o T=T o) - S
FL26. DO AITIAIL ceuniiiii ettt et et e et e et et e et e et e e e th e et et et eeneeaaeen
F.27. PG DUTETCACRE coueiiiie ettt e e e e e ee
| S22 T 0T (0] 0y 74 0] ¥ o TN
| 04SN oo fi i 4 Yo o T Lo o) 0 - o SO UPPRUPPPIN
F.30. PO PALRINAT ..ottt ettt e et et e et e et e aaa e aeas
| RGN I oo) o) £ =112 1 1 s R TP RU PP
F.32. DO QUETY STALE ettt et e e et et e e e e et e et e eeeeeaeens
|6 T o To 1 0 11 [ol : <= N
F.34. pg stat StateIMents ..ottt ettt e e e ees
| T o T0 £ = o) [SN
| 2R S T o o f 1 4 1 4 RO TR UPT PRI
F.37. PG VATIADIES «.ceeiiiiie ettt ettt e e
F.38. POSEGTES AW .ottt e et e et e e et e e e e ea e
| 1S TR ==Y o PP PSRRI
| O =Y o To 1o | RN
| Y o F= 1 o= Te B) o 1= | PPN
|~ o) PP
|G Ty o o] = 1 o RPN
FlAA. SSINTO e ettt ettt e e et et e et e et e eeb e eeas
| T - o] 1] i o Lo U PPRPPR
| D T 1 o] o RO PP TP T PPRRPPT
| A T Al o (= To oY I o o APPSR
FlA8. £SEATCRIZ ..ottt ettt e e et e e et e et e e e e b e ab e
F.l4O. TSIN SYSTEIML TOWS ..itiiiiiiiiiieii ettt et et et et e e e et e et e et e etueeaaeeeneeaneeneeenasetaeetneenneens
F.50. TSI _SYSTEIN TIIME ..euniiiiiiieiii ettt ettt e e e et et e ee e e e e et e et e et eanneens
FEO5T. UNACCENL «.oeeeeie ettt ettt et e et e et s et e eb e et e eaneeneeenaseenneens
e U U o R0 TT-] o T
| 1 T« 111 12 OO OPPRSPPPTPRE

G. Additional SUpPPlied PIrOGTAmSuiiiiiiiieieeiie et et e et e e e e te et e st e st e et eaeseaneesnaeanaeanesnnnns

G.1. Client APPLICATIONS ..cuuiiiiiiiii et e e e e e et e et e et e et e e e e anneeanaeanns
(CTVRITC) 1720 AN o 01§ (o= 1 1 o) o -0 PTURPRRPN

| O =Y = | o 4 0 =T SNt

| O O 1Y L A 01 =Y =Y o] <= SR
H.2. AdminiStration TOOLScuiiniiiiiiiii ettt e e et e e e e eneaneans
H.3. Procedural LanQUagESceeuueeiuniiiieieeteetieeieetneeteaestestnestnessnnessnastnaernaeseesanesrneesnnesnns
| B T 5 ¢ <Y 0 153 0) 1= S

I. The Source Code ReEPOSILOTY ..ccuuiiiiiiiiiiiieiiie it ettt e et e e et e et e et e et e et e s estnesanaaanaannnes

[.1. Getting The SOUICE VIA Git ..ccuuiiiniiiiiiiieiiie e e e e e e e a e e e et e eaaeeens

N B e o1 bhaaTc) a1 =1 1) s PSPPI

S B 1o Yol = To Yo) - S
IO Ko T] B PRt
J.3. Building The Documentationc.coeiiiiiiiiiiiiiee e e e e e e e e e eaa e
J.4. Documentation AULhOTINGcoeuniiiiiiii e e e e et e e e e ees
T 5 2 (ST 0 o

| Vo o0 1 2 1 4 SRR
L0 0) F 0T 1= o 07/ PN

Index

Xix

Preface

1.

2.

This book is the official documentation of Postgres Pro. It has been written by the Postgres Pro devel-
opers, PostgreSQL community, and other volunteers in parallel to the development of the Postgres Pro
software. It describes all the functionality that the current version of Postgres Pro officially supports.

To make the large amount of information about Postgres Pro manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
Postgres Pro experience:

e PartI is an informal introduction for new users.

¢ Part Il documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every Postgres Pro user should read this.

» Part III describes the installation and administration of the server. Everyone who runs a Postgres
Pro server, be it for private use or for others, should read this part.

e Part IV describes the programming interfaces for Postgres Pro client programs.

* Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

¢ Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

e Part VII contains assorted information that might be of use to Postgres Pro developers.

What is Postgres Pro?

Postgres Pro is an object-relational database management system (ORDBMS), developed by Postgres
Professional in the Postgres Pro fork of PostgreSQL, which is in turn based on POSTGRES, Version
4.2, developed at the University of California at Berkeley Computer Science Department. POSTGRES
pioneered many concepts that only became available in some commercial database systems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

* complex queries

» foreign keys

* triggers

e updatable views

e transactional integrity

* multiversion concurrency control

Also, Postgres Pro, as well as PostgreSQL, can be extended by the user in many ways, for example by
adding new

* data types

» functions

e operators

* aggregate functions

* index methods

¢ procedural languages

Difference between Postgres Pro and PostgreSQL

Postgres Pro provides the most actual PostgreSQL version with some additional patches applied and
extensions added. It includes new features developed by Postgres Professional, as well as third-party

XX

http://postgresql.org
http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html

Preface

patches already accepted by the PostgreSQL community for the upcoming PostgreSQL versions. Post-
gres Pro users thus have early access to important features and fixes.

Note

Postgres Pro is provided under the following license: https://postgrespro.com/products/post-
grespro/eula. Make sure to review the license terms before downloading Postgres Pro.

Postgres Pro provides the following enhancements over PostgreSQL.:
e Performance improvement on multicore systems (buffer manager and locks optimization).

¢ Full text search improvements: phrase search, hunspell morphology, some dictionaries are bundled
with distribution and can be enabled by a single SQL statement, shared ispell allowing to store dic-
tionaries in shared memory.

¢ Covering indexes. (See the | NCLUDI NG description in CREATE INDEX.)

¢ ICU collation support on all platforms to provide platform-independent sort for various locales. The
i cu collation provider is used for all locales except C and POSI X.

* pg trgm module supporting fuzzy string comparison and substring search.
* Improved pageinspect module that provides access to internal data storage structure.
* sr plan module that allows to save and restore query plans.

* dump stat module that allows to save and restore database statistics when dumping/restoring the
database.

* jsquery module that provides a specific language for effective index-supported querying of JSONB
data.

Postgres Pro releases follow PostgreSQL releases, though sometimes occur more frequently. The Post-
gres Pro versioning scheme is based on the PostgreSQL one and has an additional decimal place.

3. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over two decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

3.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid track-

xXxXi

https://postgrespro.com/products/postgrespro/eula
https://postgrespro.com/products/postgrespro/eula

Preface

ing database, a medical information database, and several geographic information systems. POSTGRES
has also been used as an educational tool at several universities. Finally, Illustra Information Technolo-
gies (later merged into Informix, which is now owned by IBM) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

3.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

¢ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface li-
brary libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see be-
low), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl, supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

¢ The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

* The instance-level rule system was removed. Rules were still available as rewrite rules.

* A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

3.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

4. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces

xxii

http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. ..) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the Postgres Pro system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

5. Further Information

Besides the documentation, that is, this book, there are other resources about Postgres Pro:

Wiki
The PostgreSQL wiki contains the project's FAQ (Frequently Asked Questions) list, TODO list, and
detailed information about many more topics.

Web Site

The Postgres Professional web site carries details on the latest release and other information to make
your work or play with Postgres Pro more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

Postgres Pro is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use Postgres Pro, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

6. Bug Reporting Guidelines

When you find a bug in Postgres Pro we want to hear about it. Your bug reports play an important part
in making Postgres Pro more reliable because even the utmost care cannot guarantee that every part of
Postgres Pro will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more
important things on the agenda. If you need help immediately, consider obtaining a commercial support
contract.

6.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

xxiii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgrespro.com

Preface

e A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

e A program produces the wrong output for any given input.
* A program refuses to accept valid input (as defined in the documentation).

* A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

* Postgres Pro fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

6.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has
a fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

* The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare SELECT statement without the preced-
ing CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables. We
do not have the time to reverse-engineer your database schema, and if we are supposed to make up
our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/ . psql r ¢ start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your ex-
ample, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the of-
fending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

» The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error mes-
sage, show it, even if you do not understand it. If the program terminates with an operating sys-
tem error, say which. If nothing at all happens, say so. Even if the result of your test case is a pro-
gram crash or otherwise obvious it might not happen on our platform. The easiest thing is to copy
the output from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \ set VERBOSI TY ver bose beforehand. If you are extracting the mes-

XXiv

Preface

sage from the server log, set the run-time parameter log error verbosity to ver bose so
that all details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain all
the information available. Please also look at the log output of the database server. If
you do not keep your server's log output, this would be a good time to start doing so.

¢ The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the ex-
act semantics behind your commands. Especially refrain from merely saying that “This is not what
SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do
we all know how all the other relational databases out there behave. (If your problem is a program
crash, you can obviously omit this item.)

* Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

e Anything you did at all differently from the installation instructions.

* The Postgres Pro version. You can run the command SELECT pgpro_versi on(); to find out the ver-
sion of the server you are connected to. Most executable programs also support a - - ver si on op-
tion; at least post gres --version and psqgl --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepack-
aged version, such as RPMs, say so, including any subversion the package might have. If you are
talking about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.5.20.1 we will almost certainly tell you to upgrade. There are many
bug fixes and improvements in each new release, so it is quite possible that a bug you have encoun-
tered in an older release of Postgres Pro has already been fixed. We can only provide limited sup-
port for sites using older releases of Postgres Pro; if you require more than we can provide, consid-
er acquiring a commercial support contract.

e Platform information. This includes the kernel name and version, C library, processor, memory in-
formation, and so on. In most cases it is sufficient to report the vendor and version, but do not as-
sume everyone knows what exactly “Debian” contains or that everyone runs on x86 64. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have
time to find and share your work-around. Also, once again, do not waste your time guessing why the bug
exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“Postgres Pro”, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “Postgres Pro crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don't say “the server crashed” when you mean a
single backend process went down, nor vice versa. Also, client programs such as the interactive frontend

XXV

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

Preface

“psql” are completely separate from the backend. Please try to be specific about whether the problem
is on the client or server side.

6.3. Where to Report Bugs

In general, send bug reports to our support email address at <bugs @ost gr espr o. r u>. You are requested
to use a descriptive subject for your email message, perhaps parts of the error message.

Do not send bug reports specific to Postgres Pro to the PostgreSQL support email address, as Postgres
Pro is not supported by the PostgreSQL community. But you can send reports to <psql - bugs@i st -
s. post gresql . or g> for any bugs related to PostgreSQL.

Even if your bug is not specific to Postgres Pro, do not send bug reports to any of the user mailing
lists, such as <pgsql -sql @i sts. postgresql.org>or<pgsql -general @i sts. postgresql.org>.These
mailing lists are for answering user questions, and their subscribers normally do not wish to receive bug
reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers' mailing list <pgsql - hackers@i sts. post -
gresql . or g>. This list is for discussing the development of PostgreSQL, and it would be nice if the com-
munity could keep the bug reports separate. The community might choose to take up a discussion about
your bug report on pgsql - hacker s, if the PostgreSQL-related problem needs more review.

XXVi

Part |. Tutorial

Welcome to the Postgres Pro Tutorial. The following few chapters are intended to give a simple introduc-
tion to Postgres Pro, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the Postgres Pro system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for Post-
gres Pro. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use Postgres Pro you need to install it, of course. It is possible that Postgres Pro is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access Postgres Pro.

If you are not sure whether Postgres Pro is already available or whether you can use it for your experi-
mentation then you can install it yourself. Doing so is not hard and it can be a good exercise. Postgres
Pro can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing Postgres Pro yourself, then refer to Chapter 15 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic Postgres Pro system architecture. Understanding
how the parts of Postgres Pro interact will make this chapter somewhat clearer.

In database jargon, Postgres Pro uses a client/server model. A Postgres Pro session consists of the
following cooperating processes (programs):

* A server process, which manages the database files, accepts connections to the database from
client applications, and performs database actions on behalf of the clients. The database server pro-
gram is called post gres.

¢ The user's client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the Postgres Pro distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The Postgres Pro server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original post gres process. Thus, the master server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
Postgres Pro server can manage many databases. Typically, a separate database is used for each project
or for each user.

Getting Started

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next section.

To create a new database, in this example named nydb, you use the following command:
$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: comrand not found

then Postgres Pro was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation in-
structions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such
file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tnp/.s.PGSQ.5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Postgres
Pro user account for you. (Postgres Pro user accounts are distinct from operating system user accounts.)
If you are the administrator, see Chapter 20 for help creating accounts. You will need to become the
operating system user under which Postgres Pro was installed (usually post gr es) to create the first user
account. It could also be that you were assigned a Postgres Pro user name that is different from your
operating system user name; in that case you need to use the - U switch or set the PGUSER environment
variable to specify your Postgres Pro user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

creat edb: database creation failed: ERROR permnission denied to create database

Not every user has authorization to create new databases. If Postgres Pro refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed Postgres Pro yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as.

You can also create databases with other names. Postgres Pro allows you to create any number of data-
bases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

! Asan explanation for why this works: Postgres Pro user names are separate from operating system user accounts. When you connect to a database, you can choose
what Postgres Pro user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a Postgres Pro user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the - U option everywhere to select a Postgres Pro user name to connect as.

Getting Started

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database nydb, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the Postgres Pro interactive terminal program, called psql, which allows you to interac-
tively enter, edit, and execute SQL commands.

* Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC sup-
port to create and manipulate a database. These possibilities are not covered in this tutorial.

¢ Writing a custom application, using one of the several available language bindings. These possibili-
ties are discussed further in Part IV.

You probably want to start up psgl to try the examples in this tutorial. It can be activated for the nydb
database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using cr eat edb.

In psql , you will be greeted with the following message:

psqgl (9.5.20.1)
Type "hel p* for help.

mydb=>
The last line could also be:
nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Postgres
Pro instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of cr e-
at edb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql . Try out these commands:

nydb=> SELECT version();
version

PostgreSQ@. 9.5.20.1 on i586-pc-Ilinux-gnu, conpiled by GCC 2.96, 32-bit
(1 row

nmydb=> SELECT current _date;
dat e

2002- 08- 31
(1 row

nydb=> SELECT 2 + 2;

Getting Started

(1 row

The psql program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various Postgres Pro SQL
commands by typing:

mydb=> \ h

To get out of psql , type:
nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \ ? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including melt93 and date97. You should be aware that some Postgres Pro
language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named nydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the Postgres Pro source distribution in the directory sr c/
tutorial/. (Binary distributions of Postgres Pro might not compile these files.) To use those files, first
change to that directory and run make:

$cd..../src/tutorial
$ nmake

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

$cd..../tutorial
$ psql -s mydb

nmydb=> \i basi cs. sql

The \i command reads in commands from the specified file. psql 's - s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basi cs. sql .

2.2. Concepts

Postgres Pro is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for table. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number
of other ways of organizing databases. Files and directories on Unix-like operating systems form an ex-
ample of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single Postgres Pro
server instance constitutes a database cluster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:
CREATE TABLE weat her (

city var char (80),

tenmp_lo int, -- low tenperature
t enp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

The SQL Language

)
You can enter this into psql with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--”) introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
i nt is the normal integer type. r eal is a type for storing single precision floating-point numbers. dat e
should be self-explanatory. (Yes, the column of type dat e is also named dat e. This might be convenient
or confusing — you choose.)

Postgres Pro supports the standard SQL typesint, smal lint, real, doubl e precision, char(N), var-
char(N), date, time, tinestanp, and i nt erval, as well as other types of general utility and a rich set of
geometric types. Postgres Pro can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)

The poi nt type is an example of a Postgres Pro-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:
| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25, '1994-11-27');

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The dat e type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The poi nt type requires a coordinate pair as input, as shown here:
I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Franci sco', 43, 57, 0.0, '1994-11-29');

You can list the columns in a different order if you wish or even omit some columns, e.q., if the precip-
itation is unknown:

| NSERT | NTO weat her (date, city, tenp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.

Please enter all the commands shown above so you have some data to work with in the following sections.

The SQL Language

You could also have used COPY to load large amounts of data from flat-text files. This is usually faster
because the COPY command is optimized for this application while allowing less flexibility than | NSERT.
An example would be:

COPY weat her FROM '/ hone/ user/ weat her.txt"';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the COPY
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weat her, type:

SELECT * FROM weat her;

Here * is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | tenp_lo | tenp_hi | prcp | dat e
--------------- T T e T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (tenp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;
This should give:

city | tenmp_avg | dat e
_______________ o
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco’ AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

! While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

The SQL Language

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | date
--------------- T LT T T ppeppp
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once,
or access the same table in such a way that multiple rows of the table are being processed at the same
time. A query that accesses multiple rows of the same or different tables at one time is called a join query.
As an example, say you wish to list all the weather records together with the location of the associated
city. To do that, we need to compare the ci ty column of each row of the weat her table with the nanme
column of all rows in the ci ti es table, and select the pairs of rows where these values match.

Note

This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | dat e | nane | location
--------------- T T S
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Observe two things about the result set:

2 In some database systems, including older versions of Postgres Pro, the implementation of DI STI NCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current Postgres Pro does not guarantee that DI STI NCT causes the rows to be ordered.

The SQL Language

¢ There is no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We will see
shortly how this can be fixed.

e There are two columns containing the city name. This is correct because the lists of columns from
the weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her, cities
WHERE city = nane;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
VWHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her INNER JO N cities ON (weather.city = cities. nanme);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weat her table and for each row to find the matching ci ti es row(s). If no matching row is
found we want some “empty values” to be substituted for the ci ti es table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city = cities. nane);

city | temp_lo | tenp_hi | prcp | dat e | nanme | location
--------------- T T S
Haywar d | 37 | 54 | | 1994-11-29 | |
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a selfjoin. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
thetenp | o andt enp_hi columns of each weat her row to thetenp_| o and t enp_hi columns of all other
weat her rows. We can do this with the following query:

SELECT WL.city, W..tenp_lo AS |low, WL.tenp_hi AS high,
W2.city, W2.tenp_lo AS low, W.tenp_hi AS high
FROM weat her WL, weat her W2

10

The SQL Language

WHERE Wi.tenp_lo < W2.tenp_l o
AND W.. tenmp_hi > W2.tenp_hi;

city | Tow | high | city | lTow | high
--------------- T T T T Epepepp
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as WL and W2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weat her w, cities c
WHERE w. city = c.nane;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, Postgres Pro supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to com-
pute the count, sum avg (average), max (maximum) and m n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nax(tenp_l o) FROM weat her;

max
46

(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_l o = max(tenp_l 0); VARONG

but this will not work since the aggregate nax cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
WHERE tenp_| o = (SELECT max(tenp_l o) FROM weat her);

San Franci sco
(1 row

This is OK because the subquery is an independent computation that computes its own aggregate sep-
arately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city;

city | max
_______________ [
Haywar d | 37
San Francisco | 46
(2 rows)

11

The SQL Language

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG:

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | max
_________ [S,
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all t enp_I o values below 40. Finally, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_l o)
FROM weat her
WHERE city LIKE 'S®% H
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
The fundamental difference between WHERE and HAVI NG is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature read-
ings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weat her
SET tenp_hi = temp_hi - 2, tenp_lo =temp_lo - 2
WHERE date > ' 1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T e T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

12

The SQL Language

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form
DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Postgres
Pro. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some Postgres Pro extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced. sq|l
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VI EW nmyvi ew AS
SELECT city, tenp_lo, tenmp_hi, prcp, date, l|ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weat her table that do not have a matching entry in the citi es
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the ci t i es table to check if a matching record exists,
and then inserting or rejecting the new weat her records. This approach has a number of problems and
is very inconvenient, so Postgres Pro can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (

city varchar (80) references cities(city),
temp_lo int,

t enp_hi int,

prcp real,

dat e dat e

)

Now try inserting an invalid record:

14

Advanced Features

| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint
"weat her city fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly en-
couraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00
WHERE nane = (SELECT branch_nane FROM accounts WHERE nane
UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nane = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00
WHERE nane = (SELECT branch_nane FROM accounts WHERE nane = ' Bob');

"Alice');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database sys-
tem, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter.
For example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit
to his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk)
before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In Postgres Pro, a transaction is set up by surrounding the SQL commands of the transaction with BEG N
and COW T commands. So our banking transaction would actually look like:

BEG N;
UPDATE accounts SET bal ance = bal ance - 100. 00

15

Advanced Features

VWHERE nane = 'Alice';
-- etc etc
COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COW T, and all our
updates so far will be canceled.

Postgres Pro actually treats every SQL statement as being executed within a transaction. If you do
not issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COW T wrapped around it. A group of statements surrounded by BEG Nand COW T is sometimes called
a transaction block.

Note

Some client libraries issue BEG Nand COMM T commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface
you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPO NT, you can if needed roll back to the savepoint with ROLL-
BACK TO. All the transaction's database changes between defining the savepoint and rolling back to it
are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's ac-
count, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:

BEG N;

UPDATE accounts SET bal ance
VWHERE nane = 'Alice';

SAVEPO NT my_savepoi nt ;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = '\Vally';

COW T;

bal ance - 100. 00

bal ance + 100. 00

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TOis the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

16

Advanced Features

But unlike regular aggregate functions, use of a window function does not cause rows to become grouped
into a single output row — the rows retain their separate identities. Behind the scenes, the window
function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane) FROM enpsal ary;

depnane | enpno | salary | avg
----------- TR
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depnane value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTI TI ON BY list within OVER specifies dividing the rows into groups, or partitions, that
share the same values of the PARTI TI ON BY expression(s). For each row, the window function is computed
across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- Tl Sy .
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank within the current row's partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. r ank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

17

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NGclauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways by means of different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTI TI ON BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on the
rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the
frame consists of all rows from the start of the partition up through the current row, plus any following
rows that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. ! Here is an example using sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ I,
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e mm -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVI NG and WHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after regular aggregate

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

18

Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM
(SELECT depnane, enpno, salary, enroll _date,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC, enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example:

SELECT sun(sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table ci ti es and a table capi t al s. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name t ext,

popul ati on real,

al titude int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name t ext,
popul ati on real,
al titude i nt -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, altitude FROM capitals
UNI ON
SELECT nane, popul ation, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.
A better solution is this:

CREATE TABLE cities (
narre text,

19

Advanced Features

popul ati on real,
altitude i nt -- (in ft)

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

In this case, a row of capi t al s inherits all columns (nane, popul ati on, and al ti t ude) from its parent,
ci ti es. The type of the column nane is t ext, a native Postgres Pro type for variable length character
strings. State capitals have an extra column, st at e, that shows their state. In Postgres Pro, a table can
inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT nane, altitude
FROM citi es
VWHERE al titude > 500;

which returns:

nanme | altitude
___________ T,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
VWHERE al titude > 500;

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Here the ONLY before ci ti es indicates that the query should be run over only the ci ti es table, and not
tables below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

Postgres Pro has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

20

https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in Postgres Pro. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should see Part VI.

Readers of this part should know how to connect to a Postgres Pro database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the Postgres Pro interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chap-
ters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to Postgres Pro.

4.1. Lexical Structure

4

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-

minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one com-
mand can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
| NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in src/
i ncl ude/ pg_confi g_manual . h.

Key words and unquoted identifiers are case insensitive. Therefore:
UPDATE MY_TABLE SET A = 5;

22

SQL Syntax

can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.:
UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "sel ect" could be used to refer to a column or table named “select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&'f oo" . (Note that this creates
an ambiguity with the operator & Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier " dat a" could be written as

u&" d\ 0061t \ +000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\ 0441\ 043B\ 043E\ 043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:

U&" d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary.
(Surrogate pairs are not stored directly, but combined into a single code point that is then encoded in
UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, f oo, and "f 00" are considered the same by Postgres Pro, but
"Foo" and " FOO' are different from these three and each other. (The folding of unquoted names to lower
case in Postgres Pro is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, f oo should be equivalent to " FOO' not " f oo" according to the standard. If you
want to write portable applications you are advised to always quote a particular name or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in Postgres Pro: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

23

SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
"This is a string' . To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., ' Di anne' ' s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0’

"bar';

is equivalent to:

SELECT ' f oobar ' ;

but:

SELECT ' f o0’ ' bar’

is ncg: Vglid syntax. (This slightly bizarre behavior is specified by SQL; Postgres Pro is following the
standard.

4.1.2.2. String Constants with C-style Escapes

Postgres Pro also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E f oo’ . (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\t tab

\o,\00,\000(0=0-7) octal byte value

\xh,\xhh(h=0-9,A-F) hexadecimal byte value

\uxxxx, | UXxxxxxxx (x =0-9, A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \ ' , in addition
to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or hexadeci-
mal escapes, compose valid characters in the server character set encoding. When the server encoding is
UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3,
should be used instead. (The alternative would be doing the UTF-8 encoding by hand and writing out
the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \ uO0O7F) can be specified. Both the 4-digit and
the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF8, they are first combined into a single
code point that is then encoded in UTF-8.)

24

SQL Syntax

Caution

If the configuration parameter standard conforming strings is of f, then Postgres Pro rec-
ognizes backslash escapes in both regular and escape string constants. However, as of Post-
greSQL 9.1, the default is on, meaning that backslash escapes are recognized only in escape
string constants. This behavior is more standards-compliant, but might break applications
which rely on the historical behavior, where backslash escapes were always recognized. As
a workaround, you can set this parameter to of f, but it is better to migrate away from using
backslash escapes. If you need to use a backslash escape to represent a special character,
write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters es-
cape string warning and backslash quote govern treatment of backslashes in string con-
stants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

Postgres Pro also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U& f oo' . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string ' dat a' could be written as

u&' d\ 0061t \ +000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&' \ 0441\ 043B\ 043E\ 043D

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into a single code
point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard conforming strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, Postgres Pro provides another way,

25

SQL Syntax

called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar
sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of
characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne's horse” using
dollar quoting:

3D anne' s horse$$
$SoneTag$Di anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\vi\]$99%);
END;
$f uncti on$

Here, the sequence g[\ t\r\ n\v\\] g represents a dollar-quoted literal string [\t\r\ n\v\\], which
will be recognized when the function body is executed by Postgres Pro. But since the sequence does not
match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so $t ag$Stri ng cont ent $t ag$ is correct, but
$TAGSSt ri ng cont ent $t ag$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when represent-
ing string constants inside other constants, as is often needed in procedural function definitions. With
single-quote syntax, each backslash in the above example would have to be written as four backslashes,
which would be reduced to two backslashes in parsing the original string constant, and then to one when
the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B 1001' . The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X' 1FF' . This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string con-
stants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:
digits
digits.[digits][e[+-]digits]

[digits].digits[e[+-]digits]
digitse[+-]digits

26

SQL Syntax

where di gi t s is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

3.5

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type i nt eger if its value fits in type i nt eger (32 bits); otherwise it is presumed to be type bi gi nt if
its value fits in type bi gi nt (64 bits); otherwise it is taken to be type nuneri c. Constants that contain
decimal points and/or exponents are always initially presumed to be type nuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it.For example, you can force a numeric value to be treated as type real (fl oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- Postgres Pro (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

"string' ::type

CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called t ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to

the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typenane ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'

syntax can only be used to specify the type of a simple literal constant. Another restriction on the t ype

"string' syntax is that it does not work for array types; use : : or CAST() to specify the type of an array
constant.

The CAST() syntax conforms to SQL. Thetype 'string' syntaxis a generalization of the standard: SQL
specifies this syntax only for a few data types, but Postgres Pro allows it for all types. The syntax with
.. is historical Postgres Pro usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAVEDATALEN-1 (63 by default) characters from the following list:
+-*/<>=~1@#% "~ &| ?

27

SQL Syntax

There are a few restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

¢ A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#% " &|?
For example, @ is an allowed operator name, but *- is not. This restriction allows Postgres Pro to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent op-
erators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@ you cannot write X* @; you must write X* @ to ensure that Postgres Pro reads it as two operator
names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an oper-
ator. Details on the usage can be found at the location where the respective syntax element is described.
This section only exists to advise the existence and summarize the purposes of these characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a func-
tion definition or a prepared statement. In other contexts the dollar sign can be part of an identifier
or a dollar-quoted string constant.

¢ Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

* Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

¢ The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, ex-
cept within a string constant or quoted identifier.

* The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

¢ The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

* The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.qg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

where the comment begins with / * and extends to the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

28

SQL Syntax

4.1.6. Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in Postgres Pro. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left Postgres Pro-style typecast
[1] left array element selection
+ - right unary plus, unary minus
A left exponentiation
* | % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN I NLI KE | LI KE SI M LAR range containment, set member-
ship, string matching
<>z=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE, IS FALSE, I'S NULL, I S
DI STI NCT FROM etc
NOT right logical negation
AND left logical conjunction
oR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.
When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_cat al og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other oper-
ator”. This is true no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In partic-
ular, <= >= and <> used to be treated as generic operators; | Stests used to have higher prior-

29

SQL Syntax

ity; and NOT BETVEEN and related constructs acted inconsistently, being taken in some cases
as having the precedence of NOT rather than BETWEEN. These rules were changed for better
compliance with the SQL standard and to reduce confusion from inconsistent treatment of
logically equivalent constructs. In most cases, these changes will result in no behavioral
change, or perhaps in “no such operator” failures which can be resolved by adding paren-
theses. However there are corner cases in which a query might change behavior without
any parsing error being reported. If you are concerned about whether these changes have
silently broken something, you can test your application with the configuration parameter
operator precedence warning turned on to see if any warnings are logged.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in | NSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:
* A constant or literal value

* A column reference

* A positional parameter reference, in the body of a function definition or prepared statement
* A subscripted expression

e A field selection expression

* An operator invocation

* A function call

* An aggregate expression

* A window function call

* A type cast

¢ A collation expression

* A scalar subquery

* An array constructor

* A row constructor

* Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the | S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.
4.2.1. Column References

A column can be referenced in the form:
correl ation. col umnane
correl ati onisthe name of a table (possibly qualified with a schema name), or an alias for a table defined

by means of a FROMclause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

30

SQL Syntax

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL state-
ment. Parameters are used in SQL function definitions and in prepared queries. Some client libraries
also support specifying data values separately from the SQL command string, in which case parameters
are used to refer to the out-of-line data values. The form of a parameter reference is:

$nunber

For example, consider the definition of a function, dept, as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE nane = $1 $$
LANGUACGE SQ.;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expressi on[subscri pt]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[| ower _subscri pt: upper_subscri pt]

(Here, the brackets [] are meant to appear literally.) Each subscri pt is itself an expression, which
must yield an integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um[4]

nyt abl e. two_d_col uim[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dname
In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

nyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An im-
portant special case is extracting a field from a table column that is of a composite type:

(composi tecol). sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol is a column name not a table name, or
that nyt abl e is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:

(conpositecol).*

31

SQL Syntax

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)
expr essi on oper at or (unary postfix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR(schenm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:
sqrt(2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That
is, the notations col (t abl €) and t abl e. col are interchangeable. This behavior is not SQL-
standard but is provided in Postgres Pro because it allows use of functions to emulate “com-
puted fields”. For more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_nane (expression [, ...] [order_by clause]) [FILTER

(WHERE filter_clause)]

aggregate_nane (ALL expression [, ...] [order_by clause]) [FILTER

(WHERE filter_clause)]

aggregat e_nane (DI STINCT expression [, ...] [order_by clause]) [FILTER

(WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter_clause)]

aggregate nane ([expression [, ...]]) WTH N GROUP (order_by clause) [FILTER
(WHERE filter_clause)]

where aggr egat e_nane is a previously defined aggregate (possibly qualified with a schema name) and
expr essi on is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order by cl ause and filter_cl ause are described below.

32

SQL Syntax

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since ALL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count (*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of input
rows in which f 1 is non-null, since count ignores nulls; and count (di sti nct f1) yields the number of
distinct non-null values of f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, ni n produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and st ri ng_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order _by_cl ause can
be used to specify the desired ordering. The or der _by_cl ause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROMt abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string_agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT is specified in addition to an order_by_ cl ause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a Postgres
Pro extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when or-
dering the input rows for a “normal” aggregate for which ordering is optional. There is a subclass of
aggregate functions called ordered-set aggregates for which an or der _by_cl ause is required, usually
because the aggregate's computation is only sensible in terms of a specific ordering of its input rows.
Typical examples of ordered-set aggregates include rank and percentile calculations. For an ordered-set
aggregate, the order _by_cl ause is written inside WTH N GROUP (...), as shown in the final syntax
alternative above. The expressions in the or der _by_cl ause are evaluated once per input row just like
normal aggregate arguments, sorted as per the or der _by_cl ause's requirements, and fed to the aggre-
gate function as input arguments. (This is unlike the case for a non-W THI N GROUP or der _by_cl ause,
which is not treated as argument(s) to the aggregate function.) The argument expressions preceding
W THI N GROUP, if any, are called direct arguments to distinguish them from the aggregated arguments
listed in the order _by_cl ause. Unlike normal aggregate arguments, direct arguments are evaluated
only once per aggregate call, not once per input row. This means that they can contain variables only
if those variables are grouped by GROUP BY; this restriction is the same as if the direct arguments were
not inside an aggregate expression at all. Direct arguments are typically used for things like percentile

33

SQL Syntax

fractions, which only make sense as a single value per aggregation calculation. The direct argument list
can be empty; in this case, write just () not (*). (Postgres Pro will actually accept either spelling, but
only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM househol ds;
percentil e _cont

which obtains the 50th percentile, or median, value of the i ncone column from table househol ds. Here,
0. 5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
TOWS.

If FI LTER is specified, then only the input rows for which the filter_cl ause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count(*) FILTER (WHERE i < 5) AS filtered
FROM gener ate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and fil ter_cl ause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVI NG clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a window
function call is one of the following:

function_nane ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
OVER w ndow_nane
function_nane ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]

OVER (wi ndow definition)
function nane (*) [FILTER (WHERE filter_clause)] OVER wi ndow_nane
function nane (*) [FILTER (WHERE filter_clause)] OVER (w ndow definition)

where wi ndow_defi ni ti on has the syntax

[existing_w ndow nane]
[PARTITION BY expression [, ...]]

34

SQL Syntax

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
[, ...11

[frane_cl ause]
and the optional f rane_cl ause can be one of

{ RANGE | RON5 } frame_start
{ RANGE | ROAN5 } BETWEEN frame_start AND franme_end

where frame_start and f rame_end can be one of

UNBOUNDED PRECEDI NG
val ue PRECEDI NG
CURRENT ROW

val ue FOLLOW NG
UNBOUNDED FOLLOW NG

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_nane is a reference to a named window specification defined in the query's W NDOWNclause. Al-
ternatively, a full wi ndow_defi ni ti on can be given within parentheses, using the same syntax as for
defining a named window in the W NDOWclause; see the SELECT reference page for details. It's worth
pointing out that OVER wnane is not exactly equivalent to OVER (wnane) ; the latter implies copying and
modifying the window definition, and will be rejected if the referenced window specification includes
a frame clause.

The PARTI TI ON BY option groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI TI ON BY, all rows produced by the query are treated as a single partition. The ORDER BY option
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The franme_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROA5 mode; in either case, it runs from the f rane_st art to the
frame_end. If f rane_end is omitted, it defaults to CURRENT ROW

Aframe_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the partition,
and similarly a f ranme_end of UNBOUNDED FOLLOWN NG means that the frame ends with the last row of the
partition.

In RANGE mode, a franme_st art of CURRENT ROWmeans the frame starts with the current row's first peer
row (a row that ORDER BY considers equivalent to the current row), while a f rame_end of CURRENT ROW
means the frame ends with the last equivalent ORDER BY peer. In ROAS mode, CURRENT ROWsimply means
the current row.

The val ue PRECEDI NGand val ue FOLLON NGcases are currently only allowed in ROAS mode. They indicate
that the frame starts or ends the specified number of rows before or after the current row. val ue must
be an integer expression not containing any variables, aggregate functions, or window functions. The
value must not be null or negative; but it can be zero, which just selects the current row.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE BETWEEN UN-
BOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this sets the frame to be all rows from the par-
tition start up through the current row's last ORDER BY peer. Without ORDER BY, all rows of the partition
are included in the window frame, since all rows become peers of the current row.

Restrictions are that frane_start cannot be UNBOUNDED FOLLOW NG franme_end cannot be UNBOUNDED
PRECEDI NG, and the frane_end choice cannot appear earlier in the above list than the frane_start
choice — for example RANGE BETWEEN CURRENT ROW AND val ue PRECEDI NGis not allowed.

35

SQL Syntax

4

If FI LTER is specified, then only the input rows for which the fil ter _cl ause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FI LTER clause.

The built-in window functions are described in Table 9.54. Other window functions can be added by the
user. Also, any built-in or user-defined normal aggregate function can be used as a window function.
Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count (*) OVER (PARTI TI ON BY x ORDER BY y). The asterisk (*) is customarily not used for
non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DI STI NCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

2.9. Type Casts

A type cast specifies a conversion from one data type to another. Postgres Pro accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL; the syntax with : : is historical Postgres Pro usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typenane (expression)

However, this only works for types whose names are also valid as function names. For example, dou-
bl e precision cannot be used this way, but the equivalent fl oat 8 can. Also, the names i nterval,
time, and ti nest anp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as
their output type, and thus the “function-like syntax” is nothing more than a direct invoca-
tion of the underlying conversion function. Obviously, this is not something that a portable
application should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

36

SQL Syntax

The COLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE collation

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than oper-
ators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, ¢ FROMthl WHERE ... ORDER BY a COLLATE "C';
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROMtbhl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM thl VWHERE a COLLATE "C' > 'foo';
But this is an error:
SELECT * FROM tbhl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type bool ean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT nmax(pop) FROM cities WHERE cities.state = states. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNI ON or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

37

SQL Syntax

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array

{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3,4}}
(1 row
Since multidimensional arrays must be rectangular, inner constructors at the same level must produce

sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automat-
ically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROM arr
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}
(1 row

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate _series(1,5) AS a(i));
array

38

SQL Syntax

{{1,2},{2,4},{3,6},{4,8},{5, 10}}
(1 row

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT RON1,2.5,'this is a test');
The key word ROWis optional when there is more than one expression in the list.
A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the elements

of the row value, just as occurs when the . * syntax is used at the top level of a SELECT list (see Sec-
tion 8.16.5). For example, if table t has columns f 1 and f 2, these are the same:

SELECT RON(t.*, 42) FROMt;
SELECT RONt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
RONt.*, 42) created a two-field row whose first field was another row value. The new
behavior is usually more useful. If you need the old behavior of nested row values, write the
inner row value without . *, for instance RONt, 42).

By default, the value created by a RONexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);
CREATE FUNCTI ON getf1(nytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQ;
-- No cast needed since only one getfl() exists

SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowtype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON getf1(nyrow ype) RETURNS int AS ' SELECT $1.f1' LANGUACE SQ.;
-- Now we need a cast to indicate which function to call:

SELECT getf1(RON1,2.5,'this is a test'));

ERROR: function getfl(record) is not unique

SELECT getf1(ROWN1,2.5,'this is a test')::nmytable);

39

SQL Syntax

SELECT getf1(CAST(ROWN11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with I S NULL or | S NOT NULL, for example:

SELECT RON1,2.5,'this is atest') = RON1, 3, 'not the sane');

SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then sonef unc() would (probably) not be called at all. The same would be the case if one wrote:
SELECT sonefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NCT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 35.6, functions
and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > O THEN x ELSE 1/0 END FROM t ab;

40

SQL Syntax

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-EL SE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NGclause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN ni n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

The mi n() and avg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of m n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

Postgres Pro allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

Postgres Pro also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function de-
finition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase bool ean DEFAULT fal se)
RETURNS t ext

AS
$$
SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LOVER($1 || ' ' || $2)
END;
$$

LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is one
optional parameter upper case which defaults to f al se. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the upper case parameter. The remaining details of
this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation

41

SQL Syntax

Positional notation is the traditional mechanism for passing arguments to functions in Postgres Pro. An
example is:

SELECT concat | ower _or_upper('Hello', '"Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since upper case is specified as true.
Another example is:

SELECT concat _| ower _or_upper(' Hello', '"Wrld);
concat _| ower _or _upper

hell o worl d
(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument expres-
sion. For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o world

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or _upper(a => 'Hello', b => "Wrld , uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat | ower _or_upper(a => "Hello', uppercase => true, b => "Wrld');
concat _| ower _or _upper

HELLO WORLD
(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat | ower _or_upper(a := "Hello', uppercase := true, b := "Wrld);

concat _| ower _or _upper

HELLO WORLD
(1 row

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', '"Wrld', uppercase => true);
concat _| ower _or _upper

42

SQL Syntax

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing

and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate func-
tion (but they do work when an aggregate function is used as a window function).

43

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

Postgres Pro includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are i nt eger for whole numbers, nu-
nmeri ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, ti me for time-of-day
values, and ti nest anp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col umm i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named fi rst_col um
and has a data type of t ext; the second column has the name second_col utm and the type i nt eger.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric

)

(The nuneri ¢ type can store fractional components, as would be typical of monetary amounts.)

44

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern

for the tables and columns. For instance, there is a choice of using singular or plural nouns
for table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric DEFAULT 9.99

)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for ati mest anp column to have a default of CUR-
RENT_TI MESTAMP, so that it gets set to the time of row insertion. Another common example is generating
a “serial number” for each row. In Postgres Pro this is typically done by something like:

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)
where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (
product _no SERI AL,

45

Data Definition

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would vi-
olate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted _price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

46

Data Definition

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (Postgres Pro doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted _price numeric,

CHECK (di scounted price > 0),

CHECK (price > discounted price)
);

or even:

CREATE TABLE products (

product _no i nteger,

name text,

price numeric CHECK (price > 0),

di scounted_price numeric,

CHECK (di scounted price > 0 AND price > discounted price)
);

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted _price > 0),
CONSTRAI NT val i d_di scount CHECK (price > discounted price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (col umm_nanme |'S NOT NULL), but in Postgres Pro creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

47

Data Definition

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

)

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to Postgres Pro to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

)

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price nunmeric

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

)

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE examnpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
);
This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

48

Data Definition

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT rust_be_different UN QUE,
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful
when developing applications that are intended to be portable.

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL
name text,
price nuneric

)

CREATE TABLE products (
product _no i nteger PRI MARY KEY
name text,
price nuneric

);
Primary keys can span more than one column; the syntax is similar to unique constraints:
CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.) Rela-
tional database theory dictates that every table must have a primary key. This rule is not enforced by
Postgres Pro, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys

49

Data Definition

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (

product _no integer PRI MARY KEY,

name text,

price nuneric
)
Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer
)
Now it is impossible to create orders with non-NULL product _no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
guantity integer
);
because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a i nteger PRI MARY KEY,
b integer,
c integer,
FOREI GN KEY (b, c) REFERENCES other_table (cl, c2)
);
Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

50

Data Definition

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products,
order _id integer REFERENCES orders,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

* Disallow deleting a referenced product
* Delete the orders as well
¢ Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of a
referenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTI ONallows the check to be deferred until later in the transaction,
whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same. In this case, CASCADE means that the updated values of
the referenced column(s) should be copied into the referencing row(s).

51

Data Definition

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too.
Because this is not always needed, and there are many choices available on how to index, declaration of
a foreign key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAI NT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

oi d
The object identifier (object ID) of a row. This column is only present if the table was created using

W TH O DS, or if the default with oids configuration variable was set at the time. This column is of
type oi d (same name as the column); see Section 8.18 for more information about the type.

t abl eoi d

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it's difficult to tell which individual
table a row came from. The t abl eoi d can be joined against the oi d column of pg_cl ass to obtain
the table name.

Xm n

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmn

The command identifier (starting at zero) within the inserting transaction.

52

Data Definition

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the cti d can be used
to locate the row version very quickly, a row's ct i d will change if it is updated or moved by VACUUM
FULL. Therefore cti d is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

¢ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 232 (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

¢ OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and
row OID if you need a database-wide identifier.

¢ Of course, the tables in question must be created W TH O DS. As of PostgreSQL 8.1, W THOUT O DS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign key
constraint). Therefore Postgres Pro provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

¢ Add columns

¢ Remove columns

¢ Add constraints

¢ Remove constraints

* Change default values

¢ Change column data types
¢ Rename columns

53

Data Definition

¢ Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUWN descri ption text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description <> '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Tip
Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, Postgres Pro is able to avoid the physical
update. So if you intend to fill the column with mostly nondefault values, it's best to add the

column with no default, insert the correct values using UPDATE, and then add any desired
default as described below.

5.5.2. Removing a Column
To remove a column, use a command like:
ALTER TABLE products DROP COLUWN descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, Postgres Pro will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAI NT sone_nanme UNI QUE (product no);
ALTER TABLE products ADD FOREI GN KEY (product _group_id) REFERENCES product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:
ALTER TABLE products ALTER COLUWN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \ d t abl enanme can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

54

Data Definition

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUWN product no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column's Default Value
To set a new default for a column, use a command like:
ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUWN price DROP DEFAULT;
This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.
5.5.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:
ALTER TABLE products ALTER COLUWN price TYPE nuneric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

Postgres Pro will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:
ALTER TABLE products RENAME COLUWN product_no TO product _numnber;

5.5.8. Renaming a Table

To rename a table:
ALTER TABLE products RENAME TO it ens;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRI GCER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object vary

55

Data Definition

depending on the object's type (table, function, etc). For complete information on the different types of
privileges supported by Postgres Pro, refer to the GRANT reference page. The following sections and
chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing user, and account s
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLI C can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLI C

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or func-
tions coming from the user's query. (The only exceptions to this rule are | eakpr oof functions, which are
guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the row-
security check.) Rows for which the expression does not return true will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

56

Data Definition

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when access-
ing a table. Table owners normally bypass row security as well, though a table owner can choose to be
subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using OR, so that a row is accessible
if any policy allows it. This is similar to the rule that a given role has the privileges of all roles that they
are a member of.

As a simple example, here is how to create a policy on the account relation to allow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_emmil text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly provides a W TH CHECK clause identical to its USI NG clause, so that the con-
straint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via | NSERT or UPDATE).

If no role is specified, or the special user name PUBLI Cis used, then the policy applies to all users on the
system. To allow all users to access only their own row in a user s table, a simple policy can be used:

CREATE PQOLI CY user _policy ON users
USI NG (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the user s table, but only modify their own:

CREATE PCLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

-- Sinple passwd-fil e based exanple

57

Data Definition

CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | text NOT NULL
)
CREATE RCLE admin; -- Adm nistrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES
("admn', ' xxx',0,0," Admn',"111-222-3333" ,null,"/root','/bin/dash");
| NSERT | NTO passwd VALUES
("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx",2,1," Alice',"'098-765-4321" ,null,'/honme/alice','/bin/zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK (true);
-- Normal users can view all rows
CREATE POLI CY al | _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')

);

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, honme_phone, extra_info, honme_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role adm n;

SET

post gres=> tabl e passwd;

58

Data Definition

user_nane | pwhash | uid | gid | real_nanme | honme_phone | extra_info | hone_dir |
shel |

----------- T T Ty
.

adm n | xxx | 0 | 0 | Admin | 111-222-3333 | | /root

| /bin/dash

bob | xxx | 1] 1| Bob | 123-456-7890 | | /home/ bob

| /bin/zsh

alice | xxx | 2| 1| Aice | 098-765-4321 | | /hone/alice
| /bin/zsh

(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for relation passwd

post gres=> sel ect user_nane, real _nane, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir | shel |
----------- T T g
adm n Admi n 111- 222- 3333 | | /root | /bin/dash
| /hone/ bob | /bin/zsh
|

| |
bob | Bob | 123- 456- 7890 |
| |

alice Alice 098- 765- 4321 | /hone/alice | /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe';

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane = 'admn';
UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents updating other rows
post gr es=> update passwd set pwhash = 'abc’;

UPDATE 1

Referential integrity checks, such as unique or primary key constraints and foreign key references, al-
ways bypass row security to ensure that data integrity is maintained. Care must be taken when devel-
oping schemas and row level policies to avoid “covert channel” leaks of information through such ref-
erential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row security configuration parameter to of f . This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTSs, or functions that contain SELECTSs, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow informa-
tion leakage if care is not taken. As an example, consider the following table design:

59

Data Definition

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high');
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
("very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT
USI NG (group_id <= (SELECT group_id FROM users WHERE user _nanme = current_user));
CREATE POLI CY fp_u ON information FOR UPDATE
USI NG (group_id <= (SELECT group_id FROM users WHERE user _nanme = current_user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishes to change the “slightly secret” information, but decides that mal | ory
should not be trusted with the new content of that row, so she does:

BEG N;

UPDATE users SET group_id = 1 WHERE user_nanme = "mallory';

UPDATE i nformation SET info = 'secret frommallory' WHERE group_id = 2;
COW T;

That looks safe; there is no window wherein mal | ory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mal | ory is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COVM TTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks waiting for

60

Data Definition

al i ce's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from user s, because that sub-SELECT
did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mal | ory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the refer-
enced table could pose a performance problem, especially if updates of it are frequent. Another solution,
practical if updates of the referenced table are infrequent, is to take an exclusive lock on the referenced
table when updating it, so that no concurrent transactions could be examining old row values. Or one
could just wait for all concurrent transactions to end after committing an update of the referenced table
and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A Postgres Pro database cluster contains one or more named databases. Users and groups of users
are shared across the entire cluster, but no other data is shared across databases. Any given client
connection to the server can access only the data in a single database, the one specified in the connection
request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, j oe
in two databases in the same cluster; but the system can be configured to allow j oe access
to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and nyschema can contain
tables named nyt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects
in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:
* To allow many users to use one database without interfering with each other.
* To organize database objects into logical groups to make them more manageable.

* Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHENMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

61

Data Definition

schemna. t abl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
dat abase. schena. t abl e

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:
CREATE TABLE mnyschema. nytabl e (

)

To drop a schema if it's empty (all objects in it have been dropped), use:
DROP SCHEMA nyschens;

To drop a schema including all contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHENMA schema_nanme AUTHORI ZATI ON user _nane;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to sear ch_pat h effectively trusts all users having
CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create objects

62

Data Definition

in a schema of your search path can take control and execute arbitrary SQL functions as though you
executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:
SHOW sear ch_pat h;
In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

SET search_path TO nyschenm, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE nyt abl e;

Also, since nyschena is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schemma. oper at or)

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USACE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

63

Data Definition

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USACE privileges on
the schema publ i c. This allows all users that are able to connect to a given database to create objects
in its publ i c schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C,

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to publ i ¢ and user-created schemas, each database contains a pg_cat al og schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_cat al og is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns easily sup-
ported by the default configuration, only one of which suffices when database users mistrust other data-
base users:

* Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA publ i ¢ FROM PUBLI C, and create a schema for each user with the same name as that user.
If affected users had logged in before this, consider auditing the public schema for objects named
like objects in schema pg_cat al og. Recall that the default search path starts with $user, which
resolves to the user name. Therefore, if each user has a separate schema, they access their own
schemas by default.

* Remove the public schema from each user's default search path using ALTER ROLE user SET
search_path = "$user". Everyone retains the ability to create objects in the public schema, but
only qualified names will choose those objects. While qualified table references are fine, calls to
functions in the public schema will be unsafe or unreliable. Also, a user holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of users relying on the
setting. If you create functions or extensions in the public schema or grant CREATEROLE to users not
warranting this almost-superuser ability, use the first pattern instead.

* Remove the public schema from sear ch_pat h in post gresqgl . conf . The ensuing user experience
matches the previous pattern. In addition to that pattern's implications for functions and CREATE-
ROLE, this trusts database owners like CREATEROLE. If you create functions or extensions in the pub-
lic schema or assign the CREATEROLE privilege, CREATEDB privilege or individual database ownership
to users not warranting almost-superuser access, use the first pattern instead.

* Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, any user can issue arbitrary queries under the identity of any user not electing to protect
itself individually. This pattern is acceptable only when the database has a single user or a few mu-
tually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges

64

Data Definition

to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user _nane. t abl e_nane. This is how Postgres Pro will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a publ i c schema in the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

Postgres Pro implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
it inherits from ci ti es:

CREATE TABLE cities (

nane t ext,
popul ati on float,
al titude i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

In this case, the capi t al s table inherits all the columns of its parent table, ci ti es. State capitals also
have an extra column, st at e, that shows their state.

In Postgres Pro, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT nane, altitude
FROM cities
VWHERE al ti tude > 500;

Given the sample data from the Postgres Pro tutorial (see Section 2.1), this returns:

name | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953

65

Data Definition

Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
VWHERE al titude > 500;

nane | altitude
___________ e e e e e - -
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci ti es, and not any tables below
ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are in-
cluded:

SELECT nane, altitude
FROM ci ti es*
VWHERE al titude > 500;

Writing * is not necessary, since this behavior is the default (unless you have changed the setting of the

sql inheritance configuration option). However writing * might be useful to emphasize that additional
tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.nane, c.altitude
FROM cities c
VWHERE c. al titude > 500;

which returns:

tabl eoid | nane | altitude
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.altitude
FROM cities ¢, pg_class p
WHERE c. al titude > 500 AND c.tabl eoid = p.oid,;

which returns:

rel nane | nane | altitude
__________ o
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use the r egcl ass pseudo-type, which will print the table OID
symbolically:

SELECT c.tabl eoid::regclass, c.nane, c.altitude
FROM cities ¢

66

Data Definition

VWHERE c. al titude > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT INTO cities (name, popul ation, altitude, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
| NSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 38). However that does not help for the above case because the ci ti es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-
null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the | NHERI T variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO | NHERI T variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LI KE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to LI KE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE
option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the ci ti es table implies permission to update rows in the capi t al s table as well,
when they are accessed through ci ti es. This preserves the appearance that the data is (also) in the
parent table. But the capital s table could not be updated directly without an additional grant. In a
similar way, the parent table's row security policies (see Section 5.7) are applied to rows coming from
child tables during an inherited query. A child table's policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

67

Data Definition

5.9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used for
data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typically default to including child tables
and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REI NDEX, VACUUM typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

e If we declared ci ti es.nanme to be UNI QUE or a PRI MARY KEY, this would not stop the capi t al s table
from having rows with names duplicating rows in ci ti es. And those duplicate rows would by de-
fault show up in queries from ci ti es. In fact, by default capi t al s would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capi t al s, but this would not prevent duplication compared tociti es.

* Similarly, if we were to specify that ci ti es.name REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

* Specifying that another table's column REFERENCES ci ti es(nanme) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care
is needed in deciding whether inheritance is useful for your application.

5.10. Partitioning

Postgres Pro supports basic table partitioning. This section describes why and how to implement parti-
tioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

¢ Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

* When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and ran-
dom access reads scattered across the whole table.

¢ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE NO | NHERI T and DROP TABLE are both far faster
than a bulk operation. These commands also entirely avoid the VACUUMoverhead caused by a bulk
DELETE.

* Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, Postgres Pro supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent

68

Data Definition

the entire data set. You should be familiar with inheritance (see Section 5.9) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in Postgres Pro:
Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.10.2. Implementing Partitioning
To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique con-
straints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal Postgres Pro tables
(or, possibly, foreign tables).
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Bucki nghanshire', 'Warw ckshire'))
CHECK (outletID >= 100 AND outletlD < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outlet! D BETWEEN 100 AND 200)
CHECK (outlet! D BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are de-
scriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might want.
(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint exclusion configuration parameter is not disabled in post gresql . conf . If
it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want
a table like:

CREATE TABLE neasur enent (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

69

Data Definition

)

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data.

In this situation we can use partitioning to help us meet all of our different requirements for the mea-
surements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the neasur enent table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE neasurenent _y2006n0D2 () I NHERI TS (rnmeasurenent);
CREATE TABLE neasurenent _y2006n0D3 () I NHERI TS (rneasurenent);

CREATE TABLE neasurenent _y2007mil () I NHERI TS (rnmeasurenent);
CREATE TABLE neasurenent _y2007mi2 () I NHERI TS (rnmeasurenent);
CREATE TABLE neasurenent _y2008nD1 () I NHERI TS (rnmeasurenent);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the neasur enent table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month's data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE measur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006- 02- 01" AND | ogdat e
) INHERI TS (neasurenent);
CREATE TABLE measur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006- 03- 01" AND | ogdate
) INHERI TS (neasurenent);

N

DATE ' 2006- 03-01")

N

DATE ' 2006- 04- 01")

CREATE TABLE measur enent _y2007nill (

CHECK (| ogdate >= DATE '2007-11-01' AND | ogdate
) INHERI TS (neasurenent);
CREATE TABLE measur enent _y2007nil2 (

CHECK (| ogdate >= DATE '2007-12-01' AND | ogdate
) INHERI TS (neasurenent);
CREATE TABLE measur enent _y2008n01 (

CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate
) INHERI TS (neasurenent);

4. We probably need indexes on the key columns too:

CREATE | NDEX mneasur enent _y2006n02_| ogdat e
CREATE | NDEX mneasur enent _y2006n03_| ogdat e

N

DATE ' 2007-12-01")

N

DATE ' 2008-01-01")

N

DATE ' 2008-02-01")

nmeasur enent _y2006nm02 (| ogdate);
nmeasur enent _y2006nm03 (| ogdate);

CREATE | NDEX measur enent _y2007nill_| ogdat e
CREATE | NDEX measur enent _y2007nil2_| ogdat e
CREATE | NDEX measur enent _y2008n01_| ogdat e

nmeasur enent _y2007ml1l (| ogdate);
nmeasur enent _y2007ml2 (| ogdate);
nmeasur enent _y2008nm01 (| ogdate);

222 29

We choose not to add further indexes at this time.

5. We want our application to be able to say | NSERT | NTO neasurenent ... and have the data be
redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTI ON neasurenent _i nsert _trigger()
RETURNS TRI GGER AS $%
BEG N

70

Data Definition

| NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsdl ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GGER i nsert_measurenent _tri gger
BEFORE | NSERT ON neasur enment
FOR EACH ROW EXECUTE PROCEDURE neasurenent insert _trigger();

We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasurement _i nsert_trigger()
RETURNS TRI GGER AS $%
BEG N
IF (NEW I ogdate >= DATE ' 2006-02-01' AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
| NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);
ELSIF (NEW I ogdat e >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN
I NSERT | NTO neasur enent _y2006n03 VALUES (NEW *);

ELSIF (NEW I ogdat e >= DATE ' 2008-01-01'" AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);
ELSE
RAI SE EXCEPTI ON ' Date out of range. Fix the measurenent_insert_trigger()
function!';
END | F;
RETURN NULL;
END;
$$
LANGUACE pl pgsql ;

The trigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger's tests in the same order as in other
parts of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for

71

Data Definition

new data. One of the most important advantages of partitioning is precisely that it allows this otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE neasurenent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE neasur enent _y2006nD2 NO | NHERI T neasur enent;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using COPY, pg dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE neasur enent _y2008n02 (
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE '2008-03-01')
) I NHERI TS (nmeasurenent);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior
to it appearing in the partitioned table:

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasur enent | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE '2008-03-01');
\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work
ALTER TABLE neasur enent _y2008nD2 | NHERI T nmeasur enent ;

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constrai nt_exclusion = on;
SELECT count (*) FROM neasurenent WHERE | ogdate >= DATE ' 2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the neasur erment
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and
try to prove that the partition need not be scanned because it could not contain any rows meeting the
query's WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAI N command to show the difference between a plan with const rai nt _excl usi on
on and a plan with it off. A typical unoptimized plan for this type of table setup is:

SET constraint_exclusion = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE ' 2008-01-01';

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 wi dt h=0)
-> Append (cost=0.00..151.88 rows=2715 wi dt h=0)
-> Seq Scan on neasurenent (cost=0.00..30.38 rows=543 wi dt h=0)

72

Data Definition

Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2006n0D2 neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2006n03 neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent_y2007nl2 measurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008n0D1 neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constrai nt_excl usi on = on;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE ' 2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 wi dt h=0)
-> Append (cost=0.00..60.75 rows=1086 wi dt h=0)
-> Seq Scan on neasurenent (cost=0.00..30.38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008n0D1 measurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn't necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

The default (and recommended) setting of constraint exclusion is actually neither on nor of f, but an
intermediate setting called parti ti on, which causes the technique to be applied only to queries that are
likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.10.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE neasurenent _insert_y2006nmD2 AS
ON I NSERT TO nmeasur enment WHERE

(logdate >= DATE ' 2006-02-01" AND | ogdate < DATE ' 2006-03-01")
DO | NSTEAD

| NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008nmD1 AS
ON I NSERT TO nmeasur enment WHERE

(logdate >= DATE '2008-01-01'" AND | ogdate < DATE ' 2008-02-01")
DO | NSTEAD

| NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however,
the trigger method will offer better performance.

73

Data Definition

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNI ON ALL view, instead of table inheritance. For example,

CREATE VI EW neasur enent AS
SELECT * FROM neasur enent _y2006n02
UNI ON ALL SELECT * FROM neasurenent y2006nmD3

UNI ON ALL SELECT * FROM measur enment _y2007ml1
UNI ON ALL SELECT * FROM measurenment _y2007ml2
UNI ON ALL SELECT * FROM neasur enent _y2008n01,;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.10.6. Caveats

The following caveats apply to partitioned tables:

e There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than
to write each by hand.

* The schemes shown here assume that the partition key column(s) of a row never change, or at least
do not change enough to require it to move to another partition. An UPDATE that attempts to do that
will fail because of the CHECK constraints. If you need to handle such cases, you can put suitable up-
date triggers on the partition tables, but it makes management of the structure much more compli-
cated.

* Ifyou are using manual VACUUMor ANALYZE commands, don't forget that you need to run them on
each partition individually. A command like:

ANALYZE neasur erent ;
will only process the master table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON CONFLI CT
action is only taken in case of unique violations on the specified target relation, not its child rela-
tions.

The following caveats apply to constraint exclusion:

* Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as CUR-
RENT_TI MESTAMP cannot be optimized, since the planner cannot know which partition the function
value might fall into at run time.

* Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don't need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that parti-
tioning constraints should contain only comparisons of the partitioning column(s) to constants us-
ing B-tree-indexable operators.

» All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning us-
ing these techniques will work well with up to perhaps a hundred partitions; don't try to use many
thousands of partitions.

5.11. Foreign Data

74

Data Definition

Postgres Pro implements portions of the SQL/MED specification, allowing you to access data that resides
outside Postgres Pro using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as cont ri b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 54.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage in
the Postgres Pro server. Whenever it is used, Postgres Pro asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current Postgres Pro role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

* Views

¢ Functions and operators

* Data types and domains

* Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, Postgres Pro makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we consid-
ered in Section 5.3.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;
ERROR: cannot drop table products because other objects depend on it

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HI NT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

75

Data Definition

and all the dependent objects will be removed. In this case, it doesn't remove the orders table, it only
removes the foreign key constraint. (If you want to check what DROP ... CASCADE will do, run DROP
without CASCADE and read the DETAI L output.)

All drop commands in Postgres Pro support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRI CT instead of CASCADE to get
the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior
is RESTRI CT or CASCADE varies across systems.

For user-defined functions, Postgres Pro tracks dependencies associated with a function's externally-vis-
ible properties, such as its argument and result types, but not dependencies that could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
‘green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUAGE SQ.;

(See Section 35.4 for an explanation of SQL-language functions.) Postgres Pro will be aware that the
get _col or _not e function depends on the rai nbow type: dropping the type would force dropping the
function, because its argument type would no longer be defined. But Postgres Pro will not consider
get _col or _note to depend on the ny_col ors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

76

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

);
An example command to insert a row would be:
I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.
If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

| NSERT | NTO products (product_no, name) VALUES (1, ' Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a Postgres Pro extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:
I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese', DEFAULT);

| NSERT | NTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, nane, price FROM new products
WHERE r el ease_date = 'today';

77

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not

as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:
UPDATE nytable SET a =5, b =3, ¢ =1 WERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

78

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:
DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The | NSERT,
UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports this. Use of RE-
TURNI NG avoids performing an extra database query to collect the data, and is especially valuable when
it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see Sec-
tion 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNI NG *, which selects all columns of the target table in order.

In an | NSERT, the data available to RETURNI NGis the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a seri al column to provide unique identifiers,
RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastname text, id serial prinmary key);

| NSERT | NTO users (firstnane, |astname) VALUES ('Joe', 'Cool') RETURNI NG i d;
The RETURNI NG clause is also very useful with | NSERT ... SELECT.

In an UPDATE, the data available to RETURNI NG is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG name, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM products
WHERE obsol etion_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 36) on the target table, the data available to RETURNI NG is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNI NG.

79

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH with_queries] SELECT select_|ist FROMtabl e_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM t abl el;

Assuming that there is a table called t abl e1, this command would retrieve all rows and all user-defined
columns from t abl el. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if t abl el has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROMt abl el is a simple kind of table expression: it reads just one table. In general, table expressions can
be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVI NGclauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The FROMClause

The the section called “FROMClause” derives a table from one or more other tables given in a comma-sep-
arated table reference list.

FROM t abl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JA Nconstruct, or complex combinations of these. If more than one table reference is listed in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).

80

Queries

The result of the FROMlist is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word ONLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly specify
that descendant tables are included. Writing * is not necessary since that behavior is the default (unless
you have changed the setting of the sql inheritance configuration option). However writing * might be
useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join_type T2 [join_condition]
Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control the join order. In the absence of parentheses,
JA N clauses nest left-to-right.
Join Types
Cross join

T1 CRCSS JON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CRCSS JA N T2 is equivalent to FROM T1 I NNER JO N T2 ON TRUE (see below). It is also
equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA Nbinds more tightly than comma. For example FROM T1 CROSS JO N T2 | NNER JO N
T3 ON condi ti onisnotthe sameas FROMT1, T2 I NNER JO N T3 ON condi ti on because
the condi ti on can reference T1 in the first case but not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 ON bool ean_expressi on
T1 { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2 USING (join colum list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JON T2

The words | NNER and QUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT, and FULL
imply an outer join.

The join condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

81

Queries

LEFT QUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USI NG clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USI NG (a, b) produces the join condition ON Tl.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JO N USI NGsuppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JO N ON produces all columns
from T1 followed by all columns from T2, JO N USI NG produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from T1, followed by
any remaining columns from T2.

Finally, NATURAL is a shorthand form of USI NG: it forms a USI NG list consisting of all column names
that appear in both input tables. As with USI NG, these columns appear only once in the output table.
If there are no common column names, NATURAL JO N behaves like JON ... ON TRUE, producing
a cross-product join.

Note

US| NGis reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause the
join to combine that new column as well.

To put this together, assume we have tablest 1:

num | nane

82

Queries

5| zzz
then we get the following results for the various joins:

=> SELECT * FROMt1l CROSS JO N t2;
num | nane | num| val ue

WWWNNNREP PR

~ 0 00T TCUT9 9O
<
<
<

(9 rows

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

----- s
1] a | 1] Xxxx
3] ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1l INNER JO N t2 USING (nun;
num | nane | val ue

_____ e
1] a | xxx
3] ¢ | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL |INNER JO N t2;
num | nane | val ue

_____ e
1] a | xxx
3] ¢ | yyy

(2 rows)

=> SELECT * FROMt1l LEFT JON1t2 ONt1l.num= t2. num
num | nane | num| val ue

yyy

=> SELECT * FROM t1 LEFT JON t2 USI NG (num;

=> SELECT * FROMt1l RIGHT JON1t2 ONt1l.num= t2. num
num | nane | num| val ue

83

Queries

31 ¢ | 31 yyy
| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 5| zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JON1t2 ONtl.num= t2.num AND t2.value = ' xxx';
num| nanme | num| val ue

1| a
2] b
3| c
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1 LEFT JON1t2 ONtl.num= t2.num WHERE t 2. val ue = ' xxx';
num | nane | num| val ue

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters
a lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write
FROM t abl e_reference AS alias
or

FROM t abl e_reference alias

The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:
SELECT * FROM sone_very long_table name s JON another _fairly long_nane a ON s.id =

a. num
The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:
SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

84

Queries

SELECT * FROM peopl e AS nother JO N people AS child ON nother.id = child. nother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result of
the join:

SELECT * FROM ny_table AS a CROSS JON nmy_table AS b ...

SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]1])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JO N clause, the alias hides the original name(s) within the
JA N. For example:

SELECT a.* FROM ny_table AS a JON your _table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JON your _table AS b ON...) ASc

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_nane. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROMclause of
a query. Columns returned by table functions can be included in SELECT, JO N, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROAS FROMsyntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(colum_alias [, ... 1)]]
ROAS FROM function_call [, ...]) [WTH ORDI NALITY] [[AS] table_alias [(columm_alias

[, - DI

If the WTH ORDI NALI TY clause is specified, an additional column of type bi gi nt will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.) By default, the ordinal
column is called or di nal i ty, but a different column name can be assigned to it using an AS clause.

85

Queries

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORD NALITY] [[AS] table_alias [(columm_alias
[, .- DII

Ifnotabl e_alias is specified, the function name is used as the table name; in the case of a ROAS FROM)
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:
CREATE TABLE foo (fooid int, foosubid int, foonanme text);

CREATE FUNCTI ON get f 0o(int) RETURNS SETOF foo AS $$
SELECT * FROM f oo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT foosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

);
CREATE VI EW vw _getfoo AS SELECT * FROM getfoo(1l);
SELECT * FROM vw_get f 00;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
recor d. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (colum_definition [, ...])
function_call AS [alias] (colum_definition [, ...])
ROAMS FROM ... function_call AS (colum _definition [, ... 1) [, ... 1)

When not using the RON6 FROM) syntax, the col utm_defi ni ti on list replaces the column alias list that
could otherwise be attached to the FROMitem; the names in the column definitions serve as column
aliases. When using the ROAS FROM) syntax, a col utm_def i ni ti on list can be attached to each member
function separately; or if there is only one member function and no W TH ORDI NALI TY clause, a col um
n_defi ni tion list can be written in place of a column alias list following ROAS FROV) .

Consider this example:

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM pg _proc')
AS t1(pronanme nane, prosrc text)
VWHERE pronane LI KE 'bytea%;

The dblink function (part of the dblink module) executes a remote query. It is declared to return r ecord
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

7.2.1.5. LATERAL Subqueries

86

Queries

Subqueries appearing in FROMcan be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FROMitems. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROMitems in any case.

A LATERAL item can appear at top level in the FROMlist, or within a JO N tree. In the latter case it can
also refer to any items that are on the left-hand side of a JO N that it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROMitem providing the cross-referenced column(s), or set of rows of multiple FROMitems providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar _id) ss;
This is not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo. bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that verti ces(pol ygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, v1, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JO Nto a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get _product _nanes()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m nane
FROM manuf acturers m LEFT JO N LATERAL get_product_nanmes(mid) pname ON true
VWHERE pnanme | S NULL;

7.2.2. The VHERE Clause

The syntax of the the section called “WHERE Clause” is

WHERE sear ch_condition

where sear ch_condi ti on is any value expression (see Section 4.2) that returns a value of type bool ean.
After the processing of the FROMclause is done, each row of the derived virtual table is checked against

the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one

87

Queries

column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note
The join condition of an inner join can be written either in the WHERE clause or in the JO N
clause. For example, these table expressions are equivalent:
FROMa, b WHERE a.id = b.id AND b.val > 5
and:
FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:
FROM a NATURAL JON b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO Nsyntax in the FROMclause is
probably not as portable to other SQL database management systems, even though it is in
the SQL standard. For outer joins there is no choice: they must be done in the FROMclause.
The ON or USI NG clause of an outer join is not equivalent to a WHERE condition, because it
results in the addition of rows (for unmatched input rows) as well as the removal of rows
in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE cl1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl1 IN (SELECT cl1 FROMt 2)

SELECT ... FROM fdt WHERE c1 IN (SELECT ¢3 FROMt2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROMt2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

f dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt is referenced in
the subqueries. Qualifying cl asf dt. c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st

FROM . ..
[WHERE . . .]
GROUP BY groupi ng_colum_reference [, grouping _colunm_reference]...

The the section called “GROUP BY Clause” is used to group together those rows in a table that have the
same values in all the columns listed. The order in which the columns are listed does not matter. The
effect is to combine each set of rows having common values into one group row that represents all rows
in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM test1;

88

Queries

x|y
T .
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a

b

c

(3 rows)

In the second query, we could not have written SELECT * FROM test 1 GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sunm(y) FROM test1l GROUP BY x;
X | sum

a | 4
b | 5
c | 2
(3 rows)

Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in
a column. This can also be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.nanme, (sun{s.units) * p.price) AS sales
FROM products p LEFT JO N sal es s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns product _i d, p. nane, and p. pri ce must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s. uni t s does not have to be in
the GROUP BY list since it is only used in an aggregate expression (sun{ . . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product _i d is the primary key, then it would be enough to
group by product _i d in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but Postgres Pro extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

89

Queries

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ... HAVI NG bool ean_expressi on

Expressions in the HAVI NG clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1l GROUP BY x HAVI NG sun(y) > 3;
X | sum

b | 5
(2 rows)

=> SELECT x, sunm(y) FROMtestl GROUP BY x HAVING x < 'c';
X | sum

a | 4
b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sun{s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JO N sales s USI NG (product _id)
WHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVI NG clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVI NG). The same
is true if it contains a HAVI NG clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of group-
ing sets. The data selected by the FROMand WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG SETS ((brand),
(size), ());

brand | size | sum

90

Queries

Bar | | 20
| L | 15
| M | 35
| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for group-
ing sets in which those columns do not appear. To distinguish which grouping a particular output row
resulted from, see Table 9.53.
A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
.(.él, e2),
(el),

()
)

This is commonly used for analysis over hierarchical data; e.g. total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e. the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPI NG SETS (

(a b, c),
(a b).
(a, c),
(a).
(b, ¢),
(b).
(c)
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPI NG SETS (
(a b, c, d),
(a b)

91

Queries

)

and

ROLLUP (a, (b, c), d)
is equivalent to

GROUPI NG SETS (
(a b, c, d)
(a b, c),

(a)

()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, ¢, d), (a, ¢, e),
(a, d), (a, e)

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the
GROUP BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed
as a list of expressions as described above. If for some reason you need a row constructor
in a grouping expression, use RON a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NG filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions are
the group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in a
single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTI TI ON BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering
of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not recom-
mended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure the
results are sorted in a particular way.

92

Queries

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermedi-
ate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVI NG clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbhl2.a, tbll.b FROM. ..

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbl1.*, thl2.a FROM ...

See Section 8.16.5 for more about the t abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference

any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM . ..
If no output column name is specified using AS, the system assigns a default column name. For simple

column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any Postgres Pro keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM . ..
but this does:
SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROMclause (see Sec-
tion 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

93

Queries

7.3.3. DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word is written directly after SELECT to specify this:

SELECT DI STI NCT sel ect _|i st
(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DI STI NCT ON (expression [, expression ...]) select list

Here expr essi on is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT ON processing
occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query?2
queryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and quer y2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNI ON query2 UNI ON query3
which is executed as:

(queryl UNION query2) UNI ON query3

UNI ON effectively appends the result of quer y2 to the result of queryl (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DI STI NCT, unless UNI ON ALL is used.

| NTERSECT returns all rows that are both in the result of queryl and in the result of quer y2. Duplicate
rows are eliminated unless | NTERSECT ALL is used.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in

94

Queries

that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expr essi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:
SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal ac-
cording to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to
set the sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller
values first, where “smaller” is defined in terms of the < operator. Similarly, descending order is deter-
mined with the > operator.

The NULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FI RST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expressi on can also be the column label or number of an output column, as in:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum + c; -- wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LI M T and OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:
SELECT sel ect _|i st

FROM t abl e_expressi on

[ORDER BY ...]

[LIMT { nunmber | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LI M T ALL is the same as omitting the LI M T clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, and LI M T NULL is the same as omitting the LI M T clause. If both OFFSET and LIM T
appear, then OFFSET rows are skipped before starting to count the LI M T rows that are returned.

! Actually, Postgres Pro uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

95

Queries

When using LI M T, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LI M T and OFFSET. Thus,
using different LI M T/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must
have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNI ON (see Section 10.5).

As an example:
VALUES (1, 'one'), (2, 'two'), (3, 'three');
will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, Postgres Pro assigns the names col uiml, col uim2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently,
so it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"tw'), (3, '"three')) ASt (numletter);
num| letter

1| one

2] two

3| three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:
SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNI O\, or attach a
sort_specification (ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W TH Queries (Common Table Expressions)

96

Queries

W TH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT, | NSERT,
UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that can also be a
SELECT, | NSERT, UPDATE, or DELETE.

7.8.1. SELECT in WTH

The basic value of SELECT in W THis to break down complicated queries into simpler parts. An example is:

W TH regi onal _sal es AS (
SELECT regi on, SUM anount) AS total _sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sal es)/10 FROM regi onal _sal es)
)
SELECT regi on,
product,
SUM quantity) AS product_units,
SUM anmount) AS product _sal es
FROM or ders
WHERE regi on I N (SELECT regi on FROM top_regi ons)
GROUP BY regi on, product;

which displays per-product sales totals in only the top sales regions. The W THclause defines two auxiliary
statements named r egi onal _sal es and t op_r egi ons, where the output of r egi onal _sal es is used in
t op_regi ons and the output of t op_r egi ons is used in the primary SELECT query. This example could
have been written without W TH, but we'd have needed two levels of nested sub-SELECTSs. It's a bit easier
to follow this way:.

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSI VE, a W TH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

W TH RECURSI VE t (n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sun{n) FROMt;

The general form of a recursive W TH query is always a non-recursive term, then UNI ON (or UNI ON ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. Solong as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the re-
cursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and rows that du-
plicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

97

Queries

Note

Strictly speaking, this process is iteration not recursion, but RECURSI VE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead of
UNI ON ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just
one or a few fields to see if the same point has been reached before. The standard method for handling
such situations is to compute an array of the already-visited values. For example, consider the following
query that searches a table gr aph using a | i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if the | i nk relationships contain cycles. Because we require a “depth” output, just
changing UNI ON ALL to UNI ON would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
pat h and cycl e to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (

SELECT g.id, g.link, g.data, 1,
ARRAY[g. i d],
fal se

FROM gr aph g

UNI ON ALL

SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)

FROM graph g, search_graph sg

WHERE g.id = sg.link AND NOT cycle

98

Queries

SELECT * FROM sear ch_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields f 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[RONg.f1, g.f2)],
fal se
FROM graph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || RONg.f1l, g.f2),
RONg.f1, g.f2) = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_graph;

Tip
Omit the ROA) syntax in the common case where only one field needs to be checked to

recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order.

You can display the results in depth-first search order by making the outer query ORDER BY
a “path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LI M T in the
parent query. For example, this query would loop forever without the LI M T:

W TH RECURSI VE t(n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIM T 100;

This works because Postgres Pro's implementation evaluates only as many rows of a W TH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the W TH query's output anyway.

A useful property of W TH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling W TH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a W TH query to avoid redundant
work. Another possible application is to prevent unwanted multiple evaluations of functions with side-
effects. However, the other side of this coin is that the optimizer is less able to push restrictions from
the parent query down into a W TH query than an ordinary subquery. The W TH query will generally be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,

99

Queries

as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

The examples above only show W TH being used with SELECT, but it can be attached in the same way to
| NSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in W TH

You can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. This allows you to perform
several different operations in the same query. An example is:

W TH noved_rows AS (
DELETE FROM products
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_|I og
SELECT * FROM noved_r ows;

This query effectively moves rows from products to products_| og. The DELETE in W TH deletes the
specified rows from pr oduct s, returning their contents by means of its RETURNI NG clause; and then the
primary query reads that output and inserts it into pr oduct s_I og.

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-SELECT
within the | NSERT. This is necessary because data-modifying statements are only allowed in W THclauses
that are attached to the top-level statement. However, normal W THvisibility rules apply, so it is possible
to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNI NG clause, not the target table of the data-modifying state-
ment, that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in W THlacks a RETURNI NGclause, then it forms no temporary table and cannot be referred to in
the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example is:

WTH t AS (
DELETE FROM f 00

)
DELETE FROM bar ;

This example would remove all rows from tables f oo and bar . The number of affected rows reported to
the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part | N (SELECT part FROM i ncl uded_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from

100

Queries

the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query. There-
fore, when using data-modifying statements in W TH, the order in which the specified updates actually
happen is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so
they cannot “see” one another's effects on the target tables. This alleviates the effects of the unpre-
dictability of the actual order of row updates, and means that RETURNI NGdata is the only way to commu-
nicate changes between different W TH sub-statements and the main query. An example of this is that in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. There-
fore you should generally avoid trying to modify a single row twice in a single statement. In particular
avoid writing W TH sub-statements that could affect the same rows changed by the main statement or a
sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in W THmust not have a conditional
rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

101

Chapter 8. Data Types

Postgres Pro has a rich set of native data types available to users. Users can add new types to Postgres
Pro using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by Postgres Pro for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description

bi gi nt int8 signed eight-byte integer

bi gseri al serial 8 autoincrementing eight-byte inte-
ger

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

bool ean bool logical Boolean (true/false)

box rectangular box on a plane

byt ea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n)] varchar [(n)] variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

doubl e precision float8 double precision floating-point
number (8 bytes)

i net IPv4 or IPv6 host address

i nt eger int,int4 signed four-byte integer

interval [fields] [(p)] time span

j son textual JSON data

j sonb binary JSON data, decomposed

l'ine infinite line on a plane

| seg line segment on a plane

macaddr MAC (Media Access Control) ad-
dress

noney currency amount

nunmeric [(p, s)] decimal [(p, s)] exact numeric of selectable preci-
sion

pat h geometric path on a plane

pg_Isn Postgres Pro Log Sequence Num-
ber

poi nt geometric point on a plane

pol ygon closed geometric path on a plane

real float4 single precision floating-point
number (4 bytes)

smal | i nt int2 signed two-byte integer

102

Data Types

Name Aliases Description

smal | seri al serial 2 autoincrementing two-byte inte-
ger

seri al serial 4 autoincrementing four-byte inte-
ger

t ext variable-length character string

time [(p) 1] [without tine time of day (no time zone)

zone |

time [(p)] with tine zone |tinetz time of day, including time zone

timestanp [(p)] [without date and time (no time zone)

tinme zone]

timestanp [(p)] with tinmeftinestanptz date and time, including time

zone zone

tsquery text search query

t svect or text search document

t xi d_snapshot user-level transaction ID snap-
shot

uui d universally unique identifier

xm XML data

bool ean, char, character

st anp (with or without time zone), xnl .

Compatibility

The following types (or spellings thereof) are specified by SQL: bi gi nt, bit, bit varying,
varyi ng, character, varchar, date, doubl e precision,inte-
ger,interval, nuneric, decimal ,real, smallint,tinme (with or without time zone), ti ne-

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to Postgres Pro,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy

when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size Description Range

snal | i nt 2 bytes small-range integer -32768 to +32767

i nteger 4 bytes typical choice for integer|-2147483648 to
+2147483647

bi gi nt 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807

deci nal variable user-specified precision,|up to 131072 digits be-

exact fore the decimal point;

up to 16383 digits after
the decimal point

103

Data Types

8

Name Storage Size Description Range
nuneric variable user-specified precision, | up to 131072 digits be-
exact fore the decimal point;
up to 16383 digits after
the decimal point
real 4 bytes variable-precision, inex-|{6 decimal digits preci-
act sion
doubl e precision 8 bytes variable-precision, inex-|{15 decimal digits preci-
act sion
smal | seri al 2 bytes small autoincrementing|1 to 32767
integer
seri al 4 bytes autoincrementing inte-|1 to 2147483647
ger
bi gseri al 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

1.1. Integer Types

The types smal |l i nt, i nteger, and bi gi nt store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type i nt eger is the common choice, as it offers the best balance between range, storage size, and
performance. The smal | i nt type is generally only used if disk space is at a premium. The bi gi nt type
is designed to be used when the range of the i nt eger type is insufficient.

SQL only specifies the integer types i nteger (orint), smallint, and bi gi nt. The type names i nt 2,
i nt4, and i nt 8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type nuneri ¢ can store numbers with a very large number of digits. It is especially recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with nu-
mer i ¢ values yield exact results where possible, e.g. addition, subtraction, multiplication. However, cal-
culations on nuneri ¢ values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: the precision of a nuneri c is the total count of significant digits in the
whole number, that is, the number of digits to both sides of the decimal point. The scale of a nuneri c
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a nuneri ¢ column can be configured. To declare
a column of type nurneri c use the syntax:

NUMERI C(pr eci si on,
The precision must be positive, the scale zero or positive. Alternatively:
NUMERI C(pr eci si on)

selects a scale of 0. Specifying:

NUMERI C

scal e)

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values

104

Data Types

8

to any particular scale, whereas nuneri ¢ columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a
bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERI C without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the nuneri c type is
more akin to var char (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nuneri c type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = 'NaN . On input, the
string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any
other numeric value (including NaN). In order to allow nuneri ¢ values to be sorted and used
in tree-based indexes, Postgres Pro treats NaN values as equal, and greater than all non-NaN
values.

The types deci mal and nuneri ¢ are equivalent. Both types are part of the SQL standard.

1.3. Floating-Point Types

The data types real and doubl e preci si on are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system,
and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

¢ If you require exact storage and calculations (such as for monetary amounts), use the nuneri c type
instead.

* If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implemen-
tation carefully.

* Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least
6 decimal digits. The doubl e preci si on type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

105

Data Types

Note

The extra float digits setting controls the number of extra significant digits included when
a floating point value is converted to text for output. With the default value of 0, the output
is the same on every platform supported by Postgres Pro. Increasing it will produce output
that more accurately represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
-Infinity
NaN

» o«

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in an SQL command, you must put
quotes around them, for example UPDATE table SET x = 'Infinity'. On input, these strings are
recognized in a case-insensitive manner.

Note

IEEE754 specifies that NaN should not compare equal to any other floating-point value (in-
cluding NaN). In order to allow floating-point values to be sorted and used in tree-based in-
dexes, Postgres Pro treats NaN values as equal, and greater than all non-NaN values.

Postgres Pro also supports the SQL-standard notations f | oat and fl oat (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. Postgres Pro accepts
float (1) tofloat(24) as selecting the real type, while fl oat (25) to fl oat (53) select doubl e pre-
ci si on. Values of p outside the allowed range draw an error. f | oat with no precision specified is taken
to mean doubl e preci sion.

Note

The assumption that r eal and doubl e pr eci si on have exactly 24 and 53 bits in the mantissa
respectively is correct for IEEE-standard floating point implementations. On non-IEEE plat-
forms it might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types smal | seri al, seri al and bi gseri al are not true types, but merely a notational conve-
nience for creating unique identifier columns (similar to the AUTO | NCREMENT property supported by
some other databases). In the current implementation, specifying:

CREATE TABLE t abl ename (
col nane SERI AL

);
is equivalent to specifying:
CREATE SEQUENCE t abl enane_col nanme_seq;
CREATE TABLE t abl enane (
col nanme i nteger NOT NULL DEFAULT nextval ('tabl enanme_col nane_seq')
)
ALTER SEQUENCE t abl enane_col nane_seq OANED BY t abl enane. col nane;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.

106

Data Types

(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Because smal | seri al , seri al and bi gseri al are implemented using sequences, there may
be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up" even if a row con-
taining that value is never successfully inserted into the table column. This may happen, for
example, if the inserting transaction rolls back. See next val () in Section 9.16 for details.

To insert the next value of the sequence into the seri al column, specify that the seri al column should
be assigned its default value. This can be done either by excluding the column from the list of columns

in the | NSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial 4 are equivalent: both create i nt eger columns. The type names
bi gseri al and seri al 8 work the same way, except that they create a bi gi nt column. bi gseri al should

be used if you anticipate the use of more than 231

identifiers over the lifetime of the table. The type

names snal | seri al and seri al 2 also work the same way, except that they create a smal | i nt column.

The sequence created fora seri al column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default

expression.

8.2. Monetary Types

The noney type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's Ic monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and float-
ing-point literals, as well as typical currency formatting, such as ' $1, 000. 00' . Output is generally in

the latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size Description Range
money 8 bytes currency amount -92233720368547758.08
to

+92233720368547758.0]

7

Since the output of this data type is locale-sensitive, it might not work to load noney data into a database
that has a different setting of | c_nonet ary. To avoid problems, before restoring a dump into a new
database make sure | c_nonet ary has the same or equivalent value as in the database that was dumped.

Values of the nuneri c, i nt, and bi gi nt data types can be cast to noney. Conversion from the real and
doubl e preci si on data types can be done by casting to nuneri ¢ first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A noney value can be cast to nuneri ¢ without loss of precision. Conversion to other types could poten-
tially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric::fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the noney value to nuneri ¢ before

107

Data Types

dividing and back to noney afterwards. (The latter is preferable to avoid risking precision loss.) When a
noney value is divided by another noney value, the result is doubl e preci si on (i.e., a pure number, not
money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit
character(n), char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the general-purpose character types available in Postgres Pro.

SQL defines two primary character types: charact er varyi ng(n) and char act er (n), where n is a pos-
itive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt to
store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type char act er will be space-padded; values of type char act er varyi ng will simply store the
shorter string.

If one explicitly casts a value to charact er varyi ng(n) or character(n), then an over-length value will
be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations var char (n) and char (n) are aliases for character varying(n) and character(n), re-
spectively. char act er without length specifier is equivalent to character (1) . If character varying is
used without length specifier, the type accepts strings of any size. The latter is a Postgres Pro extension.

In addition, Postgres Pro provides the t ext type, which stores strings of any length. Although the type
t ext is not in the SQL standard, several other SQL database management systems have it as well.

Values of type char act er are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregard-
ed when comparing two values of type char act er. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C' < E a
\'n':: CHAR(2) returns true, even though Clocale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a char act er value to one of the other string types. Note
that trailing spaces are semantically significant in char act er varyi ng and t ext values, and when using
pattern matching, that is LI KE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of char act er . Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use t ext
or character varyi ng without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length

when storing into a length-constrained column. While char act er (n) has performance ad-
vantages in some other database systems, there is no such advantage in Postgres Pro; in

108

Data Types

fact char act er (n) is usually the slowest of the three because of its additional storage costs
and slower sorting. In most situations t ext or charact er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for informa-
tion about available operators and functions. The database character set determines the character set
used to store textual values; for more information on character set support, refer to Section 22.3.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char_length

______ e e e e e e e am -

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES (' ok');

| NSERT | NTO test2 VALUES (' good "),

I NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT INTO test2 VALUES ('too long' ::varchar(5)); -- explicit truncation
SELECT b, char_Iength(b) FROMtest2;

b | char_length
_______ e e e e e e e am -
ok | 2
good | 5
too | | 5

The char _I engt h function is discussed in Section 9.4.

There are two other fixed-length character types in Postgres Pro, shown in Table 8.5. The nane type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a future
release. The type "char" (note the quotes) is different from char (1) in that it only uses one byte of
storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types
The byt ea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
byt ea 1 or 4 bytes plus the actual binary|variable-length binary string
string

109

Data Types

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and
also disallow any other octet values and sequences of octet values that are invalid according to the
database's selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings
are appropriate for storing text.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the config-
uration parameter bytea output; the default is hex. (Note that the hex format was introduced in Post-
greSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT. The input
format is different from byt ea, but the provided functions and operators are mostly the same.

8.4.1. byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \ x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:
SELECT '\ xDEADBEEF' ;

8.4.2. byt ea Escape Format

The “escape” format is the traditional Postgres Pro format for the byt ea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practice it is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8.7. byt ea Literal Escaped Octets

Decimal Octet|Description Escaped Input| Example Hex Representa-
Value Representation tion
0 zero octet "\ 000 SELECT \ x00
"\ 000" : : byt ea;
39 single quote Ut oor '\ 047! SELECT \ x27
"' byt ea;
92 backslash "\\'" or'\134 SELECT "\ |\ x5¢c
\'::bytea;
0 to 31 and 127 to|“non-printable” "\ xxx' (octal value) | SELECT \ x01
255 octets "\ 001" :: bytea;

110

Data Types

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the byt ea input function sees is just
one single quote, which it treats as a plain data character. However, the byt ea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea_out put = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc kIl m *\ 251T
The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet|Description Escaped Output Example Output Result
Value Representation
92 backslash \\ SELECT \\
"\ 134':: byt ea;
0 to 31 and 127 to|“non-printable” \ xxx (octal value) |[SELECT \ 001
255 octets "\ 001" :: bytea;
32 to 126 “printable” octets |client character set|SELECT ~
representation "\176' : : byt ea;

Depending on the front end to Postgres Pro you use, you might have additional work to do in terms
of escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

Postgres Pro supports the full set of SQL date and time types, shown in Table 8.9. The operations avail-
able on these data types are described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.5 for more information).

Table 8.9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
tinmestanp [(|8 bytes both date and|4713 BC 294276 AD 1 microsecond /
p)] [without time (no time 14 digits
time zone | zone)
tinmestanp [(|8 bytes both date and|4713 BC 294276 AD 1 microsecond /
p) 1] with tine time, with time 14 digits
zone zone
date 4 bytes date (no time of|4713 BC 5874897 AD 1 day

day)

111

Data Types

Name Storage Size |Description Low Value High Value Resolution
time [(p) 1|8 bytes time of day (no|00:00:00 24:00:00 1 microsecond /
[without tine date) 14 digits
zone |
time [(p) 1|12 bytes times of day on-{00:00:004+1459 |[24:00:00-1459 |1 microsecond /
with tinme zone ly, with time 14 digits

zone
i nterval [|16 bytes time interval -178000000 178000000 1 microsecond /
fields 1 [(years years 14 digits
p) |

Note

The SQL standard requires that writing just t i nest anp be equivalent toti mest anp wi t hout
time zone, and Postgres Pro honors that behavior. t i nest anpt z is accepted as an abbrevi-
ation for ti mestanmp with time zone; this is a Postgres Pro extension.

time, ti mestanp, and i nterval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6 for the ti nest anp and i nt erval types.

Note

When ti nest anp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When t i mest anp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the ef-
fective limit of precision might be less than 6. t i mest anp values are stored as seconds before
or after midnight 2000-01-01. When t i nest anp values are implemented using floating-point
numbers, microsecond precision is achieved for dates within a few years of 2000-01-01, but
the precision degrades for dates further away. Note that using floating-point datetimes al-
lows a larger range of ti mest anp values to be represented than shown above: from 4713
BC up to 5874897 AD.

The same compile-time option also determines whetherti me and i nt er val values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large i nt er val
values degrade in precision as the size of the interval increases.

For the ti me types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The i nterval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND

112

Data Types

M NUTE TO SECOND

Note that if both fi el ds and p are specified, the fi el ds must include SECOND, since the precision applies
only to the seconds.

The typetime with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, ti ne, ti mestanp wi t hout
time zone,and tinestanp with tinme zone should provide a complete range of date/time functionality
required by any application.

The types absti me andrel ti me are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation,
or YMD to select year-month-day interpretation.

Postgres Pro is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for ti me, ti mest anp, and i nt er val types. The allowed values are mentioned
above. If no precision is specified in a constant specification, it defaults to the precision of the literal
value.

8.5.1.1. Dates
Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguous in any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMWY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

113

Data Types

Example Description
1999.008 year and day of year
J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types aretine [(p)] without time zoneandtime [(p)] with tinme zone.tinme

alone is equivalent toti me wit hout tine zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11
and Table 8.12.) If a time zone is specified in the input forti ne wi t hout ti me zone, it is silently ignored.
You can also specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as Aneri ca/ New_Yor k. In this case specifying the date is required in order
to determine whether standard or daylight-savings time applies. The appropriate time zone offset is

recorded inthetinme with ti ne zone value.

Table 8.11. Time Input

Example Description

04: 05: 06. 789 ISO 8601

04: 05: 06 ISO 8601

04: 05 ISO 8601

040506 ISO 8601

04: 05 AM same as 04:05; AM does not affect value
04: 05 PM same as 16:05; input hour must be <= 12
04: 05: 06. 789- 8 ISO 8601

04: 05: 06- 08: 00 ISO 8601

04: 05- 08: 00 ISO 8601

040506- 08 ISO 8601

04: 05: 06 PST time zone specified by abbreviation

2003- 04-12 04: 05: 06 Anerical/ New_York

time zone specified by full name

Table 8.12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
Aneri ca/ New_Yor k Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

- 800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zul u Military abbreviation for UTC

z

Short form of zul u

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time

zone, but this is not the preferred ordering.) Thus:

114

Data Types

1999- 01- 08 04: 05: 06

and:

1999- 01- 08 04: 05: 06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates ti nest anp wi t hout time zoneandti mestanp with ti me zone literals
by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according to the
standard,

TI MESTAMP ' 2004- 10-19 10: 23: 54'
isatinestanp without tinme zone, while
TI MESTAMP ' 2004- 10-19 10: 23: 54+02'

isatinmestanp with tinme zone. Postgres Pro never examines the content of a literal string before
determining its type, and therefore will treat both of the above as ti mestanp wi thout time zone. To
ensure that a literal is treated as ti mestanp with ti ne zone, give it the correct explicit type:

TI MESTAMP W TH TI ME ZONE ' 2004-10- 19 10: 23: 54+02'

In a literal that has been determined to be ti nestanp without tinme zone, Postgres Pro will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

Fortinestanp with tinme zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system's TimeZone parameter,
and is converted to UTC using the offset for the ti nezone zone.

When a tinestanp with tine zone value is output, it is always converted from UTC to the current
ti mezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change ti mezone or use the AT TI ME ZONE construct (see Section 9.9.3).

Conversions between ti mest anp wi t hout tine zone andtinmestanp with tine zone normally assume
that theti mest anp wi t hout ti ne zone value should be taken or given asti mezone local time. A different
time zone can be specified for the conversion using AT TI ME ZONE.

8.5.1.4. Special Values

Postgres Pro supports several special date/time input values for convenience, as shown in Table 8.13.
The values i nfinity and -i nfinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be enclosed in single quotes when used as constants in
SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, ti mestanp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, ti nestanp later than all other time stamps

-infinity date, ti nestanp earlier than all other time stamps

now date, tine, tinestanp current transaction's start time

115

Data Types

Input String Valid Types Description

t oday date, ti mestanp midnight (00: 00) today

t onor r ow date, ti nestanp midnight (00: 00) tomorrow
yest er day date, ti mestanp midnight (00: 00) yesterday
allballs tinme 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the cor-
responding data type: CURRENT _DATE, CURRENT _TI ME, CURRENT_TI MESTAMP, LOCALTI ME, LOCALTI MESTAMP.
The latter four accept an optional subsecond precision specification. (See Section 9.9.4.) Note that these
are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL’ output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the dat e and ti ne types is generally only
the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/ 17/ 1997 07:37:16.00 PST

Post gr es original style Wed Dec 17 07:37:16 1997 PST

Ger man regional style 17.12.1997 07:37:16.00 PST
Note

ISO 8601 specifies the use of uppercase letter T to separate the date and time. Postgres Pro
accepts that format on input, but on output it uses a space rather than T, as shown above.
This is for readability and for consistency with RFC 3339 as well as some other database
systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation
of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat estyl e Setting Input Ordering Example Output

SQL, Dwy day/nont h/year 17/ 12/ 1997 15:37:16.00 CET
SQ., MY nont h/day/year 12/ 17/ 1997 07:37:16.00 PST
Post gres, DMWY day/nont h/year Wed 17 Dec 07:37:16 1997 PST

The date/time style can be selected by the user using the SET dat estyl e command, the DateStyle
parameter in the post gresqgl . conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting functiont o_char (see Section 9.8) is also available as a more flexible way to format date/
time output.

8.5.3. Time Zones

116

Data Types

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. Postgres Pro uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

Postgres Pro endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

* Although the dat e type cannot have an associated time zone, the ti nme type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

* The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the typeti me with ti ne zone (though it is supported by
Postgres Pro for legacy applications and for compliance with the SQL standard). Postgres Pro assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

Postgres Pro allows you to specify time zones in three different forms:

¢ A full time zone name, for example Aneri ca/ New_Yor k. The recognized time zone names are listed
in the pg_ti mezone_nanes view (see Section 49.78). Postgres Pro uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

* A time zone abbreviation, for example PST. Such a specification merely defines a particular off-
set from UTC, in contrast to full time zone names which can imply a set of daylight savings transi-
tion-date rules as well. The recognized abbreviations are listed in the pg_ti nezone_abbr evs view
(see Section 49.77). You cannot set the configuration parameters TimeZone or log timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
Tl ME ZONE operator.

* In addition to the timezone names and abbreviations, Postgres Pro will accept POSIX-style time
zone specifications of the form STDof f set or STDof f set DST, where STDis a zone abbreviation, of f -
set is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone ab-
breviation, assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT were
not already a recognized zone name, it would be accepted and would be functionally equivalent
to United States East Coast time. In this syntax, a zone abbreviation can be a string of letters, or
an arbitrary string surrounded by angle brackets (<>). When a daylight-savings zone abbrevia-
tion is present, it is assumed to be used according to the same daylight-savings transition rules
used in the TANA time zone database's posi xr ul es entry. In a standard Postgres Pro installation,
posi xr ul es is the same as US/ East er n, so that POSIX-style time zone specifications follow USA
daylight-savings rules. If needed, you can adjust this behavior by replacing the posi xr ul es file.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014- 06- 04 12: 00 Aneri ca/ New_Yor k represents noon local
time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014- 06- 04
12: 00 EDT specifies that same time instant. But 2014- 06- 04 12: 00 EST specifies noon Eastern Standard
Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC+4
in others. Postgres Pro interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, this is not necessarily the
same as local civil time on that date.

117

Data Types

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TI MEZONE TO
FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC. Another
issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations west
of Greenwich. Everywhere else, Postgres Pro follows the ISO-8601 convention that positive timezone
offsets are east of Greenwich.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from con-
figuration files stored under .../share/tinezone/ and .../share/tinezonesets/ of the installation
directory (see Section B.4).

The TimeZone configuration parameter can be set in the file post gresql . conf, or in any of the other
standard ways described in Chapter 18. There are also some special ways to set it:

* The SQL command SET TI ME ZONE sets the time zone for the session. This is an alternative spelling
of SET TI MEZONE TOwith a more SQL-spec-compatible syntax.

* The PGTZ environment variable is used by libpq clients to send a SET TI ME ZONE command to the
server upon connection.

8.5.4. Interval Input

i nt erval values can be written using the following verbose syntax:
[@ quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is mi crosecond, m|llisecond, second, m nute,
hour, day, week, nont h, year, decade, century, mi | | enni um or abbreviations or plurals of these units;
di recti on can be ago or empty. The at sign (@ is optional noise. The amounts of the different units are
implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for
interval output, if IntervalStyle is set to post gres_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, ' 1 12:59: 10' is read the same as'1 day 12 hours 59 nmin 10 sec'. Also, a combination of
years and months can be specified with a dash; for example ' 200- 10' is read the same as ' 200 years
10 rmont hs' . (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when I nt erval Styl e is set to sql _st andard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether
it is before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Y Years

M Months (in the date part)
w Weeks

D Days

H Hours

118

Data Types

Abbreviation Meaning
M Minutes (in the time part)
S Seconds

In the alternative format:
P [years-nonths-days] [T hours: nnutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a f i el ds specification, or when assigning a string to an interval
column that was defined with a f i el ds specification, the interpretation of unmarked quantities depends
on the fi el ds. For example | NTERVAL '1' YEAR s read as 1 year, whereas | NTERVAL '1' means 1
second. Also, field values “to the right” of the least significant field allowed by the fi el ds specification
are silently discarded. For example, writing | NTERVAL '1 day 2:03:04' HOUR TO M NUTE results in
dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal ' -1 2:03: 04"

applies to both the days and hour/minute/second parts. Postgres Pro allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that the
hour/minute/second part is considered positive in this example. If I nt er val Styl e is set tosqgl _standard
then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise
the traditional Postgres Pro interpretation is used. To avoid ambiguity, it's recommended to attach an
explicit sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can have
fractional parts; for example ' 1. 5 week' or' 01: 02: 03. 45' . Such input is converted to the appropriate
number of months, days, and seconds for storage. When this would result in a fractional number of
months or days, the fraction is added to the lower-order fields using the conversion factors 1 month =
30 days and 1 day = 24 hours. For example, ' 1. 5 nont h' becomes 1 month and 15 days. Only seconds
will ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table 8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

34:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 seconds|Traditional Postgres format: 1 year 2 months 3 days
4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same meaning
as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally i nt er val values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or t i mest anp subtraction, this storage method works
well in most cases, but can cause unexpected results:

SELECT EXTRACT(hours from'80 mnutes'::interval);
date_part

119

Data Types

1

SELECT EXTRACT(days from ' 80 hours'::interval);
dat e_part
0

Functions j usti fy_days and justify_hours are available for adjusting days and hours that overflow
their normal ranges.

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql _standard, postgres,
post gres_ver bose, ori so_8601, using the command SET i nt erval styl e. The default is the post gres
format. Table 8.18 shows examples of each output style.

The sql _st andar d style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the post gres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO.

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to 8.4 when
the Dat eSt yl e parameter was set to non-lI SO output.

The output of the i so_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Time Interval Mixed Interval
sqgl _standard 1-2 3 4:05:06 -1-2 +3 -4:05:06
post gr es 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06
post gres_ver bose @ 1 year 2 mons ©@ 3 days 4 hours 5 mins|@ 1 year 2 mons -3 days
6 secs 4 hours 5 mins 6 secs ago
i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type

Postgres Pro provides the standard SQL type bool ean; see Table 8.19. The bool ean type can have several
states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.

The datatype input function for type bool ean accepts these string representations for the “true” state:

true
yes
on

1

120

Data Types

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for example t or n. Leading or trailing whitespace
is ignored, and case does not matter.

The datatype output function for type bool ean always emits eithert or f, as shown in Example 8.2.

Example 8.2. Using the bool ean Type

CREATE TABLE testl (a boolean, b text);

I NSERT | NTO testl VALUES (TRUE, 'sic est');
I NSERT | NTO testl1l VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;
a | b

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example ' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but this is not
so for NULL because that can have any type. So in some contexts you might have to cast NULL to bool ean
explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a string-literal Boolean
value in contexts where the parser can deduce that the literal must be of type bool ean.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiva-
lent to the enumtypes supported in a number of programming languages. An example of an enum type
might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types

Enum types are created using the CREATE TYPE command, for example:
CREATE TYPE npod AS ENUM ('sad', 'ok', 'happy');
Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npbod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nood nood
)
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
name | current_nood

121

Data Types

(1 row
8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES (' Curly', 'ok');

SELECT * FROM person WHERE current_nood > 'sad';
nane | current_nood

SELECT * FROM person WHERE current _nood > 'sad' ORDER BY current_npod;
nane | current_nood

SELECT nane

FROM per son

WHERE current_mood = (SELECT M N(current_nood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nt eger,

happi ness happi ness
);
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (6, 'very happy');
| NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nanme, holidays. num weeks FROM person, holidays

WHERE person. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person. nane, holidays. num weeks FROM person, holidays
WHERE person. current _nood: :text = holidays. happi ness: :text;
name | num weeks

122

Data Types

8.7.4. Implementation Details

Enum labels are case sensitive, so ' happy' is not the same as ' HAPPY' . White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be
removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by the
NAMEDATALEN setting compiled into Postgres Pro; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in Postgres Pro.

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line {A,B,C}

| seg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

pat h 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

pol ygon 40+16n bytes Polygon (similar to|((x1,y1),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

Arich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type poi nt
are specified using either of the following syntaxes:

(x,y)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines

Lines are represented by the linear equation Ax + By + C = 0, where A and B are not both zero. Values
of type | i ne are input and output in the following form:

{ A B C}

123

Data Types

Alternatively, any of the following forms can be used for input:

[(x1, y1) , (x2,y2)]
((x1, y1l) , (x2,vy2))
(x1, y1) , (x2, y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) are two different points on the line.

8.8.3. Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

[(x1, yl) ., (x2, y2)]
((x1,yl), (x2,y2))
(x1, yl) , (x2,y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, yl), (x2,y2))
(X1, yl) , (x2,y2)
x1, yl X2, y2

where (x1, y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in
the list are considered not connected, or closed, where the first and last points are considered connected.

Values of type pat h are specified using any of the following syntaxes:

[(xX1, y1), ..., (xn, yn)]
((x¥1,vy1), ... , (xn, yn))
(x1, y1), ..., (Xxn, yn)

(x1, vyl s e Xn , yn)
x1, yl y e Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type pol ygon are specified using any of the following syntaxes:

124

Data Types

((x¥x,vy1), ... , (xn, yn))
(x1, y1), ... , (xn, yn)
(x1, y1 v e Xn , yn)
x1, yl v e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.7. Circles

Circles are represented by a center point and radius. Values of type ci r cl e are specified using any of
the following syntaxes:

Y)
)

>

)

< (
((
(

DY
Y)
y

X X X X

r
r
r
, T

where (X, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

Postgres Pro offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

When sorting i net or ci dr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. i net

The i net type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should use the ci dr type rather than i net.

The input format for this type is addr ess/ y where addr ess is an IPv4 or IPv6 address and y is the number
of bits in the netmask. If the / y portion is missing, the netmask is 32 for IPv4 and 128 for IPv6, so the
value represents just a single host. On display, the / y portion is suppressed if the netmask specifies a
single host.

8.9.2. cidr

The ci dr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is addr ess/ y where addr ess
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y
is omitted, it is calculated using assumptions from the older classful network numbering system, except
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

125

Data Types

Table 8.22 shows some examples.

Table 8.22. ci dr Type Input Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4£8:3:ba::/64 2001:4f8:3:ba::/64 2001:4£8:3:ba::/64
2001:4f8:3:ba:2e0:81f- 2001:4f8:3:ba:2e0:81f- 2001:4f8:3:ba:2e0:81ff:fe22:d1f1
f:fe22:d1£1/128 f:fe22:d1£1/128

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ffff:1.2.3/120
::ffff:1.2.3.0/128 :ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.9.3. i net vs. cidr

The essential difference between i net and ci dr data types is that i net accepts values with nonzero bits
to the right of the netmask, whereas ci dr does not.

Tip
If you do not like the output format for i net or ci dr values, try the functions host, text,
and abbrev.

8.9.4. nacaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

' 08: 00: 2b: 01: 02: 03
' 08- 00- 2b- 01- 02- 03
' 08002b: 010203

' 08002b- 010203

' 0800. 2b01. 0203

' 0800- 2b01- 0203

' 08002b010203'

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through f . Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC ad-
dresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-02-03
= 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for obsolete

126

Data Types

network protocols (such as Token Ring). Postgres Pro makes no provisions for bit reversal, and all ac-
cepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varyi ng(n), where n is a positive integer.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varyi ng data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bi t without a length is equivalent to bit (1), while bit varyi ng without a length
specification means unlimited length.

Note

If one explicitly casts a bit-string value to bi t (n), it will be truncated or zero-padded on
the right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-
string value to bi t varyi ng(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.
Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BI T VARYINE5)):
| NSERT | NTO test VALUES (B 101', B 00'):
| NSERT | NTO test VALUES (B 10', B 101'):

ERROR: bit string length 2 does not match type bit(3)

| NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM t est;

a | b
_____ [S,
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types

Postgres Pro provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a query.
The t svect or type represents a document in a form optimized for text search; the t squery type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. t svector

At svect or value is a sorted list of distinct lexemes, which are words that have been normalized to merge
different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination are
done automatically during input, as shown in this example:

127

Data Types

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

cat' 'fat' 'mat

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the | exene ' ' contains spaces$$::tsvector;
t svect or

'contains' 'lexene' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexene 'Joe''s' contains a quote$$::tsvector;
t svect or

a' 'contains' 'lexenme' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and: 8 ate: 9 a:10 fat:11 rat: 12'::tsvector;
tsvect or

'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'nmat':7 'on':5 'rat':12 'sat':4

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set
to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT 'a: 1A fat:2B,4C cat: 5D ::tsvector;
t svect or

'a':1A 'cat':5 'fat': 2B, 4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the t svect or type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
t svect or

‘Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized, but
t svect or doesn't care. Raw document text should usually be passed throught o_t svect or to normalize
the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

"fat':2 'rat':3
Again, see Chapter 12 for more detail.
8.11.2. tsquery

A t squery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED BY).

128

Data Types

There is also a variant <N> of the FOLLOWED BY operator, where Nis an integer constant that specifies
the distance between the two lexemes being searched for. <- > is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the least
tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
tsquery

SELECT 'fat & rat & ! cat'::tsquery;
tsquery

SELECT ' (fat | rat) <-> cat'::tsquery;
tsquery

The last example demonstrates that t squery sometimes rearranges nested operators into a logically
equivalent formulation.

Optionally, lexemes in a t squery can be labeled with one or more weight letters, which restricts them
to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
tsquery

‘fat': AB & 'cat'
Also, lexemes in a t squer y can be labeled with * to specify prefix matching:

SELECT ' super:*'::tsquery;
t squery

This query will match any word in a t svect or that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in t svect or; and, as with
t svect or, any required normalization of words must be done before converting to the t squery type. The
t o_t squery function is convenient for performing such normalization:

SELECT to_tsquery(' Fat:ab & Cats');
to_tsquery

"fat': AB & 'cat'

Note thatt o_t squer y will process prefixes in the same way as other words, which means this comparison
returns true:

SELECT to_tsvector('postgraduate') @to_tsquery('postgres:*');
?col um?

129

Data Types

because post gr es gets stemmed to post gr:

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to _tsvector | to_tsquery

which will match the stemmed form of post gr aduat e.

8.12. UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID,instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using
the same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness
guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hy-
phens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12
digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380all

Postgres Pro also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four
digits. Examples are:

AOEEBC99- 9C0B- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380al1}
aleebc999cOb4ef 8bb6d6bb9bd380all

alee- bc99- 9cOb- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380a11}

Output is always in the standard form.

Postgres Pro provides storage and comparison functions for UUIDs, but the core database does not in-
clude any function for generating UUIDs, because no single algorithm is well suited for every applica-
tion. The uuid-ossp module provides functions that implement several standard algorithms. The pgcrypto
module also provides a generation function for random UUIDs. Alternatively, UUIDs could be generated
by client applications or other libraries invoked through a server-side function.

8.13. XML Type

The xnl data type can be used to store XML data. Its advantage over storing XML data in a t ext field
is that it checks the input values for well-formedness, and there are support functions to perform type-
safe operations on it; see Section 9.14. Use of this data type requires the installation to have been built
with configure --with-1ibxm.

The xm type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by reference to the more permissive “document node” of the XQuery and
XPath data model. Roughly, this means that content fragments can have more than one top-level element
or character node. The expression xn val ue | S DOCUMENT can be used to evaluate whether a particular
xm value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xml from character data, use the function xnl par se:
XMLPARSE ({ DOCUMENT | CONTENT } val ue)

130

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

Examples:

XMLPARSE (DOCUMENT ' <?xml version="1.0"?><book><titl e>Manual </title><chapter>...</
chapt er ></ book>")
XMLPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

While this is the only way to convert character strings into XML values according to the SQL standard,
the Postgres Pro-specific syntaxes:

xm ' <foo>bar</foo>'
' <f oo>bar </ foo>' : : xni

can also be used.

The xm type does not validate input values against a document type declaration (DTD),even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xm , uses the function xni seri al i ze:
XMLSERI ALI ZE ({ DOCUMENT | CONTENT } val ue AS type)

t ype can be character, character varying, ortext (or an alias for one of those). Again, according to
the SQL standard, this is the only way to convert between type xml and character types, but Postgres
Pro also allows you to simply cast the value.

When a character string value is cast to or from type xm without going through XM_PARSE or XM
LSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML option”
session configuration parameter, which can be set using the standard command:

SET XML OPTI ON { DOCUMENT | CONTENT };

or the more Postgres Pro-like syntax

SET xm option TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results
to the client (which is the normal mode), Postgres Pro converts all character data passed between the
client and the server and vice versa to the character encoding of the respective end; see Section 22.3.
This includes string representations of XML values, such as in the above examples. This would ordinarily
mean that encoding declarations contained in XML data can become invalid as the character data is
converted to other encodings while traveling between client and server, because the embedded encoding
declaration is not changed. To cope with this behavior, encoding declarations contained in character
strings presented for input to the xml type are ignored, and content is assumed to be in the current
server encoding. Consequently, for correct processing, character strings of XML data must be sent
from the client in the current client encoding. It is the responsibility of the client to either convert
documents to the current client encoding before sending them to the server, or to adjust the client
encoding appropriately. On output, values of type xm will not have an encoding declaration, and clients
should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that Postgres Pro does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case
it will be omitted.

Needless to say, processing XML data with Postgres Pro will be less error-prone and more efficient if
the XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

131

Data Types

Caution

Some XML-related functions may not work at all on non-ASCII data when the server encod-
ing is not UTF-8. This is known to be an issue for xpat h() in particular.

8.13.3. Accessing XML Values

The xml data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
this is that you cannot retrieve rows by comparing an xm column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xnm data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in Postgres Pro can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the Postgres Pro distribution.

8.14. JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159. Such
data can also be stored as t ext, but the JSON data types have the advantage of enforcing that each
stored value is valid according to the JSON rules. There are also assorted JSON-specific functions and
operators available for data stored in these data types; see Section 9.15.

There are two JSON data types: j son and j sonb. They accept almost identical sets of values as input. The
major practical difference is one of efficiency. The j son data type stores an exact copy of the input text,
which processing functions must reparse on each execution; while j sonb data is stored in a decomposed
binary format that makes it slightly slower to input due to added conversion overhead, but significantly
faster to process, since no reparsing is needed. j sonb also supports indexing, which can be a significant
advantage.

Because the j son type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast, j sonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys
are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as j sonb, unless there are quite special-
ized needs, such as legacy assumptions about ordering of object keys.

Postgres Pro allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. In the input
function for the j son type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \ u). However, the input func-
tion for j sonb is stricter: it disallows Unicode escapes for non-ASCII characters (those above U+007F)
unless the database encoding is UTF8. The j sonb type also rejects \ u0000 (because that cannot be rep-
resented in Postgres Pro's t ext type), and it insists that any use of Unicode surrogate pairs to designate

132

https://tools.ietf.org/html/rfc7159

Data Types

characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are convert-
ed to the equivalent ASCII or UTF8 character for storage; this includes folding surrogate pairs into a
single character.

Note

Many of the JSON processing functions described in Section 9.15 will convert Unicode es-
capes to regular characters, and will therefore throw the same types of errors just described
even if their input is of type j son not j sonb. The fact that the j son input function does not
make these checks may be considered a historical artifact, although it does allow for simple
storage (without processing) of JSON Unicode escapes in a non-UTF8 database encoding.
In general, it is best to avoid mixing Unicode escapes in JSON with a non-UTF8 database
encoding, if possible.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are effec-
tively mapped onto native Postgres Pro types, as shown in Table 8.23. Therefore, there are some minor
additional constraints on what constitutes valid j sonb data that do not apply to the j son type, nor to
JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, j sonb will reject numbers that are outside the range of the Postgres Pro nuneri ¢ data type,
while j son will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, as it is common to repre-
sent JSON's nunber primitive type as IEEE 754 double precision floating point (which RFC 7159 explicit-
ly anticipates and allows for). When using JSON as an interchange format with such systems, the danger
of losing numeric precision compared to data originally stored by Postgres Pro should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding Postgres Pro types.

Table 8.23. JSON primitive types and corresponding Postgres Pro types

JSON primitive type Postgres Pro type Notes

string t ext \ u0000 is disallowed, as are non-
ASCII Unicode escapes if data-
base encoding is not UTF8

nunber numneri c NaN and i nfi ni ty values are dis-
allowed

bool ean bool ean Only lowercase true and fal se
spellings are accepted

nul | (none) SQL NULL is a different concept

8.14.1. JSON Input and Output Syntax
The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid j son (or j sonb) expressions:

-- Sinple scalar/primtive val ue
-- Primtive values can be nunbers, quoted strings, true, false, or null
SELECT '5'::json;

-- Array of zero or nore elenents (el enents need not be of sane type)
SELECT '[1, 2, "foo", null]'::]son;

-- (bject containing pairs of keys and val ues
-- Note that object keys nust always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

133

Data Types

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}" ::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
j son outputs the same text that was input, while j sonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;

j son

{"bar": "baz", "balance": 7.77, "active":false}

(1 row

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb

{"bar": "baz", "active": false, "balance": 7.77}

(1 row

One semantically-insignificant detail worth noting is that in j sonb, numbers will be printed according
to the behavior of the underlying nuneri ¢ type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
j son | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row

However, j sonb will preserve trailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively

Representing data as JSON can be considerably more flexible than the traditional relational data model,
which is compelling in environments where requirements are fluid. It is quite possible for both approach-
es to co-exist and complement each other within the same application. However, even for applications
where maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed
structure. The structure is typically unenforced (though enforcing some business rules declaratively is
possible), but having a predictable structure makes it easier to write queries that usefully summarize
a set of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a
row-level lock on the whole row. Consider limiting JSON documents to a manageable size in order to
decrease lock contention among updating transactions. Ideally, JSON documents should each represent
an atomic datum that business rules dictate cannot reasonably be further subdivided into smaller datums
that could be modified independently.

8.14.3. j sonb Containment and Existence

Testing containment is an important capability of j sonb. There is no parallel set of facilities for the
j son type. Containment tests whether one j sonb document has contained within it another one. These
examples return true except as noted:

-- Sinple scalar/prinmtive values contain only the identical val ue:
SELECT '"foo0"'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::]jsonb;

134

Data Types

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained

-- within the object on the left side:

SELECT ' {"product”: "PostgreSQ.", "version": 9.4, "jsonb": true}'::jsonb @
"{"version": 9.4}'::]jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a simlar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]jsonb;

-- Simlarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb; -- yields false

-- Atop-level key and an enpty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when doing
a containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain
a primitive value:

-- This array contains the primtive string val ue:

SELECT '["fo0", "bar"]'::jsonb @ '"bar"'::jsonb;
-- This exception is not reciprocal -- non-containnent is reported here:
SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb also has an existence operator, which is a variation on the theme of containment: it tests whether
a string (given as a t ext value) appears as an object key or array element at the top level of the j sonb
value. These examples return true except as noted:

-- String exists as array elenent:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo0": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? '"bar'; -- yields false

-- As with containment, existence nmust match at the top |evel:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields fal se

-- Astring is considered to exist if it natches a primtive JSON string:
SELECT '"foo0"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do not
need to be searched linearly.

135

Data Types

Tip
Because JSON containment is nested, an appropriate query can skip explicit selection of
sub-objects. As an example, suppose that we have a doc column containing objects at the top
level, with most objects containing t ags fields that contain arrays of sub-objects. This query

finds entries in which sub-objects containing both "ternt: "paris" and "terni: "food" ap-
pear, while ignoring any such keys outside the t ags array:

SELECT doc->'site_nane' FROM websites
VWHERE doc @ '{"tags":[{"ternf:"paris"}, {"term:"food"}]}";

One could accomplish the same thing with, say,

SELECT doc->'site_nane' FROM websites
WHERE doc->'tags' @ '[{"term':"paris"}, {"ternt:"food"}]";

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the spec-
ified key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.15.

8.14.4. j sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of j sonb documents (datums). Two GIN “operator classes” are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for j sonb supports queries with top-level key-exists operators ?, ?& and
?| operators and path/value-exists operator @. (For details of the semantics that these operators imple-
ment, see Table 9.41.) An example of creating an index with this operator class is:

CREATE | NDEX i dxgin ON api USING G N (jdoc);

The non-default GIN operator classj sonb_pat h_ops supports indexing the @ operator only. An example
of creating an index with this operator class is:

CREATE | NDEX i dxginp ON api USING G N (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

{
"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",
"nanme": "Angela Barton",
"is_active": true,
"conpany": "Magnafone",
"address": "178 Howard Place, Qulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08: 00",
“latitude": 19.793713,
"l ongi tude": 86.513373,
"tags": |
“enim',
"aliquip",
"qui "
]
}

We store these documents in a table named api , in aj sonb column named j doc. If a GIN index is created
on this column, queries like the following can make use of the index:

136

Data Types

-- Find docunents in which the key "conpany"” has val ue "Magnaf one"
SELECT jdoc->'guid', jdoc-> nane' FROM api WHERE jdoc @ '{"conpany": "Magnafone"}';

However, the index could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column j doc:

-- Find docunents in which the key "tags" contains key or array el enent
SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc -> 'tags' ? 'qui';

qui

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "t ags" key is common, defining an index like this may be worthwhile:

CREATE | NDEX i dxgi ntags ON api USING AN ((jdoc -> "tags'));

Now, the WHERE clause jdoc -> 'tags' ? 'qui' will be recognized as an application of the indexable
operator ? to the indexed expression jdoc -> 'tags'. (More information on expression indexes can
be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

-- Find docunents in which the key "tags" contains array element "qui"
SELECT jdoc->'guid', jdoc-> nane' FROM api WHERE jdoc @ '{"tags": ["qui"]}";

A simple GIN index on the j doc column can support this query. But note that such an index will store
copies of every key and value in the j doc column, whereas the expression index of the previous example
stores only data found under the t ags key. While the simple-index approach is far more flexible (since
it supports queries about any key), targeted expression indexes are likely to be smaller and faster to
search than a simple index.

Although the j sonb_pat h_ops operator class supports only queries with the @ operator, it has notable
performance advantages over the default operator class j sonb_ops. A j sonb_pat h_ops index is usually
much smaller than a j sonb_ops index over the same data, and the specificity of searches is better,
particularly when queries contain keys that appear frequently in the data. Therefore search operations
typically perform better than with the default operator class.

The technical difference between a j sonb_ops and a j sonb_pat h_ops GIN index is that the former cre-
ates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. ! Basically, each j sonb_pat h_ops index item is a hash of the value and
the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item would
be created incorporating all three of f oo, bar, and baz into the hash value. Thus a containment query
looking for this structure would result in an extremely specific index search; but there is no way at all
to find out whether f oo appears as a key. On the other hand, a j sonb_ops index would create three
index items representing f oo, bar, and baz separately; then to do the containment query, it would look
for rows containing all three of these items. While GIN indexes can perform such an AND search fairly
efficiently, it will still be less specific and slower than the equivalent j sonb_pat h_ops search, especially
if there are a very large number of rows containing any single one of the three index items.

A disadvantage of the j sonb_pat h_ops approach is that it produces no index entries for JSON structures
not containing any values, such as {"a": {}}.If a search for documents containing such a structure is
requested, it will require a full-index scan, which is quite slow. j sonb_pat h_ops is therefore ill-suited
for applications that often perform such searches.

j sonb also supports bt ree and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. The bt r ee ordering for j sonb datums is seldom of great interest,
but for completeness it is:

object > Array > Boolean > Nunber > String > Null
hject with n pairs > object with n - 1 pairs

Array with n elenents > array with n - 1 elenents

! For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values within objects.

137

Data Types

Objects with equal numbers of pairs are compared in the order:
key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}
Similarly, arrays with equal numbers of elements are compared in the order:
element-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying Postgres
Pro data type. Strings are compared using the default database collation.

8.15. Arrays

Postgres Pro allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of domains
are not yet supported.

8.15.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal _enp (

nane text,
pay_by_quarter integer[],
schedul e text[][]

)

As shown, an array data type is named by appending square brackets ([]) to the data type name of
the array elements. The above command will create a table named sal _enp with a column of type t ext
(nane), a one-dimensional array of type i nt eger (pay_by_quarter), which represents the employee's
salary by quarter, and a two-dimensional array of t ext (schedul e), which represents the employee's
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squar es i nteger[3][3]
);

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a
particular element type are all considered to be of the same type, regardless of size or number of dimen-
sions. So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation;
it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quart er could have been defined as:

pay_by quarter integer ARRAY[4],
Or, if no array size is to be specified:
pay_by quarter integer ARRAY,

As before, however, Postgres Pro does not enforce the size restriction in any case.

8.15.2. Array Value Input

138

Data Types

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

'{ vall delimval2 delim... }'

where del i mis the delimiter character for the type, as recorded in its pg_t ype entry. Among the standard
data types provided in the Postgres Pro distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

'{{1,2,3},{4,5,6},{7,8,9}}'
This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.
To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or low-

er-case variant of NULL will do.) If you want an actual string value “NULIL", you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"training", "presentation"}}');

| NSERT | NTO sal _enp
VALUES (' Carol ",
' {20000, 25000, 25000, 25000}',
"{{"breakfast", "consulting"}, {"neeting", "lunch"}}");

The result of the previous two inserts looks like this:
SELECT * FROM sal _enp;

nane | pay_by_quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{reeting,lunch}, {training, presentation}}
Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting}, {neeting,|unch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

I NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000%}',
"{{"meeting", "lunch"}, {"neeting"}}");

ERROR: rmul tidi nensi onal arrays nust have array expressions wi th matching di nensions

The ARRAY constructor syntax can also be used:

| NSERT | NTO sal _enp

VALUES ('Bill",
ARRAY[10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ['training', 'presentation']]);

| NSERT | NTO sal _enp

139

Data Types

VALUES (' Carol ",
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT nane FROM sal _enp WHERE pay_by quarter[1l] <> pay_by quarter[2];

The array subscript numbers are written within square brackets. By default Postgres Pro uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by quarter[3] FROM sal _enp;

pay_ by quarter

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing | ower - bound: upper - bound for one or more array dimensions. For example, this query retrieves
the first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1: 2] [1: 1] FROM sal _enp WHERE nanme = 'Bill";

schedul e

{{meeting}, {training}}
(1 row

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified.
For example, [2] is treated as [1: 2], as in this example:

SELECT schedul e[1:2][2] FROM sal _enp WHERE nane = 'Bill";

schedul e

{{nmeeting, lunch},{training, presentation}}

(1 row

To avoid confusion with the non-slice case, it's best to use slice syntax for all dimensions, e.g., [1: 2]
[1:1],not[2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedul e currently has the dimensions [1: 3] [1: 2] then referencing schedul e[3] [3]

140

Data Types

yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather
than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.
The current dimensions of any array value can be retrieved with the array_di ns function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE name = 'Carol';

array_di ns

(2
(1 row

array_di ns produces a t ext result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_I| ower, which return the
upper and lower bound of a specified array dimension, respectively:

SELECT array_upper(schedule, 1) FROM sal _enp WHERE nanme = 'Carol';

array_upper

(1 row)
array_| engt h will return the length of a specified array dimension:
SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nane = 'Carol"';

array_l ength

(1 row

cardi nal i ty returns the total number of elements in an array across all dimensions. It is effectively the
number of rows a call to unnest would yield:

SELECT cardi nality(schedul e) FROM sal _enp WHERE nane = ' Carol';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:
' {25000, 25000, 27000, 27000}’

UPDATE sal _enp SET pay_by_quarter
VWHERE nane = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by_quarter
VWHERE nane = 'Carol';

ARRAY[25000, 25000, 27000, 27000]

An array can also be updated at a single element:

UPDATE sal _enp SET pay_by quarter[4] = 15000
VWHERE nanme = 'Bill";

141

Data Types

or updated in a slice:

UPDATE sal _enp SET pay_by quarter[1:2] = '{27000, 27000}’
VWHERE nane = 'Carol';

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
nyar r ay currently has 4 elements, it will have six elements after an update that assigns to nyarray[6] ;
nyarr ay[5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray|[- 2: 7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?col uim?

{1,234
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]1;
?col um?

{{5.6},{1,2},{3,4}}
(1 row

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result
is an array with the same lower bound subscript as the array operand. For example:

SELECT array _dins(1 || '"[0:1]={2,3}'::int[]);
array_di ns

SELECT array_di ns(ARRAY[1,2] || 3);
array_di ns

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_di ns(ARRAY[1, 2] || ARRAY[3,4,5]);
array_di ns

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9.0]11);
array_di ns

[1:5][1:2]

142

Data Types

(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the N+1-dimensional array's outer dimension. For example:

SELECT array_di mns(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_di ns

[uaLa
(1 row

An array can also be constructed by using the functions array_prepend, array_append, or array_cat .
The first two only support one-dimensional arrays, but array_cat supports multidimensional arrays.
Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

SELECT array_append(ARRAY[1, 2], 3);
array_append

SELECT array_cat (ARRAY[1, 2], ARRAY[3, 4]);
array_cat

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row

SELECT array_cat (ARRAY[5, 6], ARRAY[[1,2],[3,4]1);
array_cat

{{5.6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these func-
tions. However, because the concatenation operator is overloaded to serve all three cases, there are
situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; ~-- the untyped literal is taken as an array
?col um?

{1, 2, 3, 4}

SELECT ARRAY[1, 2] || '7"; -- so is this one

ERROR: malforned array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated NULL

?col um?

143

Data Types

{1, 2}
(1 row

SELECT array_append(ARRAY[1, 2], NULL); -- this mght have been neant
array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and
a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type is to
assume it's of the same type as the operator's other input — in this case, integer array. So the concate-
nation operator is presumed to represent array_cat, not array_append. When that's the wrong choice,
it could be fixed by casting the constant to the array's element type; but explicit use of array_append
might be a preferable solution.

8.15.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay_ by quarter[2] = 10000 OR
pay_ by quarter[3] = 10000 OR
pay by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal _enmp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:
SELECT * FROM sal _enmp WHERE 10000 = ALL (pay_by quarter);

Alternatively, the gener at e_subscri pt s function can be used. For example:

SELECT * FROM
(SELECT pay_by_quarter,
gener ate_subscri pts(pay_by _quarter, 1) AS s
FROM sal _enp) AS foo
WHERE pay_by quarter[s] = 10000;

This function is described in Table 9.56.

You can also search an array using the && operator, which checks whether the left operand overlaps
with the right operand. For instance:

SELECT * FROM sal _enmp WHERE pay by quarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an appro-
priate index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and array_positions

functions. The former returns the subscript of the first occurrence of a value in an array; the latter

returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT array_positi on(ARRAY['sun','nmon','tue', 'wed' ,'thu' ,'fri',"'sat'], 'non');
array_positions

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

144

Data Types

Tip
Arrays are not sets; searching for specific array elements can be a sign of database mis-
design. Consider using a separate table with a row for each item that would be an array

element. This will be easier to search, and is likely to scale better for a large number of
elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array's element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is deter-
mined by the t ypdel i msetting for the array's element type. Among the standard data types provided
in the Postgres Pro distribution, all use a comma, except for type box, which uses a semicolon (;). In a
multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and
delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric
data types it is safe to assume that double quotes will never appear, but for textual data types one should
be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array con-
tents. This decoration consists of square brackets ([]) around each array dimension's lower and upper
bounds, with a colon (:) delimiter character in between. The array dimension decoration is followed by
an equal sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}} ::int[] AS f1) AS ss;

el | e2

e
1] 6

(1 row

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL’ to be
entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array nulls configu-
ration parameter can be turned of f to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual array
element. You must do so if the element value would otherwise confuse the array-value parser. For exam-
ple, elements containing curly braces, commas (or the data type's delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings match-
ing the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element
value, precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to
protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

145

Data Types

Tip
The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the ar-

ray-literal syntax when writing array values in SQL commands. In ARRAY, individual element
values are written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. Postgres Pro allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types
Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (
r doubl e preci sion,
[doubl e precision

)

CREATE TYPE inventory_item AS (

nane t ext,
supplier_id i nteger,
price numeri c

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item i nventory item
count i nteger

)

I NSERT | NTO on_hand VALUES (ROW' fuzzy dice', 42, 1.99), 1000);

or functions:

CREATE FUNCTI ON price_extension(inventory_item integer) RETURNS nuneric
AS ' SELECT $1.price * $2' LANGUAGE SQ;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (

nane t ext,
supplier_id i nt eger REFERENCES suppl i ers,
price nuneric CHECK (price > 0)

)

then the same i nvent ory_i t emcomposite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not

146

Data Types

apply to values of the composite type outside the table. (A partial workaround is to use domain types
as members of composite types.)

8.16.2. Constructing Composite Values

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

"(vall, val2 , ...)’

An example is:

"("fuzzy dice",42,1.99)"

which would be a valid value of the i nvent ory_i t emtype defined above. To make a field be NULL, write
no characters at all in its position in the list. For example, this constant specifies a NULL third field:
"("fuzzy dice",42,)"'

If you want an empty string rather than NULL, write double quotes:

(", 42,)"

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Sec-

tion 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary to tell which type to convert the constant to.)

The ROWexpression syntax can also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax since you don't have to worry about multiple layers
of quoting. We already used this method above:

RON ' fuzzy dice', 42, 1.99)
ROW "', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:

('fuzzy dice', 42, 1.99)
("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a field
from a table name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item nane FROM on_hand WHERE item price > 9.99;

This will not work since the name i t emis taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:

SELECT (iten).name FROM on_hand WHERE (item.price > 9.99;

or if you need to use the table name as well (for instance in a multitable query), like this:

SELECT (on_hand.iten).name FROM on_hand WHERE (on_hand.item.price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the i t emcolumn, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you'd need to write something
like:

147

Data Types

8.

o

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name * means “all fields”, as further explained in Section 8.16.5.

16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

| NSERT | NTO nmytab (conplex_col) VALUES((1.1,2.2));

UPDATE nytab SET conplex col = RON1.1,2.2) WHERE .. .;

The first example omits ROW the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:
UPDATE nytab SET conplex_col.r = (conplex_col).r + 1 WHERE .. .;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name appear-
ing just after SET, but we do need parentheses when referencing the same column in the expression to
the right of the equal sign.

And we can specify subfields as targets for | NSERT, too:

| NSERT | NTO nytab (conplex_col.r, conplex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In Postgres Pro, a reference to a table name (or alias) in a query is effectively a reference to the composite
value of the table's current row. For example, if we had a table i nventory_i t emas shown above, we
could write:

SELECT ¢ FROM i nventory_itemc;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col um_nane can be understood as applying
field selection to the composite value of the table's current row. (For efficiency reasons, it's not actually
implemented that way.)

When we write
SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

nane | supplier_id | price

fuzzy dice | 42 | 1.99

148

Data Types

(1 row
as if the query were
SELECT c. nanme, c.supplier_id, c.price FROMinventory itemc;

Postgres Pro will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that . * is applied to whenever it's not a simple
table name. For example, if nyfunc() is a function returning a composite type with columns a, b, and
c, then these two queries have the same result:

SELECT (nyfunc(x)).* FROM sone_t abl e;
SELECT (nmyfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip
Postgres Pro handles column expansion by actually transforming the first form into the sec-

ond. So, in this example, nyf unc() would get invoked three times per row with either syntax.
If it's an expensive function you may wish to avoid that, which you can do with a query like:

SELECT (m).* FROM (SELECT nyfunc(x) AS m FROM sone_t abl e OFFSET 0) ss;

The OFFSET 0 clause keeps the optimizer from “flattening” the sub-select to arrive at the
form with multiple calls of nyf unc() .

The conposi t e_val ue. * syntax results in column expansion of this kind when it appears at the top level
of a SELECT output list, a RETURNI NGlist in | NSERT/UPDATE/DELETE, a VALUES clause, or a row constructor.
In all other contexts (including when nested inside one of those constructs), attaching . * to a compos-
ite value does not change the value, since it means “all columns” and so the same composite value is
produced again. For example, if sonef unc() accepts a composite-valued argument, these queries are
the same:

SELECT sonefunc(c.*) FROM inventory item c;
SELECT sonefunc(c) FROMinventory itemc;

In both cases, the current row of i nvent ory_i t emis passed to the function as a single composite-valued
argument. Even though . * does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider ¢ in c. * to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without . *, it is not clear whether
¢ means a table name or a column name, and in fact the column-name interpretation will be preferred
if there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT * FROM inventory item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c. *;
SELECT * FROM inventory_item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.23.6. However, if i nventory_i t emcontained a column named c, the
first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory item c ORDER BY RONc. nane, c.supplier_id, c.price);
SELECT * FROM inventory itemc ORDER BY (c.nane, c.supplier_id, c.price);

(The last case uses a row constructor with the key word RONomitted.)
Another special syntactical behavior associated with composite values is that we can use functional

notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(tabl e) andtable.fiel dare interchangeable. For example, these queries are equivalent:

SELECT c. name FROM i nventory item c WHERE c. price > 1000;
SELECT nane(c) FROM inventory itemc WHERE price(c) > 1000;

149

Data Types

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivalent:

SELECT sonefunc(c) FROMinventory itemc;
SELECT sonefunc(c.*) FROM inventory itemc;
SELECT c. somefunc FROM i nventory_ item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn't
need to be directly aware that sonmef unc isn't a real column of the table.

Tip
Because of this behavior, it's unwise to give a function that takes a single composite-type
argument the same name as any of the fields of that composite type. If there is ambiguity,
the field-name interpretation will be preferred, so that such a function could not be called

without tricks. One way to force the function interpretation is to schema-qualify the function
name, that is, write schena. f unc(conposi t eval ue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses
it is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

1 (42) 1
the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In par-
ticular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note

Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a t ext field containing a double quote
and a backslash in a composite value, you'd need to write:

INSERT ... VALUES (' ("\"\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the t ext data type's
input routine becomes "\ . (If we were working with a data type whose input routine also

150

Data Types

treated backslashes specially, byt ea for example, we might need as many as eight back-
slashes in the command to get one backslash into the stored composite field.) Dollar quoting
(see Section 4.1.2.4) can be used to avoid the need to double backslashes.

Tip
The ROWconstructor syntax is usually easier to work with than the composite-literal syntax

when writing composite values in SQL commands. In ROV individual field values are written
the same way they would be written when not members of a composite.

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of t i nest anp might be used to represent the ranges of time that a meeting
room is reserved. In this case the data type is t sr ange (short for “timestamp range”), and t i mest anp is
the subtype. The subtype must have a total order so that it is well-defined whether element values are
within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.
8.17.1. Built-in Range Types
Postgres Pro comes with the following built-in range types:
* int4range — Range of i nt eger
* int8range — Range of bi gi nt
* nunr ange — Range of nuneric
* tsrange — Range of ti nestanp without tine zone
* tstzrange — Range oftinestanp with tine zone
¢ daterange — Range of dat e

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (roomint, during tsrange);
| NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nment
SELECT i nt 4range(10, 20) @ 3;

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Conpute the intersection
SELECT i nt4range(10, 20) * intd4range(15, 25);

-- |Is the range enpty?

151

Data Types

SELECT i senpty(nunrange(1, 5));

See Table 9.47 and Table 9.48 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “(”. Likewise, an inclusive upper bound is represented by “] ”, while an exclusive
upper bound is represented by “) ”. (See Section 8.17.5 for more details.)

The functions | ower _i nc and upper _i nc test the inclusivity of the lower and upper bounds of a range
value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all points less than the upper bound are
included in the range. Likewise, if the upper bound of the range is omitted, then all points greater than
the lower bound are included in the range. If both lower and upper bounds are omitted, all values of the
element type are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus
infinity”, respectively. But note that these infinite values are never values of the range's element type,
and can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you try
to write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, in timestamp ranges, [t oday,] means the same thing
as [today,). But [today, i nfinity] means something different from [t oday, i nfi ni ty) — the latter
excludes the special ti mest anp valueinfinity.

The functions | ower _i nf and upper _i nf test for infinite lower and upper bounds of a range, respectively.

8.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[1 ower - bound, upper - bound)
[1 ower - bound, upper - bound]
enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is enpt y, which represents an empty range (a range
that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper - bound may be either a string that is valid input for the subtype, or empty to
indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound
value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value
is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal
strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters
that would otherwise be taken as range syntax. Also, to write a bound value that is an empty string,
write "", since writing nothing means an infinite bound.

152

Data Types

8.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might
or might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::intdrange;

-- does not include either 3 or 7, but includes all points in between
SELECT ' (3,7)'::intdrange;

-- includes only the single point 4
SELECT '[4,4]'::intdrange;

-- includes no points (and will be nornalized to 'enpty')
SELECT '[4,4)'::intdrange;

17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need
for extra quoting of the bound values. The constructor function accepts two or three arguments. The
two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive),
while the three-argument form constructs a range with bounds of the form specified by the third argu-
ment. The third argument must be one of the strings “() ”, “(1”, “[)”, or “[] ”. For example:

-- The full formis: |ower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT nunrange(1.0, 14.0, '(]1');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be converted to
-- canonical form since int8range is a discrete range type (see bel ow).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on that side.
SELECT nunr ange(NULL, 2.2);

17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as i nt eger or dat e. In these
types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, a range over the nuneri ¢ type is continuous, as is a range
overti nest anp. (Even though t i mest anp has limited precision, and so could theoretically be treated as
discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one

153

Data Types

originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If
a canonicalization function is not specified, then ranges with different formatting will always be treated
as unequal, even though they might represent the same set of values in reality.

The built-in range types i nt 4r ange, i nt 8r ange, and dat er ange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other
conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of subtype
fl oat 8:

CREATE TYPE fl oatrange AS RANGE (
subtype = fl oat 8,
subtype_diff = fl oat8m

)
SELECT '[1.234, 5.678]'::floatrange;

Because f | oat 8 has no meaningful “step”, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canoni cal function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges[1, 7] and[1, 8),
must be identical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over ti mest anp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of
an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a sub-
type difference, or subt ype_di f f, function. (The index will still work without subt ype_di ff, but it is
likely to be considerably less efficient than if a difference function is provided.) The subtype difference
function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represent-
ed as a fl oat 8 value. In our example above, the function f | oat 8n that underlies the regular f | oat 8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, the subt ype_di f f function should agree with the sort ordering implied by the selected
operator class and collation; that is, its result should be positive whenever its first argument is greater
than its second according to the sort ordering.

A less-oversimplified example of a subt ype_di ff function is:

CREATE FUNCTION time_subtype diff(x tine, y tine) RETURNS float8 AS
' SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT | MMUTABLE;

CREATE TYPE tinmerange AS RANGE (
subtype = tine,

154

Data Types

subtype_diff = tinme_subtype diff
)

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TYPE for more information about creating range types.

17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a
GiST index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@ @, <<, >>,
-] -, &, and &> (see Table 9.47 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

17.10. Constraints on Ranges

While UNI QUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead,
an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
during tsrange,
EXCLUDE USI NG G ST (during WTH &&)
)
That constraint will prevent any overlapping values from existing in the table at the same time:

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO reservati on VALUES
(' [2010-01-01 14:45, 2010-01-01 15:45)');
ERROR: conflicting key val ue viol ates exclusion constraint "reservation_during excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01 15:00:00")).

You can use the bt ree_gi st extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after btree_gi st
is installed, the following constraint will reject overlapping ranges only if the meeting room numbers
are equal:

CREATE EXTENSI ON btree_gi st;
CREATE TABLE roomreservation (

room t ext,

during tsrange,

EXCLUDE USING A ST (room WTH =, during WTH &&)
)

| NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
I NSERT 0 1

155

Data Types

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key val ue viol ates excl usi on constraint
"roomreservation_roomduring_excl"
DETAIL: Key (room during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00"))
conflicts
with existing key (room during)=(123A, ["2010-01-01 14:00: 00", "2010-01-01 15:00:00")).

I NSERT | NTO room reservati on VALUES
('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
I NSERT 0 1

8.18. Object Identifier Types

Object identifiers (OIDs) are used internally by Postgres Pro as primary keys for various system tables.
OIDs are not added to user-created tables, unless W TH QO DS is specified when the table is created, or
the default with oids configuration variable is enabled. Type oi d represents an object identifier. There
are also several alias types for oi d: r egpr oc, r egpr ocedur e, r egoper, r egoper at or, r egcl ass, r egt ype,
regrol e, regnamespace, regconfi g, and regdi cti onary. Table 8.24 shows an overview.

The oi d type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table's OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

The oi d type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confu-
sion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oi d would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attri but e rows related to a table myt abl e, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'nytable'::regcl ass;
rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel name = 'nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named nyt abl e in different schemas.
The r egcl ass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table's OID to r egcl ass is handy for symbolic
display of a numeric OID.

Table 8.24. Object Identifier Types

Name References Description Value Example

oi d any numeric object identifier 564182

regproc pg_proc function name sum

regpr ocedur e pg_proc function with argument|sun{i nt 4)
types

regoper pg_oper at or operator name +

r egoper at or pg_oper at or operator with argument|* (i nteger,integer) or
types - (NONE, i nt eger)

regcl ass pg_cl ass relation name pg_type

regtype pg_type data type name i nt eger

156

Data Types

Name References Description Value Example
regrol e pg_aut hid role name sm t hee
regnanmespace pg_nanespace namespace name pg_cat al og
regconfig pg_ts _config text search configuration|engl i sh

regdi ctionary pg_ts_dict text search dictionary simpl e

All of the OID alias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. The r egproc and r egoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most uses r egpr ocedur e orr egoper at or are more
appropriate. For r egoper at or, unary operators are identified by writing NONE for the unused operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (' ny_seq' : :regcl ass), Postgres Pro understands that the default expression depends on the
sequence ny_seq; the system will not let the sequence be dropped without first removing the default
expression. regrol e is the only exception for the property. Constants of this type are not allowed in
such expressions.

Note

The OID alias types do not completely follow transaction isolation rules. The planner also
treats them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system is xi d, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xm n and xnmex. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is ci d, or command identifier. This is the data type of the
system columns cm n and cnax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is ti d, or tuple identifier (row identifier). This is the data type
of the system column cti d. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.19. pg Isn Type

The pg_I sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to a
location in the XLOG. This type is a representation of XLogRecPt r and an internal system type of Postgres
Pro.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/
B374D848. The pg_| sn type supports the standard comparison operators, like = and >. Two LSNs can
be subtracted using the - operator; the result is the number of bytes separating those write-ahead log
positions.

8.20. Pseudo-Types

The Postgres Pro type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-types is useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.25 lists the existing pseudo-types.

157

Data Types

Table 8.25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyel enent Indicates that a function accepts any data type (see
Section 35.2.5).

anyarray Indicates that a function accepts any array data

type (see Section 35.2.5).

anynonar r ay

Indicates that a function accepts any non-array da-
ta type (see Section 35.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 35.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data
type (see Section 35.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-
terminated C string.

i nt ernal Indicates that a function accepts or returns a serv-

er-internal data type.

| anguage_handl er

A procedural language call handler is declared to
return | anguage_handl er.

f dw_handl er

A foreign-data wrapper handler is declared to re-
turn f dw_handl er.

t sm handl er

A tablesample method handler is declared to return
tsm handl er.

record Identifies a function taking or returning an unspec-
ified row type.
trigger A trigger function is declared to return tri gger.

event trigger

An event trigger function is declared to return
event _trigger.

pg_ddl _comand

Identifies a representation of DDL commands that
is available to event triggers.

voi d

Indicates that a function returns no value.

opaque

An obsolete type name that formerly served all the
above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only voi d and record as a result type (plustri gger or event _tri gger when the function is used
as a trigger or event trigger). Some also support polymorphic functions using the types anyel enent,
anyar r ay, anynonar r ay, anyenum and anyr ange.

The i nt ernal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one i nt er nal -
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to returni nt er nal unless
it has at least one i nt ernal argument.

158

Chapter 9. Functions and Operators

Postgres Pro provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \ df and \ do
can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended functionality is
present in other SQL database management systems, and in many cases this functionality is compatible
and consistent between the various implementations. This chapter is also not exhaustive; additional
functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul | , which represents “unknown”. Observe
the following truth tables:

a b a AND b aORDb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of subex-
pressions.

9.2. Comparison Operators
The usual comparison operators are available, shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to
= equal

159

Functions and Operators

Operator Description
<>or!= not equal
Note

The ! = operator is converted to <> in the parser stage. It is not possible to implement ! =
and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type bool ean; expressions like 1 < 2 < 3 are not valid (because there
is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:

a BETWEEN x AND y

is equivalent to

a > x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the opposite
comparison:

a NOT BETWEEN x AND y
is equivalent to
a<xORa>y

BETVWEEN SYMMVETRI C is the same as BETWEEN except there is no requirement that the argument to the
left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
thel S [NOT] DI STI NCT FROMconstructs:

a |'S DI STINCT FROM b
a |'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMis the same as the <> operator. However, if both inputs are null it
returns false, and if only one input is null it returns true. Similarly, | S NOT DI STI NCT FROMis identical to
= for non-null inputs, but it returns true when both inputs are null, and false when only one input is null.
Thus, these constructs effectively act as though null were a normal data value, rather than “unknown”.

To check whether a value is or is not null, use the constructs:

expression |'S NULL
expression |'S NOT NULL

or the equivalent, but nonstandard, constructs:

expression | SNULL
expressi on NOTNULL

Do not write expressi on = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

Tip
Some applications might expect that expr essi on = NULL returns true if expr essi on evalu-
ates to the null value. It is highly recommended that these applications be modified to com-

160

Functions and Operators

ply with the SQL standard. However, if that cannot be done the transform null equals con-
figuration variable is available. If it is enabled, Postgres Pro will convert x = NULL clauses
tox |I'S NULL.

If the expr essi on is row-valued, then | S NULL is true when the row expression itself is null or when all
the row's fields are null, while | S NOT NULL is true when the row expression itself is non-null and all
the row's fields are non-null. Because of this behavior, | S NULL and I S NOT NULL do not always return
inverse results for row-valued expressions; in particular, a row-valued expression that contains both null
and non-null fields will return false for both tests. In some cases, it may be preferable to write row ! S
DI STI NCT FROM NULL orrow!| S NOT DI STI NCT FROM NULL, which will simply check whether the overall
row value is null without any additional tests on the row fields.

Boolean values can also be tested using the constructs

expression | S TRUE
expression |'S NOT TRUE
expression | S FALSE
expression |'S NOT FALSE
expression | S UNKNOAN
expression |'S NOT UNKNO/W

These will always return true or false, never a null value, even when the operand is null. A null input is
treated as the logical value “unknown”. Notice that | S UNKNOAN and | S NOT UNKNOWN are effectively the
same as| S NULL and | S NOT NULL, respectively, except that the input expression must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many Postgres Pro types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.2 shows the available mathematical operators.

Table 9.2. Mathematical Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 * 3
/ division (integer division|4 / 2
truncates the result)
% modulo (remainder) 5 %4 1
n exponentiation (asso-{2.0 ~ 3.0
ciates left to right)
|/ square root |/ 25.0 5
[/ cube root ||/ 27.0 3
! factorial 51 120
I factorial (prefix opera-|!! 5 120
tor)
@ absolute value @-5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2

161

Functions and Operators

Operator Description Example Result
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric

data types. The bitwise operators are also available for the bit string types bi t and bi t
shown in Table 9.11.

varying, as

Table 9.3 shows the available mathematical functions. In the table, dp indicates doubl e preci si on.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with doubl e precisi on data are mostly implemented on top of the host system's C library; accuracy

and behavior in boundary cases can therefore vary depending on the host system.

Table 9.3. Mathematical Functions

equal to argument (
same as cei |l)

Function Return Type Description Example Result
abs(x) (same as input) absolute value abs(-17. 4) 17. 4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or nuner- |[(same as input) nearest integer|cei | (-42. 8) -42
ic) greater than or

equal to argument
cei ling(dp or nu-|(same as input) nearest integer|ceil i ng(-95. 3) -95
neric) greater than or

degrees(dp)

dp

radians to degrees

degrees(0.5)

28. 6478897565412

div(y nuneric, x
nuneri c)

nuneri c

integer quotient of
y/x

di v(9, 4)

2

gument

exp(dp or nuner- |(same as input) exponential exp(1.0) 2.71828182845905
ic)

floor(dp or nu-|(same as input) nearest integer less|f | oor (- 42. 8) -43

neric) than or equal to ar-

I n(dp or nuneric) |(same as input) natural logarithm |l n(2. 0) 0. 693147180559945
| og(dp or nuner- |(same as input) base 10 logarithm |l og(100. 0) 2
ic)

l og(b nuneric, x
nuneri c)

nuneri c

logarithm to base b

log(2.0, 64.0)

6. 0000000000

nod(y, Xx) (same as argument|remainder of y/x nod(9, 4) 1
types)
pi () dp “m” constant pi () 3.14159265358979
power (a dp, b dp) |dp a raised to the pow-|power (9.0, 3.0) |729
erofb
power (a nuneric, [nunmeric a raised to the pow-|power (9.0, 3.0) |729
b nuneric) erofb
radi ans(dp) dp degrees to radians |radi ans(45. 0) 0. 785398163397448

round(dp or nu- |(same as input) round to nearest in-|r ound(42. 4) 42
nmeric) teger

round(v nuneric, [nuneric round to s decimal|round(42. 4382, 2) |42. 44
s int) places

162

Functions and Operators

Function Return Type Description Example Result
si gn(dp or nuner- |(same as input) sign of the argu-|sign(-8.4) -1

ic) ment (-1, 0, +1)

sqrt (dp or nuner- [(same as input) square root sqgrt(2.0) 1.4142135623731
ic)

trunc(dp or nu-|(same as input) truncate toward ze-|trunc(42. 8) 42
neric) ro

trunc(v numeric, |numeric truncate to s deci-|trunc(42. 4382, 2) |42.43
s int) mal places

wi dt h_bucket (i nt return the bucket|wi dt h_bucket (3
operand dp, bl number to which|5. 35, 0. 024,

dp, b2 dp, count operand would be|10.06, 5)

int) assigned in a

histogram having
count equal-width
buckets spanning
the range bl to
b2; returns 0 or
count+1 for an in-
put outside the

range
wi dt h_bucket (i nt return the bucket|w dt h_bucket (3
oper and numer - number to which|5. 35, 0. 024,
ic, bl nuneric, operand would be|10.06, 5)

b2 nureric, count assigned in a

int) histogram having

count equal-width
buckets spanning
the range bl to
b2; returns 0 or
count +1 for an in-
put outside the

range
wi dt h_bucket (i nt return the bucket|w dt h_bucket (2
operand anyel e- number to which|{now(), ar -
nent, thresholds operand would be|ray['yesterday',
anyarray) assigned given an|'today', 'tonor-

array listing thejrow]::tine-
lower bounds of the|st ampt z[])
buckets; returns 0
for an input less
than the first lower
bound; the t hr esh-
olds array must
be sorted, smallest
first, or unexpected
results will be ob-
tained

Table 9.4 shows functions for generating random numbers.

Table 9.4. Random Functions

Function Return Type Description
randomn() dp random value in the range 0.0 <=
x<1.0

163

Functions and Operators

Function Return Type Description

set seed(dp) voi d set seed for subsequent r andont()
calls (value between -1.0 and 1.0,
inclusive)

The characteristics of the values returned by r andon() depend on the system implementation. It is not
suitable for cryptographic applications; see pgcrypto module for an alternative.

Finally, Table 9.5 shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of type doubl e preci si on. Trigonometric functions arguments are expressed
in radians. Inverse functions return values are expressed in radians. See unit transformation functions
radi ans() and degr ees() above.

Table 9.5. Trigonometric Functions

Function Description

acos(x) inverse cosine

asi n(x) inverse sine

at an(x) inverse tangent
atan2(y, x) inverse tangent of y/ x
cos(x) cosine

cot (x) cotangent

si n(x) sine

tan(x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types char act er, character varying, and t ext. Unless otherwise
noted, all of the functions listed below work on all of these types, but be wary of potential effects of
automatic space-padding when using the char act er type. Some functions also exist natively for the bit-
string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.6. Postgres Pro also provides versions of these functions that use the regular
function invocation syntax (see Table 9.7).

Note

Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to t ext .
Those coercions have been removed because they frequently caused surprising behaviors.
However, the string concatenation operator (| |) still accepts non-string input, so long as at
least one input is of a string type, as shown in Table 9.6. For other cases, insert an explicit
coercion to t ext if you need to duplicate the previous behavior.

Table 9.6. SQL String Functions and Operators

Function Return Type Description Example Result

string || string |text String concatena-|' Post' | | |Post gr eSQL
tion 'greSqQ’

string || non- |t ext String concatena-|' Value: ' || 42 |Value: 42

string or non- tion with one non-

string || string string input

164

Functions and Operators

upper case

Function Return Type Description Example Result
bi t _| engt h(i nt Number of bits in|bit _I engt h(32
string) string 'jose')
char _| engt h(i nt Number of charac-|char | engt h(4
string) orcharac- ters in string 'jose')
ter | ength(
string)
| ower (string) t ext Convert string to|l ower (' TOM) tom

lower case
oct et _| engt h(i nt Number of bytes in|oct et _I engt h(4
string) string 'jose")
overlay(string t ext Replace substring |overl ay(Thonmas
pl aci ng string ' Txxxxas' pl aci ng
from int [for "hom from 2 for
int]) 4)
posi tion(i nt Location of speci-|position('om in|3
substring in fied substring ' Thomas')
string)
substring(string |text Extract substring |substri ng(hom
[from int] [for ' Thomas' from 2
int]) for 3)
substring(string |text Extract substring|substri ng(mas
from pattern) matching POSIX|' Thomas' from

regular expression.|'...$')

See Section 9.7 for

more information

on pattern match-

ing.
substring(string |text Extract substring|substri ng(oma
from pattern for matching SQL reg-|' Thonas' from
escape) ular expression.|' %" o_a#" ' for

See Section 9.7 for|' #')

more information

on pattern match-

ing.
trim([leading | [text Remove the longest|tri m(both ' xyz' |Tom
trailing | both] string containing|from ' yxTonmxx')
[characters] from only characters
string) from characters (

a space by default)

from the start, end,

or both ends (both

is the default) of

string
trim[leading | |text Non-standard syn-|tri m(both fromTom
trailing | both] tax fortri m() "yxTonmxx', 'xyz')
[froml string [,
characters])
upper (string) t ext Convert string to|upper('tom) TOM

Additional string manipulation functions are available and are listed in Table 9.7. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9.6.

165

Functions and Operators

Table 9.7. Other String Functions

Function

Return Type

Description

Example

Result

ascii(string)

i nt

ASCII code of the
first character of
the argument. For
UTF8 returns the
Unicode code point
of the character.
For other multibyte
encodings, the ar-
gument must be an
ASCII character.

ascii('x")

120

btrin(stringtext
[, characters
text])

t ext

Remove the longest
string consisting
only of characters
in characters (a
space by default)
from the start and
end of stri ng

btrim
"xyxtrinmyx',
'xyz')

trim

chr(int)

t ext

Character with the
given code. For
UTF8 the argument
is treated as a Uni-
code code point.
For other multibyte
encodings the ar-
gument must desig-
nate an ASCII char-
acter. The NULL (0)
character is not al-
lowed because text
data types cannot
store such bytes.

chr (65)

concat (str
[, str "

11

n anyn
anyu [,

t ext

Concatenate the
text representa-
tions of all the argu-
ments. NULL argu-
ments are ignored.

concat (' abcde' ,
2, NULL, 22)

abcde222

concat _ws(sep
text, str "any"
[, str ™"any" [,

11

t ext

Concatenate all but
the first argu-
ment with sepa-
rators. The first
argument is used
as the separator
string. NULL argu-
ments are ignored.

concat _ws(',",
"abcde', 2, NULL,
22)

abcde, 2, 22

convert(string
byt ea, src_encod-
ing nane, dest_
encodi ng nane)

byt ea

Convert string
to dest _encodi ng.
The original en-
coding is speci-
fied by src_encod-
ing. The string
must be valid in
this encoding. Con-
versions can Dbe

convert ('text
in_utf8 , 'UTF8',
"LATINL')

text _in_utf8 rep-
resented in Latin-1
encoding (ISO
8859-1)

166

Functions and Operators

Function

Return Type

Description

Example

Result

defined by CRE-
ATE CONVERSI ON.
Also there are some
predefined conver-
sions. See Table 9.8
for available con-
versions.

convert _fromn(
string byt ea,
src_encodi ng
nane)

t ext

Convert string to
the database en-
coding. The original
encoding is speci-
fied by src_encod-
ing. The string
must be valid in this
encoding.

convert _from
"text _in_ utf8',
" UTF8')

text _in_utf8 rep-
resented in the cur-
rent database en-
coding

convert _to(
string t ext,
dest _encodi ng
nane)

byt ea

Convert string to
dest _encodi ng.

convert _to('sone
text', 'UTF8")

sone text repre-
sented in the UTF8
encoding

decode(string
t ext, f or mat
text)

byt ea

Decode binary data
from textual repre-
sentationinstri ng.
Options for f or mat
are same as in en-
code.

decode(
" MIl zAAE="
' base64')

\ x3132330001

encode(data
byt ea, f or mat
text)

t ext

Encode binary data
into a textual repre-
sentation. Support-
ed formats are:
base64, hex, es-
cape. escape con-
verts zero bytes and
high-bit-set bytes to
octal sequences (
\nnn) and doubles
backslashes.

encode(
' 123\ 000\ 001",
' baseb64')

MT1 z AAE=

format (formatstr
text [, formatarg

"any" [, ...1 1)

t ext

Format arguments
according to a for-
mat string. This
function is similar
to the C function
sprintf. See Sec-
tion 9.4.1.

format (' Hel | 0 ¥,
%dss', "World')

Hel | o
Wor |l d

Wor |l d,

i ni tcap(string)

t ext

Convert the first let-
ter of each word
to upper case and
the rest to lower
case. Words are se-
quences of alphanu-
meric characters
separated by non-
alphanumeric char-
acters.

i ni tcap(' hi
THOVAS')

H Thomas

167

Functions and Operators

Function

Return Type

Description

Example

Result

left(str
i nt)

text, n

t ext

Return first n char-
acters in the string.
When n is negative,
return all but last
In| characters.

| eft (' abcde',

2)

ab

| engt h(string)

Number of charac-
tersin string

| engt h('jose')

4

| engt h(string
byt ea, encodi ng
nane)

nt

Number of charac-
ters in string in
the given encodi ng.
The st ri ng must be
valid in this encod-
ing.

| engt h('jose',
" UTF8')

| pad(string text,
length int [,
fill text])

t ext

Fill up the string
to length |ength
by prepending the
characters fill (a
space by default).
If the string is al-
ready longer than
I ength then it is
truncated (on the
right).

| pad(' hi',
"Xy")

51

xyxhi

Itrim(stringtext
[, characters
text])

t ext

Remove the longest
string containing
only characters
from characters (
a space by default)
from the start of
string

Ltrimn

‘zzzytest',
IXyZI)

t est

nmd5(string)

t ext

Calculates the MD5
hash of string, re-
turning the result in
hexadecimal

nd5("' abc')

900150983cd24f b0
d6963f 7d28el17f 72

pg_client_
encodi ng()

nanme

Current client en-
coding name

pg_client_
encodi ng()

SQL_ASC |

quot e_i dent (
string text)

t ext

Return the giv-
en string suitably
quoted to be used
as an identifier
in an SQL state-
ment string. Quotes
are added only if
necessary (i.e., if
the string contains
non-identifier char-
acters or would be
case-folded). Em-
bedded quotes are
properly doubled.
See also Exam-
ple 40.1.

guot e_i dent (' Foo

bar')

"Foo bar"

168

Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (
string text)

t ext

Return the giv-
en string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that quote_
literal returns
null on null input; if
the argument might
be null, quot e_nul -
| abl e is often more
suitable. See also
Example 40.1.

quote_literal (
EO' Reilly")

'O ' Reilly'

quote literal (
val ue anyel enment)

t ext

Coerce the given
value to text and
then quote it as
a literal. Embed-
ded single-quotes
and backslashes
are properly dou-
bled.

quote_ literal (
42.5)

"42.5'

quot e_nul | abl e(
string text)

t ext

Return the giv-
en string suitably
quoted to be used
as a string literal in
an SQL statement
string; or, if the ar-
gument is null, re-
turn NULL. Embed-
ded single-quotes
and backslashes
are properly dou-
bled. See also Ex-
ample 40.1.

qguot e_nul | abl e(
NULL)

NUL L

quot e_nul | abl e(
val ue anyel erment)

t ext

Coerce the given
value to text and
then quote it as a
literal; or, if the ar-
gument is null, re-
turn NULL. Embed-
ded single-quotes
and backslashes
are properly dou-
bled.

quot e_nul | abl e(
42.5)

"42.5'

r egexp_nat ches(
string text, pat-
tern t ext [,
flags text])

setof text][]

Return all captured
substrings result-
ing from matching
a POSIX regular
expression against
the string. See

regexp_mat ches(

' f oobar beque-
baz', "(bar) (
beque) ')

{bar, beque}

169

Functions and Operators

Function Return Type Description Example Result
Section 9.7.3 for
more information.
regexp_replace(|text Replace substring(|regexp_repl ace(|ThM
string text, pat- S) matching al|' Thomas', '
tern text, re- POSIX regular ex-|[[mN]a.', 'M)
pl acenent text [, pression. See Sec-
flags text]) tion 9.7.3 for more
information.
regexp_split_to_ |text[] Split string using|regexp_split_to_ [{hello, world}
array(string a POSIX regular ex-|array(' hell o
text, pattern pression as the de-jworld', '\s+')
t ext [, flags limiter. See Sec-
text]) tion 9.7.3 for more
information.
regexp_split_to_ |setof text Split string using|regexp_split_to_ |hello
tabl e(string a POSIX regular ex-|t abl e(' hel | o wor | d
t ext, pattern pression as the de-jworld', '\s+')
t ext [, fl ags limiter. See Sec- (2 rows)
text]) tion 9.7.3 for more
information.
repeat (string t ext Repeat string the|repeat (' Pg', 4) PgPgPgPg
text, number int) specified nunber of
times
repl ace(string t ext Replace all occur-|repl ace(abXXef abXXef
text, from text, rences in string of|' abcdef abcdef ',
to text) substring f romwith|' cd', ' XX')
substring t o
reverse(str) t ext Return reversed|rever se(' abcde') |edcba
string.
right(str text, njtext Return last n char-|ri ght (' abcde', 2) |de
int) acters in the string.
When n is negative,
return all but first
[n| characters.
rpad(string text, |text Fill up the string|rpad(' hi', 5, [hi xyx
length int [, to length length| 'xy')
fill text]) by appending the
characters fill (a
space by default).
If the string is al-
ready longer than
| ength then it is
truncated.
rtrim(string text|text Remove the longest|rtri m(t est
[, characters string containing|' t est xxzx",
text]) only characters| ' xyz')
from characters (
a space by default)
from the end of
string
split_part(t ext Split stri ng on de- [split_part(def
string text, de- l'imter and return|' abc~@-de-

170

Functions and Operators

from[, count])

(same as sub-
string(string
from from for

Function Return Type Description Example Result
limter t ext, the given field (|f~@ghi', '~@',
field int) counting from one) |2)
strpos(string, [Location of spec-|strpos(' high', 2
substring) ified substring (|'ig')

same as posi -

tion(substringin

string), but note

the reversed argu-

ment order)
substr(string, t ext Extract substring|substr(ph

"al phabet', 3, 2)

the from set is re-
placed by the corre-
sponding character
inthetoset. Iffrom
is longer than to,
occurrences of the
extra characters in
f romare removed.

count))
to_ascii(string |text Convert string to|to_ascii (Kar el
text [, encoding ASCII from anoth-|' Karel"')
text]) er encoding (on-
ly supports conver-
sion from LATI N1,
LATI N2, LATI N9,
and W N1250 en-
codings)
t o_hex(nunber int |text Convert nunber to|to_hex(TEfFfffff
or bigint) its equivalent hexa-|{2147483647)
decimal represen-
tation
transl ate(string |text Any character in|transl ate(az2x5
text, from text, stri ng that match-|' 12345", '143',
to text) es a character in|' ax')

The concat, concat _ws and f or rat functions are variadic, so it is possible to pass the values to be con-
catenated or formatted as an array marked with the VARI ADI Ckeyword (see Section 35.4.5). The array's
elements are treated as if they were separate ordinary arguments to the function. If the variadic array
argument is NULL, concat and concat _ws return NULL, but f or mat treats a NULL as a zero-element

array.

See also the aggregate function st ri ng_agg in Section 9.20.

Table 9.8. Built-in Conversions

Conversion Name 2

Source Encoding

Destination Encoding

ascii_to nic SQL_ASCI | MULE | NTERNAL
ascii _to utf8 SQL_ASCI | UTF8

big5s to_euc_tw Bl G EUC TW
big5_to_mc Bl G5 MULE_| NTERNAL
bigs to utf8 Bl G5 UTF8

171

Functions and Operators

Conversion Name ?

Source Encoding

Destination Encoding

euc_cn_to mc EUC CN MULE_| NTERNAL
euc_cn_to utf8 EUC CN UTF8

euc_jp_to nmc EUC JP MULE | NTERNAL
euc_jp_to_sjis EUC JP SJI S

euc_jp_to utf8 EUC JP UTF8
euc_kr_to_mc EUC_KR MULE_| NTERNAL
euc_kr _to utf8 EUC KR UTF8

euc_tw to_bigs EUC TW Bl G5

euc_twto mc EUC TW MULE_| NTERNAL
euc_twto utf8 EUC TW UTF8
gh18030_to_utf8 GB18030 UTF8

gbk _to utf8 GBK UTF8
iso_8859 10 to utf8 LATI N6 UTF8
iso_8859 13 to_utf8 LATI N7 UTF8
iso_8859 14 to utf8 LATI N8 UTF8
iso_8859 15 to_utf8 LATI N9 UTF8

iso 8859 16 to utf8 LATI N10 UTF8

iso_ 8859 1 to mc LATI N1 MULE_| NTERNAL
iso 8859 1 to utf8 LATI N1 UTF8
iso_8859 2 to_mc LATI N2 MULE_| NTERNAL
iso 8859 2 to utf8 LATI N2 UTF8

i so_8859 2 to_wi ndows_1250 LATI N2 W N1250

iso 8859 3 to mc LATI N3 MULE | NTERNAL
iso_8859 3 to utf8 LATI N3 UTF8

iso_ 8859 4 to mc LATI N4 MULE_| NTERNAL
iso_8859 4 to utf8 LATI N4 UTF8

iso 8859 5 to koi8 r | SO 8859 5 KA 8R
iso_8859 5 to mc | SO 8859_5 MULE_| NTERNAL
iso 8859 5 to utf8 | SO 8859 _5 UTF8

i so_8859 5 to_wi ndows_1251 | SO 8859_5 W N1251

i so_8859 5 to w ndows_ 866 | SO 8859 5 W N866
iso_8859 6 to_ utf8 | SO 8859_6 UTF8

iso 8859 7 to utf8 | SO 8859 _7 UTF8
iso_8859 8 to utf8 | SO 8859_8 UTF8

iso 8859 9 to utf8 LATI N5 UTF8

johab _ to utf8 JOHAB UTF8

koi 8 r _to_iso_8859 5 KO 8R | SO 8859 5

koi8 r_to_mc KO 8R MULE_| NTERNAL
koi8 r to utf8 KA 8R UTF8

koi 8_r_to_w ndows_1251 KA 8R W N1251

koi 8 r _to_w ndows_ 866 KA 8R W N866

172

Functions and Operators

Conversion Name ?

Source Encoding

Destination Encoding

koi8 u to utf8

KA 8U

UTF8

mc_to_ascii MULE_| NTERNAL SQ._ASCI |
mc_to_bigs MULE_| NTERNAL Bl G
nmc_to_euc_cn MULE_| NTERNAL EUC_CN
mc_to_euc_jp MULE_| NTERNAL EUC JP

mc to_euc_kr MULE | NTERNAL EUC KR

mc to euc_ tw MULE | NTERNAL EUC TW
mc_to_iso_8859 1 MULE_| NTERNAL LATI N1
mc_to_iso 8859 2 MULE_| NTERNAL LATI N2
mc_to_iso_ 8859 3 MULE_| NTERNAL LATI N3

mc to iso 8859 4 MULE_| NTERNAL LATI N4
mc_to_iso_8859 5 MULE_| NTERNAL | SO 8859_5
mc_to_koi8_r MULE_| NTERNAL KO 8R
mc_to_sjis MULE_| NTERNAL SJIS

m c_to_wi ndows_ 1250 MULE | NTERNAL W N1250

m c_t o_wi ndows_1251 MULE_| NTERNAL W N1251

m c_t o_wi ndows_866 MULE_| NTERNAL W NB866
sjis_to euc jp SJIS EUC JP
sjis_to nmic SJIS MULE | NTERNAL
sjis_to utf8 SJIS UTF8

wi ndows_1258 to_utf8 W N1258 UTF8
uhc_to_utf8 UHC UTF8

utf8 to_ascii UTF8 SQL_ASCI |
utf8 to_bigs UTF8 Bl G5

utf8 to _euc_cn UTF8 EUC CN

utf8 to euc jp UTF8 EUC JP

utf8 to_euc kr UTF8 EUC KR

utf8 to_euc_tw UTF8 EUC TW

utf8 to_ghl18030 UTF8 GB18030
utf8_to_gbk UTF8 GBK

utf8 to iso 8859 1 UTF8 LATI N1

utf8 to_iso 8859 10 UTF8 LATI N6

utf8 to_iso 8859 13 UTF8 LATI N7

utf8 to_iso 8859 14 UTF8 LATI N8

utf8 to iso 8859 15 UTF8 LATI N9

utf8 to_ iso 8859 16 UTF8 LATI N10
utf8 to_iso 8859 2 UTF8 LATI N2

utf8 to_iso 8859 3 UTF8 LATI N3

utf8 to iso 8859 4 UTF8 LATI N4

utf8 to_iso 8859 5 UTF8 | SO 8859_5
utf8 to_iso 8859 6 UTF8 | SO 8859 _6

173

Functions and Operators

Conversion Name ?

Source Encoding

Destination Encoding

utf8 to_iso 8859 7 UTF8 | SO 8859 7
utf8 to_iso_8859 8 UTF8 | SO _8859_8
utf8 to iso 8859 9 UTF8 LATI N5

utf8 to_johab UTF8 JOHAB

utf8 to_koi 8 r UTF8 KA 8R

utf8 to_koi 8 u UTF8 KO 8U

utf8 to_sjis UTF8 SJI S

utf8 to_ w ndows_ 1258 UTF8 W N1258
utf8_to_uhc UTF8 UHC
utf8_to_w ndows_1250 UTF8 W N1250

utf8 to w ndows_ 1251 UTF8 W N1251

utf8 to_ w ndows_ 1252 UTF8 W N1252
utf8_ to_w ndows_1253 UTF8 W N1253
utf8_to_w ndows_1254 UTF8 W N1254

utf8 to w ndows_ 1255 UTF8 W N1255

utf8 to_ w ndows_ 1256 UTF8 W N1256
utf8_to_w ndows_1257 UTF8 W N1257
utf8_to_w ndows_866 UTF8 W N866

utf8 to_ w ndows_ 874 UTF8 W N874

wi ndows_1250 to_iso_8859 2 W N1250 LATI N2

wi ndows_1250_to_nmic¢ W N1250 MULE_| NTERNAL
wi ndows_1250_to_utf8 W N1250 UTF8

wi ndows_1251_to_i so_8859_5 W N1251 | SO 8859_5

wi ndows_1251_to_koi 8_r W N1251 KA 8R

wi ndows_1251 to_m¢c¢ W N1251 MULE_| NTERNAL
wi ndows_1251 to_utf8 W N1251 UTF8

wi ndows_1251_t o_wi ndows_866 |W N1251 W N866

wi ndows_1252 to_utf8 W N1252 UTF8

wi ndows_1256 to_utf8 W N1256 UTF8

wi ndows_866_to_i so_8859_5 W N866 | SO 8859 _5

wi ndows 866 to_koi 8 r W N866 KA 8R

wi ndows_866_to_mc W N866 MULE | NTERNAL
wi ndows_866_to_utf8 W N866 UTF8

wi ndows_866_to wi ndows_ 1251 |W N866 W N

wi ndows 874 to utf8 W N874 UTF8
euc_jis_2004_to_utf8 EUC JI S_2004 UTF8

utf8 to_euc_jis_2004 UTF8 EUC JI S 2004
shift_jis_2004_to_utf8 SH FT_JI'S 2004 UTF8

utf8 to_shift jis_ 2004 UTF8 SH FT_JI'S 2004
euc_jis 2004 _to_shift jis_ EUC JI 'S 2004 SH FT_JI'S 2004

2004

174

Functions and Operators

Conversion Name ° Source Encoding Destination Encoding
shift _jis_2004 to euc_jis_ |SH FT_JI'S 2004 EUC JI' S 2004
2004

#The conversion names follow a standard naming scheme: The official name of the source encoding with all non-alphanumeric characters replaced by underscores,
followed by _t o_, followed by the similarly processed destination encoding name. Therefore, the names might deviate from the customary encoding names.

9.4.1. f or mat

The function f or mat produces output formatted according to a format string, in a style similar to the
C function sprintf.

format (formatstr text [, formatarg "any" [, ...] 1)

f ormat st r is a format string that specifies how the result should be formatted. Text in the format string
is copied directly to the result, except where format specifiers are used. Format specifiers act as place-
holders in the string, defining how subsequent function arguments should be formatted and inserted
into the result. Each f or mat ar g argument is converted to text according to the usual output rules for its
data type, and then formatted and inserted into the result string according to the format specifier(s).

Format specifiers are introduced by a %character and have the form
% position][flags][w dt h]type

where the component fields are:

posi ti on (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument
after f or mat st r. If the posi ti on is omitted, the default is to use the next argument in sequence.

fl ags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier's output to be left-justified.
This has no effect unless the wi dt h field is also specified.

wi dt h (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the left or right (depending on the - flag) with spaces as needed to fill the width.
A too-small width does not cause truncation of the output, but is simply ignored. The width may
be specified using any of the following: a positive integer; an asterisk (*) to use the next function
argument as the width; or a string of the form * n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that
is used for the format specifier's value. If the width argument is negative, the result is left aligned
(as if the - flag had been specified) within a field of length abs(wi dt h).

t ype (required)

The type of format conversion to use to produce the format specifier's output. The following types
are supported:

e s formats the argument value as a simple string. A null value is treated as an empty string.

e | treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quot e_i dent).

* L quotes the argument value as an SQL literal. A null value is displayed as the string NULL, with-
out quotes (equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the special sequence %®omay be used to output a
literal %character.

Here are some examples of the basic format conversions:

175

Functions and Operators

SELECT format (' Hello %', 'Wrld');
Result: Hello Wrld

SELECT format (' Testing %, %, %, %, 'one', 'tw', 'three');
Result: Testing one, two, three, %

SELECT format (' | NSERT | NTO % VALUES(%.)', 'Foo bar', E O'Reilly');
Resul t: | NSERT I NTO "Foo bar" VALUES(' O 'Reilly")

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'locations', 'C\ProgramFiles');
Result: I NSERT INTO | ocations VALUES(' C:\Program Files')

Here are examples using wi dt h fields and the - flag:

SELECT format (' |%0s|', 'foo');
Result: | foo|
SELECT format ('|% 10s|', 'foo0');

Result: |foo |

SELECT format (' | %s|', 10, 'foo');
Result: | foo|

SELECT format (' | %s|', -10, 'foo');
Result: |foo |

SELECT format (' | % *s|', 10, 'foo');
Result: |foo |

SELECT format (' | % *s|', -10, 'foo0');
Result: |foo |
These examples show use of posi ti on fields:

SELECT format (' Testing ¥8%s, %®$s, %$s', 'one', '"two', 'three');
Result: Testing three, two, one

SELECT format('|%2%s|', 'foo', 10, 'bar');
Result: | bar |

SELECT format('|%%$*2%s|', 'foo', 10, 'bar');
Result: | f oo|

Unlike the standard C function spri ntf, Postgres Pro's f or mat function allows format specifiers with
and without posi ti on fields to be mixed in the same format string. A format specifier without a posi ti on
field always uses the next argument after the last argument consumed. In addition, the f or nat function
does not require all function arguments to be used in the format string. For example:

SELECT format (' Testing ¥8%s, %®@$s, %', 'one', 'two', 'three');
Result: Testing three, two, three

The % and %. format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 40.1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type byt ea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.9. Postgres Pro also provides versions of these functions that use the regular
function invocation syntax (see Table 9.10).

176

Functions and Operators

Note

The sample results shown on this page assume that the server parameter byt ea_out put is
set to escape (the traditional Postgres Pro format).

Table 9.9. SQL Binary String Functions and Operators

ing in bytes from
the start and end of
string

\ 001" : : byt ea)

Function Return Type Description Example Result
string || string |bytea String concatena-|'\\Post'::bytea |\\Post'gres\000
tion |] "\ 047gres

\000':: bytea
oct et _| engt h(i nt Number of bytes in|oct et _I engt h(5
string) binary string 'jo

\ 000se' : : byt ea)
overlay(string byt ea Replace substring |overl ay(' Th T\\ 002\ \ 003nas
pl aci ng string \ 000onms' : : byt ea
from int [for pl aci ng
int]) "\ 002\ 003" : : byt ea

from2 for 3)
posi tion(i nt Location of speci-|position(3
substring in fied substring "\ 0000n : : byt ea
string) in "Th

\ 000onms' : : byt ea)
substring(string |bytea Extract substring |substring(' Th h\ 0000
[from int] [for \ 000onms' : : byt ea
int]) from2 for 3)
trinm([both] bytes|bytea Remove the longest|t ri m(Tom
fromstring) string containing|' \ 000\ 001' : : byt ea

only bytes appear-|from "\ 000Tom

Additional binary string manipulation functions are available and are listed in Table 9.10. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9.9.

Table 9.10. Other Binary String Functions

ed formats are:

Function Return Type Description Example Result
btrim(string byt ea Remove the longest|bt ri nm(trim
byt ea, byt es string containing|'\ 000t ri m
byt ea) only bytes appear-|\ 001':: byt ea,
ing in bytes from| '\ 000\ 001" :: bytep)
the start and end of
string
decode(string byt ea Decode binary data|decode(123\ 000456
t ext, f or mat from textual repre-|' 123\ 000456' ,
text) sentationinstring.|' escape')
Options for f or mat
are same as in en-
code.
encode(dat a t ext Encode binary data|encode(123\ 000456
byt ea, f or mat into a textual repre-|' 123\ 000456' : : byt ea,
text) sentation. Support-|' escape')

177

Functions and Operators

Function

Return Type

Description

Example

Result

base64, hex, es-
cape. escape con-
verts zero bytes and
high-bit-set bytes to
octal sequences (
\nnn) and doubles
backslashes.

get _bit(string,
of fset)

i nt

Extract bit from

string

get _bit(

"Th

\ 000onms' : : byt ea,
45)

get _byte(string,
of f set)

i nt

Extract byte from
string

get byt e(

"Th

\ 000onms' : : byt ea,
4)

109

I engt h(string)

Length of binary
string

| engt h(
] j O
\ 000se' : : byt ea)

md5(string)

t ext

Calculates the MD5
hash of string, re-
turning the result in
hexadecimal

ma5(
"Th
\ 000onms' : : byt ea)

8ab2d3c9689aaf 18
b4958c334c82d8b1

set _bit(string,
of fset, newal ue)

byt ea

Set bit in string

set _bit(

"Th

\ 000onms' : : byt ea,
45, 0)

Th\ 0000MAs

set _byte(string,
of f set, newal ue)

byt ea

Set byte in string

set byt e(

"Th

\ 000onms' : : byt ea,
4, 64)

Th\ 0000 @s

get _byt e and set _byt e number the first byte of a binary string as byte 0. get _bi t and set _bi t number
bits from the right within each byte; for example bit 0 is the least significant bit of the first byte, and
bit 15 is the most significant bit of the second byte.

See also the aggregate function string_agg in Section 9.20 and the large object functions in Sec-

tion 32.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varyi ng. Aside from the usual comparison operators, the operators shown in
Table 9.11 can be used. Bit string operands of &, | , and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9.11. Bit String Operators

Operator Description Example Result
[concatenation B' 10001' || B 011’ 10001011
& bitwise AND B' 10001' & B' 01101’ 00001

| bitwise OR B' 10001' | B 011071 11101

bitwise XOR B' 10001' # B 01101 11100

~ bitwise NOT ~ B 10001 01110

178

Functions and Operators

Operator Description Example Result
<< bitwise shift left B' 10001' << 3 01000
>> bitwise shift right B' 10001' >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: | ength,
bi t _I ength, octet_| ength, position, substring, overl ay.

The following functions work on bit strings as well as binary strings: get _bi t, set _bi t. When working
with a bit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bi t . Some examples:

44::bit (10) 0000101100
44::bit (3) 100

cast (-44 as bit(12)) 111111010100
"1110'::bit(4)::integer 14

Note that casting to just “bit” means casting to bi t (1), and so will deliver only the least significant bit
of the integer.

Note

Casting an integer to bi t (n) copies the rightmost n bits. Casting an integer to a bit string
width wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by Postgres Pro: the traditional SQL
LI KE operator, the more recent SI M LAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip
If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular expressions
can be contrived that take arbitrary amounts of time and memory to process. Be wary of
accepting regular-expression search patterns from hostile sources. If you must do so, it is
advisable to impose a statement timeout.

Searches using SI M LAR TO patterns have the same security hazards, since SIM LAR TO
provides many of the same capabilities as POSIX-style regular expressions.

LI KE searches, being much simpler than the other two options, are safer to use with possi-
bly-hostile pattern sources.

9.7.1. LI KE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LI KE expression returns true if the st ri ng matches the supplied pat t er n. (As expected, the NOT LI KE
expression returns false if LI KE returns true, and vice versa. An equivalent expression is NOT (stri ng
LI KE pattern).)

179

Functions and Operators

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LI KE acts like the equals operator. An underscore (_) in pat t er n stands for (matches)
any single character; a percent sign (%9 matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc' true
"abc' LIKE 'a% true
"abc' LIKE' b ' true
"abc' LIKE 'c' fal se

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective charac-
ter in pat t er n must be preceded by the escape character. The default escape character is the backslash
but a different one can be selected by using the ESCAPE clause. To match the escape character itself,
write two escape characters.

Note

If you have standard conforming strings turned off, any backslashes you write in literal
string constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ' ' . This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

The key word | LI KE can be used instead of LI KE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a Postgres Pro extension.

The operator ~~ is equivalent to LI KE, and ~~* corresponds to | LI KE. There are also ! ~~ and ! ~~*
operators that represent NOT LI KE and NOT | LI KE, respectively. All of these operators are Postgres Pro-
specific.

9.7.2. SI M LAR TORegular Expressions

string SIMLAR TO pattern [ESCAPE escape-character]
string NOT SIMLAR TO pattern [ESCAPE escape-character]

The SI M LAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LI KE, except that it interprets the pattern using the SQL standard's definition of
a regular expression. SQL regular expressions are a curious cross between LI KE notation and common
regular expression notation.

Like LI KE, the SI M LAR TOoperator succeeds only if its pattern matches the entire string; this is unlike
common regular expression behavior where the pattern can match any part of the string. Also like
LI KE, SIM LAR TOuses _ and %as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and . * in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMLAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

* | denotes alternation (either of two alternatives).

* * denotes repetition of the previous item zero or more times.

¢ + denotes repetition of the previous item one or more times.

* ? denotes repetition of the previous item zero or one time.

¢ {nm denotes repetition of the previous item exactly mtimes.

* {m} denotes repetition of the previous item mor more times.

« {m n} denotes repetition of the previous item at least mand not more than n times.

180

Functions and Operators

* Parentheses () can be used to group items into a single logical item.
* A bracket expression [. ..] specifies a character class, just as in POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SI M LAR TO.

As with LI KE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc' SIMLAR TO ' abc’ true
"abc' SIMLAR TO 'a' fal se
"abc' SIMLAR TO '%b|d)% true
"abc’ SIMLAR TO ' (b]c)% fal se

The subst ri ng function with three parameters, substri ng(string from pattern for escape-char-
act er), provides extraction of a substring that matches an SQL regular expression pattern. As with
SI M LAR TO, the specified pattern must match the entire data string, or else the function fails and returns
null. To indicate the part of the pattern that should be returned on success, the pattern must contain
two occurrences of the escape character followed by a double quote ("). The text matching the portion
of the pattern between these markers is returned.

Some examples, with #* delimiting the return string:

substring(' foobar' from'%"o b#'% for '#') oob
substring(' foobar' from'#"o_b#"'% for '#') NULL

7.3. POSIX Regular Expressions

Table 9.12 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.12. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, case|' t homas' ~ '.*thonms. *'
sensitive

~* Matches regular expression, case|' t homas' ~* '.*Thonms. *'
insensitive

I~ Does not match regular expres-|' thomas' !~ '.*Thomas. *'
sion, case sensitive

I ~* Does not match regular expres-|' t homas' !~* '.*vadim *'
sion, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and
SI M LAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LI KE, pattern characters match string characters exactly unless they are
special characters in the regular expression language — but regular expressions use different special
characters than LI KE does. Unlike LI KE patterns, a regular expression is allowed to match anywhere
within a string, unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

"abc' ~ 'abc' true
"abc' ~ '7a’ true
"abc' ~ "(b|d)" true
"abc' ~ "~(b]jc)"' false

The POSIX pattern language is described in much greater detail below.

181

Functions and Operators

The substri ng function with two parameters, substring(string from pattern), provides extraction
of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. If you need parentheses in the pattern before
the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring(' foobar' from'o.b") oob
substring(' foobar' from'o(.)b") o]

The r egexp_r epl ace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax r egexp_r epl ace(source, pattern, repl acenent [, flags]). The
sour ce string is returned unchanged if there is no match to the pat t er n. If there is a match, the sour ce
string is returned with the r epl acenent string substituted for the matching substring. The r epl acenent
string can contain \ n, where n is 1 through 9, to indicate that the source substring matching the n'th
parenthesized subexpression of the pattern should be inserted, and it can contain \ & to indicate that
the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal back-
slash in the replacement text. The f| ags parameter is an optional text string containing zero or more
single-letter flags that change the function's behavior. Flag i specifies case-insensitive matching, while
flag g specifies replacement of each matching substring rather than only the first one. Supported flags
(though not g) are described in Table 9.20.

Some examples:

regexp_repl ace(' foobarbaz', "b.."', 'X)
f ooXbaz
regexp_replace(' foobarbaz', 'b..", "X, 'g")
f ooXX

regexp_replace(' foobarbaz', "b(..)', "X\1Y", 'g')
f ooXar YXazY

The r egexp_mmt ches function returns a text array of all of the captured substrings resulting from match-
ing a POSIX regular expression pattern. It has the syntax r egexp_mat ches(string, pattern [, fl ags).
The function can return no rows, one row, or multiple rows (see the g flag below). If the patt ern does
not match, the function returns no rows. If the pattern contains no parenthesized subexpressions, then
each row returned is a single-element text array containing the substring matching the whole pattern. If
the pattern contains parenthesized subexpressions, the function returns a text array whose n'th element
is the substring matching the n'th parenthesized subexpression of the pattern (not counting “non-cap-
turing” parentheses; see below for details). The f | ags parameter is an optional text string containing
zero or more single-letter flags that change the function's behavior. Flag g causes the function to find
each match in the string, not only the first one, and return a row for each such match. Supported flags
(though not g) are described in Table 9.20.

Some examples:

SELECT regexp_mat ches(' f oobar bequebaz', ' (bar)(beque)');
regexp_mat ches

{bar, beque)
(1 row

SELECT regexp_mat ches(' f oobar bequebazi | barfbonk', ' (b[~b]+)(b[”~b]+)", "g"');
regexp_mat ches

{bar, beque}
{bazil, barf}
(2 rows)

182

Functions and Operators

SELECT regexp_mat ches(' f oobar bequebaz', ' barbeque');
regexp_mat ches

{ bar beque}
(1 row

It is possible to force r egexp_mat ches() to always return one row by using a sub-select; this is particu-
larly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT col 1, (SELECT regexp_matches(col 2, ' (bar)(beque)')) FROMtab;

The regexp_split_to_tabl e function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern[, fl ags]). If there is no match to
the patt ern, the function returns the stri ng. If there is at least one match, for each match it returns
the text from the end of the last match (or the beginning of the string) to the beginning of the match.
When there are no more matches, it returns the text from the end of the last match to the end of the
string. The f| ags parameter is an optional text string containing zero or more single-letter flags that
change the function's behavior. r egexp_spl it _to_t abl e supports the flags described in Table 9.20.

The regexp_split_to_array function behaves the same as regexp_split_to_tabl e, except that r eg-
exp_split_to_array returns its result as an array of t ext. It has the syntax regexp_split_to_ar-
ray(string, pattern[, fl ags]). The parameters are the same as for regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split _to _table('the quick brown fox junps over the |azy dog',
"\'s+') AS foo;
f oo

SELECT regexp_split_to _array('the quick brown fox junps over the lazy dog', '\s+');
regexp_split_to_array

{t he, qui ck, br own, f ox, j unps, over, t he, | azy, dog}

(1 row
SELECT foo FROM regexp_split _to table('the quick brown fox', "\s*') AS foo;

T oOXO—Tco oS

183

Functions and Operators

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition of
regexp matching that is implemented by r egexp_mat ches, but is usually the most convenient behavior
in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

Postgres Pro's regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egr ep), and basic REs or BREs (roughly those of ed). Postgres Pro supports both forms,
and also implements some extensions that are not in the POSIX standard, but have become widely used
due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset
of EREs, but BREs have several notational incompatibilities (as well as being much more limited). We
first describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how
BRESs differ.

Note

Postgres Pro always initially presumes that a regular expression follows the ARE rules. How-
ever, the more limited ERE or BRE rules can be chosen by prepending an embedded option
to the RE pattern, as described in Section 9.7.3.4. This can be useful for compatibility with
applications that expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by | . It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9.13. The possible quantifiers and their meanings are shown
in Table 9.14.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.15; some more constraints are described later.

Table 9.13. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for r e, with the match noted for possible re-
porting

(?:re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs only)

matches any single character

184

Functions and Operators

Atom Description

[char s] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\ k (where k is a non-alphanumeric character) matches
that character taken as an ordinary character, e.g.,
\\ matches a backslash character

\c where c is alphanumeric (possibly followed by oth-
er characters) is an escape, see Section 9.7.3.3 (
AREs only; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see below)

X where x is a single character with no other signifi-
cance, matches that character

An RE cannot end with a backslash (\).

Note

If you have standard conforming strings turned off, any backslashes you write in literal
string constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.14. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m a sequence of exactly mmatches of the atom

{m} a sequence of mor more matches of the atom

{m n} a sequence of mthrough n (inclusive) matches of the
atom; mcannot exceed n

e non-greedy version of *

+? non-greedy version of +

?? non-greedy version of ?

{m~2 non-greedy version of { n}

{m}? non-greedy version of {m }

{mn}? non-greedy version of { m n}

The forms using {. . . } are known as bounds. The numbers mand n within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches.
See Section 9.7.3.5 for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., ** is invalid. A quantifier
cannot begin an expression or subexpression or follow » or | .

185

Functions and Operators

Table 9.15. Regular Expression Constraints

Constraint Description

A matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching r e begins (AREs only)

(?'re) negative lookahead matches at any point where no
substring matching r e begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in [] . It normally matches any single character from
the list (but see below). If the list begins with #, it matches any single character not from the rest of
the list. If two characters in the list are separated by -, this is shorthand for the full range of characters
between those two (inclusive) in the collating sequence, e.g., [0- 9] in ASCII matches any decimal digit. It
isillegal for two ranges to share an endpoint, e.g., a- c- e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after #, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of arange, enclose itin[. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression's list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[. ch.]]*c matches the first five characters of chchcc.

Note

Postgres Pro currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and
.].) For example, if 0 and » are the members of an equivalence class, then [[=0=]], [[="=]], and [0]
are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: al num al pha, bl ank, cntrl,
di git, graph, | ower, print, punct, space, upper, xdi gi t . These stand for the character classes defined
in ctype. A locale can provide others. A character class cannot be used as an endpoint of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined
as a sequence of word characters that is neither preceded nor followed by word characters. A word
character is an al numcharacter (as defined by ctype) or an underscore. This is an extension, compatible
with but not specified by POSIX 1003.2, and should be used with caution in software intended to be
portable to other systems. The constraint escapes described below are usually preferable; they are no
more standard, but are easier to type.

186

Functions and Operators

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come
in several varieties: character entry, class shorthands, constraint escapes, and back references. A\
followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs,
there are no escapes: outside a bracket expression, a\ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9.16.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.17.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as
an escape. They are shown in Table 9.18.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.19). For example, ([bc])\ 1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered
in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Table 9.16. Regular Expression Character-entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, asin C

\B synonym for backslash (\) to help reduce the need

for backslash doubling

\cX (where Xis any character) the character whose low-
order 5 bits are the same as those of X, and whose
other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\ f form feed, as in C

\n newline, asin C

\r carriage return, as in C

\ t horizontal tab, as in C

\ uwxyz (where wxyz is exactly four hexadecimal digits) the
character whose hexadecimal value is 0xwxyz

\ Ust uvwxyz (where st uvwxyz is exactly eight hexadecimal dig-
its) the character whose hexadecimal value is Oxs-
t uvwxyz

\v vertical tab, as in C

\ xhhh (where hhh is any sequence of hexadecimal digits)

the character whose hexadecimal value is Oxhhh (a
single character no matter how many hexadecimal
digits are used)

\0 the character whose value is 0 (the null byte)

\ xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
Oxy

187

Functions and Operators

Escape Description

\ xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value
is Oxyz

Hexadecimal digits are 0-9, a-f , and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings de-
pendent on the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode
code points, for example \ u1234 means the character U+1234. For other multibyte encodings, charac-
ter-entry escapes usually just specify the concatenation of the byte values for the character. If the escape
value does not correspond to any legal character in the database encoding, no error will be raised, but
it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \ 135 is] in ASCII,
but \ 135 does not terminate a bracket expression.

Table 9.17. Regular Expression Class-shorthand Escapes

Escape Description
\d [[:digit:]]
\'s [[:space:]]
\'w [[:alnum]_] (note underscore is included)
\D [M:digit:]]
\'S [~ :space:]]
\W [~ :al num]_] (note underscore is included)

Within bracket expressions, \d, \'s, and \ w lose their outer brackets, and \ D, \' S, and \ Ware illegal.
(So, for example, [a-c\ d] is equivalent to [a-c[:digit:]]. Also, [a-c\ D], which is equivalent to [a-
cM:digit:]], isillegal.)

Table 9.18. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)

\'m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\'Y matches only at a point that is not the beginning or
end of a word

\Z matches only at the end of the string (see Sec-
tion 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[: <:]] and [[: >:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9.19. Regular Expression Back References

Escape Description

\'m (where mis a nonzero digit) a back reference to the
mth subexpression

\'rmn (where mis a nonzero digit, and nn is some more
digits, and the decimal value mn is not greater than
the number of closing capturing parentheses seen
so far) a back reference to the mn'th subexpression

188

Functions and Operators

Note

There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always
indicates an octal escape. A single non-zero digit, not followed by another digit, is always
taken as a back reference. A multi-digit sequence not starting with a zero is taken as a back
reference if it comes after a suitable subexpression (i.e., the number is in the legal range
for a back reference), and otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***: , the rest of the RE
is taken as an ARE. (This normally has no effect in Postgres Pro, since REs are assumed to be AREs;
but it does have an effect if ERE or BRE mode had been specified by the f| ags parameter to a regex
function.) If an RE begins with *** =, the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously deter-
mined options — in particular, they can override the case-sensitivity behavior implied by a regex oper-
ator, or the f| ags parameter to a regex function. The available option letters are shown in Table 9.20.
Note that these same option letters are used in the f | ags parameters of regex functions.

Table 9.20. ARE Embedded-option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5) (
overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Sec-
tion 9.7.3.5)

q rest of RE is a literal (“quoted”) string, all ordinary
characters

S non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”) match-

ing (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the ***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

* a white-space character or # preceded by \ is retained

189

Functions and Operators

* white space or # within a bracket expression is retained
* white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of mul-
ti-character symbols, like (?: . Such comments are more a historical artifact than a useful facility, and
their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial *** = director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

* Adding parentheses around an RE does not change its greediness.

* A quantified atom with a fixed-repetition quantifier ({ m} or { n} ?) has the same greediness (possibly
none) as the atom itself.

* A quantified atom with other normal quantifiers (including { m n} with mequal to n) is greedy
(prefers longest match).

* A quantified atom with a non-greedy quantifier (including { m n} ? with mequal to n) is non-greedy
(prefers shortest match).

* A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

* An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpres-
sion is determined on the basis of the greediness attribute of that subexpression, with subexpressions
starting earlier in the RE taking priority over ones starting later.

An example of what this means:
SELECT SUBSTRI NG(' XY1234Z', ' Y*([0-9]{1,3})");

Result: 123
SELECT SUBSTRI NG(' XY1234Z', 'Y*?([0-9]{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because Y* is greedy. It can match beginning at the Y, and
it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of
that, or 123. In the second case, the RE as a whole is non-greedy because Y* ? is non-greedy. It can match
beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9]{1, 3} is greedy but it cannot change the decision as to the overall match length; so it is forced
to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

190

Functions and Operators

The quantifiers {1, 1} and {1, 1} ? can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE. This is useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example, suppose that we are trying to separate
a string containing some digits into the digits and the parts before and after them. We might try to do
that like this:

SELECT regexp_matches(' abc01234xyz', '(.*)(\d+)(.*)");
Resul t: {abc0123, 4, xyz}

That didn't work: the first . * is greedy so it “eats” as much as it can, leaving the \ d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_mat ches(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_mat ches(' abc01234xyz', " (?:(.*?)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flexi-
bility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not col-
lating elements. An empty string is considered longer than no match at all. For example: bb* matches
the three middle characters of abbbc; (week| wee) (ni ght | kni ght s) matches all ten characters of week-
ni ghts; when (. *).* is matched against abc the parenthesized subexpression matches all three char-
acters; and when (a*) * is matched against bc both the whole RE and the parenthesized subexpression
match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g.,
x becomes [xX] . When it appears inside a bracket expression, all case counterparts of it are added to
the bracket expression, e.g., [Xx] becomes [xX] and [*x] becomes [*xX] .

If newline-sensitive matching is specified, . and bracket expressions using * will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and * and $
will match the empty string after and before a newline respectively, in addition to matching at beginning
and end of string respectively. But the ARE escapes \ A and \ Z continue to match beginning or end of
string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with new-
line-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects » and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended
to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that\ does not lose its special
significance inside bracket expressions. All other ARE features use syntax which is illegal or has unde-
fined or unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the POSIX
syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \ b, \ B, the lack of special
treatment for a trailing newline, the addition of complemented bracket expressions to the things affected
by newline-sensitive matching, the restrictions on parentheses and back references in lookahead con-
straints, and the longest/shortest-match (rather than first-match) matching semantics.

191

Functions and Operators

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

* In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a prob-
lem because there was no reason to write such a sequence in earlier releases.

* In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \ \ .

9.7.3.7. Basic Regular Expressions

BRESs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \{ and \}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and) by them-
selves ordinary characters. ~ is an ordinary character except at the beginning of the RE or the beginning
of a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of
a parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE
or the beginning of a parenthesized subexpression (after a possible leading *). Finally, single-digit back
references are available, and \ < and \ > are synonyms for [[:<:]] and [[:>:]] respectively; no other
escapes are available in BRESs.

9.8. Data Type Formatting Functions

The Postgres Pro formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.21 lists them. These functions all follow a common calling conven-
tion: the first argument is the value to be formatted and the second argument is a template that defines
the output or input format.

A single-argument t o_t i mest anp function is also available; it accepts a doubl e preci si on argument
and converts from Unix epoch (seconds since 1970-01-01 00:00:004+00) toti mestanp with ti ne zone.
(I nt eger Unix epochs are implicitly cast to doubl e preci si on.)

Table 9.21. Formatting Functions

Function Return Type Description Example
to_char (ti mestanp, t ext convert time stamp to|to_char(current_
text) string ti mest anp,

' HH12: M : SS')
to_char (i nterval, t ext convert interval to string|t o_char (i nt er val
text) ' 15h 2m 12s',

"HH24: M : SS')
to_char(int, text) t ext convert integer to string |t o_char (125, '999')
to_char (doubl e preci- |t ext convert real/double pre-{to_char (125. 8::real,
sion, text) cision to string ' 999D9')

t o_char (numeri c, t ext convert numeric to|to_char(-125.8,
text) string ' 999DQ9S')
to_date(text, text) dat e convert string to date to_dat e(

' 05 Dec 2000',
DD Mon YYYY')

to_nunber (text, text) |nuneric convert string to numer-|t o_nunber (' 12,

ic 454, 8-', ' 99(99D9S')
to_timestanp(text, tinmestanp with tine|convert string to timeto_timestanp(
text) zone stamp ' 05 Dec 2000',

DD Mon YYYY')

to tinmestanp(double |timestanp with tinme|convert Unix epoch to|to_timestanp(
preci si on) zone time stamp 1284352323)

192

Functions and Operators

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns iden-
tify the values to be supplied by the input data string.

Table 9.22 shows the template patterns available for formatting date and time values.

Table 9.22. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VS millisecond (000-999)

us microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AM am PMor pm meridiem indicator (without periods)

AM,am,P.M orp.m meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY ISO 8601 week-numbering year (4 or more digits)

I YY last 3 digits of ISO 8601 week-numbering year

Y last 2 digits of ISO 8601 week-numbering year

I last digit of ISO 8601 week-numbering year

BC, bc, AD or ad era indicator (without periods)

B.C.,b.c.,AD ora.d. era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Mont h full capitalized month name (blank-padded to 9
chars)

nont h full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

non abbreviated lower case month name (3 chars in
English, localized lengths vary)

MV month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full capitalized day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

193

Functions and Operators

Pattern Description

DY abbreviated upper case day name (3 chars in Eng-
lish, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in Eng-
lish, localized lengths vary)

dy abbreviated lower case day name (3 chars in Eng-
lish, localized lengths vary)

DDD day of year (001-366)

| DDD day of ISO 8601 week-numbering year (001-371;
day 1 of the year is Monday of the first ISO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

ID ISO 8601 day of the week, Monday (1) to Sunday (7)

w week of month (1-5) (the first week starts on the
first day of the month)

WV week number of year (1-53) (the first week starts
on the first day of the year)

I W week number of ISO 8601 week-numbering year (
01-53; the first Thursday of the year is in week 1)

CcC century (2 digits) (the twenty-first century starts on
2001-01-01)

J Julian Day (integer days since November 24, 4714
BC at midnight UTC)

Q quarter (ignored by t o_date and t o_t i nest anp)

RM month in upper case Roman numerals (I-XII; I=]Jan-
uary)

rm month in lower case Roman numerals (i-xii; i=]Jan-
uary)

TZ upper case time-zone abbreviation (only supported
into_char)

tz lower case time-zone abbreviation (only supported
into_char)

OF time-zone offset from UTC (only supported in to_
char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMvbnt h is the Mont h
pattern with the FMmodifier. Table 9.23 shows the modifier patterns for date/time formatting.

Table 9.23. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FMprefix fill mode (suppress leading zeroes|FMvbnt h
and padding blanks)
TH suffix upper case ordinal number suffix |DDTH, e.g., 12TH
t h suffix lower case ordinal number suffix |DDt h, e.g., 12t h
FX prefix fixed format global option (see us-|FX Month DD Day
age notes)
TMprefix translation mode (print localized | TMvbnt h
day and month names based on
Ic time)

194

Functions and Operators

Modifier Description Example

SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width. In Postgres Pro, FMmodifies only the next specification, while in Oracle
FMaffects all subsequent specifications, and repeated FMmodifiers toggle fill mode on and off.

TMdoes not include trailing blanks. t o_t i nest anp and t o_dat e ignore the TMmodifier.

to_timestanp and t o_dat e skip multiple blank spaces in the input string unless the FX option

is used. For example, t o_t i mest anp(' 2000 JUN, "YYYY MON) works, butto_tinmestam

p(' 2000 JUN , ' FXYYYY MON') returns an error because t o_t i mest anp expects one space only.
FX must be specified as the first item in the template.

to_timestanp and t o_dat e exist to handle input formats that cannot be converted by simple cast-
ing. These functions interpret input liberally, with minimal error checking. While they produce
valid output, the conversion can yield unexpected results. For example, input to these functions

is not restricted by normal ranges, thus t o_dat e(' 20096040' , ' YYYYMVDD') returns 2014-01-17
rather than causing an error. Casting does not have this behavior.

Ordinary text is allowed in t o_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words.
For example, in' "Hel | o Year "YYYY', the YYYY will be replaced by the year data, but the single Y
in Year will not be. Into_date, to_nunber, and t o_ti nest anp, double-quoted strings skip the num-
ber of input characters contained in the string, e.g. " XX" skips two input characters.

If you want to have a double quote in the output you must precede it with a backslash, for example
"\"YYYY Month\"'.

If the year format specification is less than four digits, e.g. YYY, and the supplied year is less than
four digits, the year will be adjusted to be nearest to the year 2020, e.g. 95 becomes 1995.

The YYYY conversion from string to ti mest anp or dat e has a restriction when processing years with
more than 4 digits. You must use some non-digit character or template after YYYY, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): t o_dat e(' 200001131' ,
"YYYYMVDD) will be interpreted as a 4-digit year; instead use a non-digit separator after the year,
like t o_dat e(' 20000- 1131', ' YYYY-MDD) orto_date(' 20000Nov31', ' YYYYMoNDD).

In conversions from string to ti nest anp or dat e, the CC (century) field is ignored if there is a YYY,
YYYY or Y, YYY field. If CCis used with YY or Y then the year is computed as the year in the specified
century. If the century is specified but the year is not, the first year of the century is assumed.

An ISO 8601 week-numbering date (as distinct from a Gregorian date) can be specified toto_ti ne-
stanp and t o_dat e in one of two ways:

* Year, week number, and weekday: for example t o_dat e(' 2006-42-4', '1YYY-IWI|D) returns
the date 2006- 10- 19. If you omit the weekday it is assumed to be 1 (Monday).

* Year and day of year: for example t o_dat e(' 2006-291', '1YYY-IDDD) also returns
2006- 10- 19.

Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date
fields is nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year, the
ISO week has no meaning.

Caution

While t o_dat e will reject a mixture of Gregorian and ISO week-numbering date fields,
t o_char will not, since output format specifications like YYYY- M DD (| YYY-| DDD) can

195

Functions and Operators

be useful. But avoid writing something like | YYY- Mt DD; that would yield surprising re-
sults near the start of the year. (See Section 9.9.1 for more information.)

In a conversion from string to ti nest anp, millisecond (MS) or microsecond (US) values are used as
the seconds digits after the decimal point. For example t o_ti nestanp(' 12: 3', 'SS: M5') isnot 3
milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means for the for-
mat SS: M5, the input values 12: 3, 12: 30, and 12: 300 specify the same number of milliseconds. To
get three milliseconds, one must use 12: 003, which the conversion counts as 12 + 0.003 = 12.003
seconds.

Here is a more complex example: t o_ti nest amp(' 15: 12: 02. 020. 001230', ' HH24: M : SS. M5. US')
is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230 sec-
onds.

to_char(..., 'ID)'s day of the week numbering matches the extract (i sodow from...) func-
tion, butto_char (..., 'D)'s does not match extract (dow from...)'s day numbering.

to_char (interval) formats HHand HH12 as shown on a 12-hour clock, i.e. zero hours and 36 hours
output as 12, while HH24 outputs the full hour value, which can exceed 23 for intervals.

Table 9.24 shows the template patterns available for formatting numeric values.

Table 9.24. Template Patterns for Numeric Formatting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if insignif-
icant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

M minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

THorth ordinal number suffix

Vv shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

0 specifies a digit position that will always be printed, even if it contains a leading/trailing zero. 9
also specifies a digit position, but if it is a leading zero then it will be replaced by a space, while if it
is a trailing zero and fill mode is specified then it will be deleted. (For t o_nunber (), these two pat-
tern characters are equivalent.)

The pattern characters S, L, D, and Grepresent the sign, currency symbol, decimal point, and thou-
sands separator characters defined by the current locale (see Ic monetary and lc numeric). The
pattern characters period and comma represent those exact characters, with the meanings of deci-
mal point and thousands separator, regardless of locale.

196

Functions and Operators

* If no explicit provision is made for a sign in t o_char () 's pattern, one column will be reserved for
the sign, and it will be anchored to (appear just left of) the number. If S appears just left of some
9's, it will likewise be anchored to the number.

* A sign formatted using SG, PL, or M is not anchored to the number; for example, t o_char (- 12,
"M 9999') produces'- 12' butto_char(-12, 'S9999') produces' -12'.(The Oracle imple-
mentation does not allow the use of M before 9, but rather requires that 9 precede M .)

« THdoes not convert values less than zero and does not convert fractional numbers.
* PL, SG and TH are Postgres Pro extensions.

» V effectively multiplies the input values by 10~n, where n is the number of digits following V.
t o_char does not support the use of V combined with a decimal point (e.g., 99. 9V99 is not allowed).

e EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format
string (e.g., 9. 99EEEE is a valid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM39. 99 is
the 99. 99 pattern with the FMmodifier. Table 9.25 shows the modifier patterns for numeric formatting.

Table 9.25. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FMprefix fill mode (suppress trailing zeroes|FM9. 99
and padding blanks)

TH suffix upper case ordinal number suffix [999TH

t h suffix lower case ordinal number suffix {999t h

Table 9.26 shows some examples of the use of the t o_char function.

Table 9.26. t o_char Examples

Expression Result

to_char (current tinmestanp, ' Day, |' Tuesday , 06 05:39:18'
DD HH12: M :SS')

to_char (current _ti nmestanp, ' FMDay, |' Tuesday, 6 05:39:18'
FMDD HH12: M :SS')

to_char(-0.1, '99.99") ‘o= 10

to char(-0.1, 'FM.99") I

to _char(-0.1, 'FMB0.99") '-0.1'

to_char (0.1, '0.9") " 0.1

to_char (12, '9990999.9") ' 0012. 0

to_char (12, 'FWMP990999.9') '0012."

to_char (485, '999") ' 485’

to_char (-485, '999') ' -485'

to_char (485, '9 9 9') ' 485

to_char (1485, '9,999') ' 1, 485

to_char (1485, '9(999') ' 1 485

to_char(148.5, '999.999") ' 148. 500

to_char(148.5, 'FM99.999") '148. 5'

to_char(148.5, 'FWMP99.990") ' 148. 500'

to_char(148.5, '999D999') ' 148, 500

197

Functions and Operators

Expression Result
to_char(3148.5, '9(99D999') ' 3 148, 500
to_char (-485, '999S) ' 485-"
to_char(-485, '999M ") ' 485-"'

to_char (485, '999M ') ‘485

to_char (485, ' FMPO9M ') ' 485’

to_char (485, 'PL999") ' +485'

to_char (485, 'S&99') ' +485'

to_char (-485, 'S@99') ' - 485
to_char(-485, '9S®9') ' 4- 85

to_char (-485, '999PR) ' <485>

to_char (485, 'L999') ' DM 485"

to_char (485, 'RN) ' CDL XXXV
to_char (485, 'FMRN) " CDLXXXV'

to _char (5.2, 'FMRN) 'V

to_char (482, '999th") ' 482nd'

to_char (485, '"Good nunber:"999") ' Good numnber: 485
to_char(485.8, '"Pre:"999" Post:" .999") "Pre: 485 Post: .800'
to_char (12, '99Vv999') ' 12000

to _char(12.4, '99Vv999') ' 12400
to_char(12.45, '99VvV9') ' 125

to_char (0. 0004859, '9.99EEEE') ' 4.86e-04'

9.9. Date/Time Functions and Operators

Table 9.28 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9.27 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information

on date/time data types from Section 8.5.

All the functions and operators described below that take ti ne or ti mest anp inputs actually come in
two variants: one that takestinme with tinme zoneortinestanp with tinme zone, and one that takes
time without tine zoneortinmestanp w thout tine zone. For brevity, these variants are not shown
separately. Also, the + and * operators come in commutative pairs (for example both date + integer and
integer + date); we show only one of each such pair.

Table 9.27. Date/Time Operators

Operator Example Result

+ date '2001-09-28" + integer|date '2001-10-05
o

+ date '2001-09-28" + interval |tinestanp ' 2001- 09- 28
"1 hour' 01: 00: 00’

+ date '2001-09-28 + time|tinestanp ' 2001- 09- 28
' 03: 00 03: 00: 00'

+ interval '1 day' + interval |interval '1 day 01:00: 00
"1 hour'

+ ti mestanp ' 2001-09-28 01:00' |tinestanp ' 2001- 09- 29
+ interval '23 hours' 00: 00: 00’

198

Functions and Operators

Operator Example Result
+ time "01:00" + interval '3|time '04:00:00
hour s’
- - interval '23 hours' interval '-23:00:00
- date '2001-10-01' - datelinteger '3' (days)
' 2001- 09- 28’
- date '2001-10-01" - integer|date '2001-09-24'
L} 7I
- date '2001-09-28" - interval |tinestanp ' 2001- 09- 27
"1 hour' 23: 00: 00’
- time '05:00 time '03:00 interval '02:00:00
- time '05:00" - interval '2|time '03:00:00
hour s’
- timestanp '2001-09-28 23:00' |tinestanp ' 2001- 09- 28
- interval '23 hours' 00: 00: 00’
- interval '1 day' - interval |interval '1 day -01:00: 00
"1 hour'
- timestanp '2001-09-29 03:00' |interval '1 day 15:00: 00’
- ti mestanp ' 2001- 09- 27
12: 00’
* 900 * interval '1 second' i nterval '00:15:00
* 21 * interval '1 day' interval '21 days'
* doubl e precision "3.5 * in-|interval '03:30:00
terval '1 hour'
/ interval "1 hour' / double|interval 'O00:40:00
precision '1.5
Table 9.28. Date/Time Functions
Function Return Type Description Example Result
age(tinestanp, i nterval Subtract argu-|age(ti nmest anmp 43 years 9 nons 27
ti mest anp) ments, producing|' 2001-04- 10", days
a “symbolic” result|ti mest anp
that uses years and|' 1957- 06- 13")
months, rather than
just days
age(tinmestanp) i nterval Subtract from cur - |age(ti nest anp 43 years 8 nons 3
rent date (at mid-|' 1957-06-13") days
night)
clock_timestanp(|tinmestanp wi t h|Current date and
) time zone time (changes dur-
ing statement ex-
ecution); see Sec-
tion 9.9.4
current date dat e Current date; see
Section 9.9.4
current time time wth time|Currenttime ofday;
zone see Section 9.9.4
current _ ti mestanp wi t h|Current date and
ti mest anp time zone time (start of cur-

199

Functions and Operators

Function Return Type Description Example Result
rent transaction);
see Section 9.9.4
date part(text, doubl e precision |Get subfield (equiv-|dat e _part (20
ti mest anp) alent to extract);|' hour', tinme-
see Section 9.9.1 stanp ' 2001-02-16
20: 38: 40')
date_part(text, |double precision |Get subfield (equiv-|date_part (3
i nterval) alent to extract);|' month', inter-
see Section 9.9.1 val '2 years 3
nont hs')
date_trunc(text, |[tinestanp Truncate to speci-|date_trunc(2001-02-16
ti mest anp) fied precision; see|' hour', time-|20:00: 00
also Section 9.9.2 |stanp ' 2001- 02- 16
20: 38:40")
date_trunc(text, |interval Truncate to speci-|date_trunc(2 days 03:00: 00
i nterval) fied precision; see|' hour', interval
also Section 9.9.2 |' 2 days 3 hours 40
m nutes')
extract(field doubl e precision |Get subfield; see|extract(hour from20
from ti mest anp) Section 9.9.1 ti mestanp
' 2001-02- 16
20: 38: 40')
extract(field doubl e precision |Get subfield; see|extract(nonth 3
frominterval) Section 9.9.1 frominterval '2
years 3 nonths')
i sfinite(date) bool ean Test for finite date (|i sfinite(date true
not +/-infinity) ' 2001- 02- 16")
isfinite(bool ean Test for finite time|i sfinite(true
ti mest anp) stamp (not +/-infin-|t i mest anp
ity) ' 2001-02-16
21:28:30")
isfinite(bool ean Test for finite inter-|i sfinite(true
i nterval) val i nterval "4
hours')
justify days(i nterval Adjust interval so|justify_days(1 non 5 days
i nterval) 30-day time periods|i nt er val '35
are represented as|days')
months
justify_hours(i nterval Adjust interval so|j ustify_hours(1 day 03:00: 00
interval) 24-hour time peri-|i nterval '27
ods are represented |hour s')
as days
justify i nterval Adjust interval|j ustify_ 29 days 23:00: 00
i nterval (using justify linterval (
i nterval) days and justify |interval '1 non
hours, with addi-|-1 hour")
tional sign adjust-
ments
| ocal tine tine Current time of day;

see Section 9.9.4

200

Functions and Operators

Function Return Type Description Example Result
| ocal ti mest anp ti mestanp Current date and
time (start of cur-
rent transaction);
see Section 9.9.4
nmake_dat e(year |dat e Create date from | make date(2013, 2013-07-15
int, nonth int, year, month and day| 7, 15)
day int) fields
nmake i nterval (|i nterval Create interval|make_i nt erval (10 days
years i nt DEFAULT from years, months, |days => 10)
0, nonths int DE- weeks, days, hours,
FAULT 0, weeks minutes and sec-
int DEFAULT O, onds fields
days int DEFAULT
0, hours int DE-
FAULT O, mins int
DEFAULT 0O, secs
doubl e precision
DEFAULT 0. 0)
make_ti ne(hour |tine Create time from|meke_tinme(8, 15,|08:15:23.5
int, mnint, sec hour, minute and| 23.5)
doubl e preci sion) seconds fields
make_ti nmestanp([ti nmestanp Create timestamp|nake_tinestanp(|2013-07-15
year int, nonth from year, month,|2013, 7, 15, 8, |08:15:23.5
int, day int, day, hour, minute|15, 23.5)
hour int, mn and seconds fields
int, sec double
preci si on)
make tinme- |tinmestanp wi t h|Create timestamp|make 2013-07-15
stanptz(year int, |time zone with time zone|ti nest anpt z(08: 15: 23. 5+01
nonth int, day from year, month,|2013, 7, 15, 8,
int, hour int, day, hour, minute|15, 23.5)
mn int, sec dou- and seconds fields.
ble precision, | When tinezone is
timezone text]) not specified, then
current time zone is
used.
now() ti nmestanp wi t h|Current date and
time zone time (start of cur-
rent transaction);
see Section 9.9.4
st atenent _ ti mestanp wi t h|Current date and
timestanp() time zone time (start of
current statement);
see Section 9.9.4
ti meof day() t ext Current date and
time (like clock
ti mestanp, but as
a text string); see
Section 9.9.4
transaction_ ti mestanp wi t h|{Current date and
ti mestanp() time zone time (start of cur-

rent transaction);
see Section 9.9.4

201

Functions and Operators

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, |ength2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date,
time, or time stamp followed by an interval. When a pair of values is provided, either the start or the end
can be written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time
period is considered to represent the half-open interval start <=1ti ne < end, unless start and end are
equal in which case it represents that single time instant. This means for instance that two time periods
with only an endpoint in common do not overlap.

SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
(DATE ' 2001- 10-30', DATE ' 2002-10-30");

Result: true

SELECT (DATE ' 2001-02-16'
(DATE ' 2001- 10- 30'

Result: fal se

SELECT (DATE ' 2001- 10-29'
(DATE ' 2001- 10- 30'

Result: fal se

SELECT (DATE ' 2001- 10- 30’
(DATE ' 2001- 10- 30'

Result: true

| NTERVAL ' 100 days') OVERLAPS
DATE ' 2002- 10- 30");

DATE ' 2001- 10- 30") OVERLAPS
DATE ' 2001-10-31');

DATE ' 2001- 10- 30") OVERLAPS
DATE ' 2001-10-31');

When adding an i nt erval value to (or subtracting an i nt erval value from) atinmestanp with tine
zone value, the days component advances or decrements the date of the ti nestanp with ti me zone by
the indicated number of days. Across daylight saving time changes (when the session time zone is set to
a time zone that recognizes DST), this means i nterval '1 day' does not necessarily equal i nt er val
"24 hours'. For example, with the session time zone set to CST7CDT, timestanp with tinme zone
' 2005-04-02 12:00-07' + interval '1 day' will producetinestanmp with tinme zone ' 2005-04- 03
12: 00- 06' , while adding i nterval '24 hours' tothe same initialti nestanp with ti ne zone produces
timestanp with tine zone '2005-04-03 13:00-06', as there is a change in daylight saving time at
2005- 04- 03 02: 00 in time zone CST7CDT.

Note there can be ambiguity in the nont hs field returned by age because different months have differ-
ent numbers of days. Postgres Pro's approach uses the month from the earlier of the two dates when
calculating partial months. For example, age(' 2004- 06-01', ' 2004- 04- 30') uses April to yield 1 non
1 day, while using May would yield 1 nmon 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction is to convert each value to a number of seconds using EXTRACT(EPOCCH FROM ...), then
subtract the results; this produces the number of seconds between the two values. This will adjust for
the number of days in each month, timezone changes, and daylight saving time adjustments. Subtraction
of date or timestamp values with the “-” operator returns the number of days (24-hours) and hours/
minutes/seconds between the values, making the same adjustments. The age function returns years,
months, days, and hours/minutes/seconds, performing field-by-field subtraction and then adjusting for
negative field values. The following queries illustrate the differences in these approaches. The sample
results were produced with ti mezone = ' US/ East er n' ; there is a daylight saving time change between
the two dates used:

SELECT EXTRACT(EPOCH FROM ti mestanptz '2013-07-01 12:00:00') -
EXTRACT(EPOCH FROM ti nestanptz ' 2013-03-01 12: 00: 00');

Resul t: 10537200
SELECT (EXTRACT(EPOCH FROM ti mestanptz '2013-07-01 12:00:00') -

EXTRACT(EPOCH FROM ti nestanptz ' 2013-03-01 12: 00:00'))

/ 60/ 60 / 24;
Resul t: 121.958333333333
SELECT timestanptz '2013-07-01 12:00: 00" - timestanptz '2013-03-01 12:00:00';
Result: 121 days 23:00: 00

202

Functions and Operators

SELECT age(timestanmptz '2013-07-01 12:00:00', tinestanptz '2013-03-01 12:00:00');
Result: 4 nons

9.9.1. EXTRACT, date_part
EXTRACT(fi el d FROM source)

The extract function retrieves subfields such as year or hour from date/time values. sour ce must be a
value expression of type ti nest anp, ti me, ori nt erval . (Expressions of type dat e are cast toti nest anp
and can therefore be used as well.) fi el d is an identifier or string that selects what field to extract
from the source value. The extract function returns values of type doubl e preci si on. The following
are valid field names:

century
The century

SELECT EXTRACT(CENTURY FROM Tl MESTAMP ' 2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from
-1 century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral
Saint-Peter of Roma, Vatican.

day

Forti mest anp values, the day (of the month) field (1 - 31) ; for i nt er val values, the number of days

SELECT EXTRACT(DAY FROM TI MESTAWMP ' 2001-02-16 20: 38:40');
Result: 16

SELECT EXTRACT(DAY FROM | NTERVAL ' 40 days 1 ninute');
Resul t: 40

decade
The year field divided by 10

SELECT EXTRACT(DECADE FROM Tl MESTAMP ' 2001- 02-16 20:38:40');
Resul t: 200

dow
The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 5

Note that ext r act 's day of the week numbering differs from that of theto_char (..., ' D) function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Resul t: 47

epoch

Fortimestanp with tine zone values, the number of seconds since 1970-01-01 00:00:00 UTC (can
be negative); for dat e and t i nest anp values, the number of seconds since 1970-01-01 00:00:00 local
time; for i nt erval values, the total number of seconds in the interval

SELECT EXTRACT(EPCCH FROM TI MESTAMP W TH TI ME ZONE ' 2001- 02- 16 20: 38:40.12-08");
Resul t: 982384720. 12

203

Functions and Operators

SELECT EXTRACT(EPOCCH FROM I NTERVAL '5 days 3 hours');
Resul t: 442800

Here is how you can convert an epoch value back to a time stamp:
SELECT Tl MESTAMP W TH TI ME ZONE ' epoch' + 982384720.12 * |INTERVAL '1 second';
(The to_ti nest anp function encapsulates the above conversion.)

hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Result: 20

i sodow
The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(| SODOW FROM Tl MESTAMP ' 2001- 02- 18 20:38:40');
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.
i soyear

The ISO 8601 week-numbering year that the date falls in (not applicable to intervals)

SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-01");

Resul t: 2005
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-02');
Resul t: 2006

Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the ISO year may be different from the Gregorian year.
See the week field for more information.

This field is not available in PostgreSQL releases prior to 8.3.

m cr oseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT(M CROSECONDS FROM TI ME ' 17:12:28.5');
Resul t: 28500000

m || enni um

The millennium

SELECT EXTRACT(M LLENNI UM FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.
mlliseconds
The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(M LLI SECONDS FROM TI ME ' 17:12:28.5');
Resul t: 28500

m nut e
The minutes field (0 - 59)

SELECT EXTRACT(M NUTE FROM Tl MESTAMP ' 2001- 02-16 20:38:40');
Resul t: 38

204

Functions and Operators

nont h

For ti mest anp values, the number of the month within the year (1 - 12) ; for i nt erval values, the
number of months, modulo 12 (0-11)

SELECT EXTRACT(MONTH FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 2

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 3 nonths');
Result: 3

SELECT EXTRACT(MONTH FROM | NTERVAL '2 years 13 nonths');
Result: 1

quarter
The quarter of the year (1 - 4) that the date is in
SELECT EXTRACT(QUARTER FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 1
second
The seconds field, including fractional parts (O - 591)

SELECT EXTRACT(SECOND FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TI ME '17:12:28.5");
Result: 28.5

ti mezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC. (Technically, Postgres Pro uses UT1 because leap
seconds are not handled.)

ti mezone_hour

The hour component of the time zone offset

ti mezone_m nute
The minute component of the time zone offset

week

The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on
Mondays and the first week of a year contains January 4 of that year. In other words, the first Thursday
of a year is in week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or
53rd week of the previous year, and for late-December dates to be part of the first week of the next
year. For example, 2005- 01- 01 is part of the 53rd week of year 2004, and 2006- 01- 01 is part of the
52nd week of year 2005, while 2012- 12- 31 is part of the first week of 2013. It's recommended to use
the i soyear field together with week to get consistent results.

SELECT EXTRACT(VWEEK FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT(YEAR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Resul t: 2001

160 if leap seconds are implemented by the operating system

205

Functions and Operators

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The dat e_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date part('field , source)

Note that here the fi el d parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part (' day', TIMESTAMP '2001-02-16 20: 38:40");
Result: 16

SELECT date_part (' hour', INTERVAL '4 hours 3 minutes');
Result: 4

9.9.2. date _trunc

The function dat e_t r unc is conceptually similar to the t r unc function for numbers.

date_trunc('field , source)

sour ce is a value expression of type ti mestanp or i nterval . (Values of type date and ti ne are cast
automatically to ti nest anp ori nt erval , respectively.) fi el d selects to which precision to truncate the
input value. The return value is of type ti mest anp or i nterval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values for fi el d are:

m croseconds
mlliseconds
second

m nut e

hour

day

week

nont h
quarter

year

decade
century

m |l enni um

Examples:

SELECT date_trunc(' hour', TIMESTAMP '2001-02-16 20:38:40");
Resul t: 2001-02-16 20: 00: 00

SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40");
Resul t: 2001-01-01 00: 00: 00

9.9.3. AT TI