\
V/1/

The state of
open source
security report

\\Q \\\\\\ 17

\\\

\\\f \\\
\\\\\ \\\ /7

2019

snyk

Table of contents

00

01

02

State of open source security report 2019

An introduction to this report

TL;DR - The state of open source security 2019 report,

ata glance

The open source landscape

Adoption

Risks and impact

Indirect dependencies

Security posture of open source maintainers

Security audits

Known open source vulnerabilities

Known vulnerabilities in application libraries
Trends in severity

Spotlight: Zip Slip

Known vulnerabilities in system libraries
Known vulnerabilities in docker images
Vulnerability differentiation based on image tag

Spotlight: Malicious packages

3

03

04

05

Vulnerability characteristics of each ecosystem

XSS vulnerabilities

SQL injection vulnerabilities
Sensitive information exposure
Regular expression denial of service
Path traversal

Cleartext transmission of sensitive information

The open source security lifecycle

Discovering vulnerabilities

Open source security ownership

Finding out about vulnerabilities

Spotlight: Vulnerabilities without CVEs

Time to adopt security fixes

How do maintainters find out about vulnerabilities?
Inclusion to disclosure

Spotlight: Equifax, a year later

Releasing fixes

Rate of fixing

Spotlight: Responsible security disclosures

The future of open source

Take action

TL;DR - Report summary

27

‘UJ ‘UJ ‘w N
N - o I1©

IS

RS RERBBKNKIMGLWG

‘-lk N
N (o)}

An introduction to this report

Adoption of open source software has continued over recent years, To better understand the open source security lan
and in 2018 we specifically witnessed how enterprise organizations we can all do to make it better, we gathered informati
strengthened their stakes on open source software. For example, number of public and private data sources including the fo
in 2018 alone, IBM acquired RedHat for $34 billion, further proving

that open source software is becoming the foundation for the > asurvey created and distributed by Snyk that was completed by /
modern enterprise. Microsoft acquired GitHub for $7.5 billion, over 500 open source maintainers and users.

demonstrating the commercial opportunity in building tools for the b internal data from the Snyk vulnerability database, as welllas
CRenECRIce ORI, hundreds of thousands of projects monitored and protected

by Snyk.
As adoption of open source software continues to grow rapidly, the

. . I) i > research taken from external sources published by various
risk of exposure to security vulnerabilities is also increasing.
vendors and data gathered by scanning millions of GitHub

repositories and packages on public registries.

° - Let’s start by showing you some of the key takeaways from this report

as a dashboard on the following page.

A
U snyk All rights reserved. 2019 © Snyk 3

TL;DR - The state of open source security 2019 report, at a glance

@ Open source adoption

0 Growth inindexed packages, 2017 to 2018 >
Maven Central - 102%
PyPI - 40%
npm -37% b
NuGet - 26%
RubyGem:s - 5.6%

> npm reported 304 billion downloads

for 2018 >

O 78% of vulnerabilities are found in

indirect dependencies

@ Vulnerability identification

> 37% of open source developers don’t

D
implement any sort of security testing
during Cl and 54% of developers don't do
any docker image security testings b
> The median time from when a vulnerability
was added to an open source package until it
D

was fixed was over 2 years

Q snyk All rights reserved. 2019 © Snyk

Known vulnerabilities

88% growth in application vulnerabilities

over two years

In 2018, vulnerabilities for npm grew
by 47%. Maven Central and PHP
Packagist disclosures grew by 27%

and 56% respectively

In 2018, we tracked over 4 times more
vulnerabilities found in RHEL, Debian

and Ubuntu as compared to 2017

Who's responsible for
open source security?

81% of users feel developers are

responsible for open source security

68% of users feel that developers should
own the security responsibility of their

docker container images

Only three in ten open source
maintainers consider themselves to

have high security knowledge

Known vulnerabilities in
docker images

Each of the top ten most popular default
docker images contains at least 30

vulnerable system libraries

44% of scanned docker images can fix
known vulnerabilities by updating their

base image tag

Snyk stats

D

In the second half of 2018 alone, Snyk
opened more than 70,000 Pull Requests
for its users to remediate vulnerabilities in

their projects

CVE/NVD and public vulnerability
databases miss many vulnerabilities, only
accounting for 60% of the vulnerabilities

Snyk tracks

In 2018 alone, 500 vulnerabilities were
disclosed by Snyk’s proprietary dedicated

research team

The open source
landscape

Nobody would question that open source software
has made an incredible impact on modern software
development, and continues to expand every year.
GitHub reported that 2018 had seen more new

users signing up than during all of its first six years
combined. This is accompanied with a 40% rise in new
organizatibns and new repositories created on the
platform, m.aking 2018 the year during which almost
one third of all repositories that exist on GitHub

were created.

Open source software is everywhere too -
contributions are made across all languages and
platforms, impacting growth in different industries
and, as per Forrester’s report® is an essential part of a

business technology strategy.

https://www.forrester.com/report/Open+Source+Powers+Enterprise+Digital+Transformation/-/E-RES133302?objectid=RES133302

Adoption

We’ve seen big technology players doubling-down We may see further growth in numbers from 2018
on open source in 2018 as mentioned already earlier due to undisclosed vulnerabilities that will only be
in this report. Let’s look at the numbers. In every publicized later this year, further amplifying the
registry we reviewed, we saw an increasing rate of direction of this trend.

open source libraries being indexed in every
language ecosystem. This is to be expected, but the
rate of growth may come as a surprise to many.
Total packages indexed per ecosystem

All but one ecosystem presents two-digit numbers

for increased growth in new libraries added to open 1000000
source registries: Maven Central, with a strong .
growth of 102%, followed by PyPI with 40%, npm
with 37%, NuGet with 26% and lastly RubyGems with 750000
. @ Maven Central
5.6% growth of newly indexed packages
in the registries. npm
500000
@ NuGet
Use of open source is
PyPI

accelerating. In 2018, Java

250000 S .
packages doubled,and npm . @ RubyGems
——--—-—1

added roughly 250,000 ——
new packages
Jan 2017 Jan 2018 Jan 2019 H snyk

Q snyk All rights reserved. 2019 © Snyk

In 2018, The Linux Foundation reported that open
source contributors have committed over 31 billion
lines of code to date. However, with great adoption
comes great responsibility and risk that need to be
mitigated by anyone who owns, maintains or uses
this code. In 2017 the CVE list reported more than
14,000 vulnerabilities, breaking the record for the
most CVEs reported in a single year. 2018 continued
the record-breaking streak with over 16,000

vulnerabilities reported.

Open source software
consumption is also taking
huge leaps forward. Twice as
many Python packages were
downloaded from PyPl,and a
staggering 317 billion JavaScript
packages from npm

Q snyk All rights reserved. 2019 © Snyk

We can see how open source package growth
translates into user adoption when looking at the
download numbers for various packages in

different ecosystems.

Examining the python registry, PyPI boasts
more than 14 billion downloads during 2018, and
doubles the download count in our 2017 report of

approximately 6.3 billion downloads.

Number of PyPI packages downloaded in 2018

2.5 bil.
2 bil.
1.5 bil.

1 bil.

\.
. \.
500 mill.

Jan Feb Mar Apr May

The spike in download count mid-year is due to
afaultin linehaul, the statistics gathering service
for PyPI, which missed recording about half of the
downloads up until around August. The missing
downloads presumably add up to more than the

recorded 14 billion downloads of 2018.

H snyk

T

/

/

' spike due to PyPI stats
gathering service issue

/

Jul Aug Sep Oct Nov Dec

The npm registry is core to the entire JavaScript
ecosystem. It has seen steady growth for both the
number of packages being added and downloaded
consistently over the years. It featured more than
30 billion downloads just for the single month

of December 2018, and an incredible 317 billion

downloads for the entire year of 2018.

The increased adoption of Docker containers further
amplifies the strong growth of open source software.
Docker Inc, the de-facto library and community

for container images, reports more than 1 billion
container downloads every 2 weeks over the last
year, and about 50 billion to date, with more than

1 million new applications added into Docker Hub

over the last year alone.

Number of npm packages downloaded in 2018

40 bil.

30 bil.

20 bil.
o/

10 bil.

Jan Feb Mar

Q snyk All rights reserved. 2019 © Snyk

Apr May Jun Jul Aug Sep

o —o

As package counts grow,
so do their vulnerabilities.
A record setting 16,000
new vulnerabilities were
disclosed in 2018

@ snyk

\.

Oct Nov Dec

Risks and impact

It shouldn't come as a surprise to most that in this
year’s State of the Octoverse report from GitHub,
security is the most popular project integration
app category with more than one integration for
developers. Here’s a quote from industry analyst
Gartner in a recent application security report that

covers the necessity for organisations to test for

security as early as possible in the application lifecycle.

Only onein three
developers can address
a high or critical-severity
vulnerability in a day
or less

Q snyk All rights reserved. 2019 © Snyk

The more we use open source software, the more risk
we accumulate as we’re including someone else’s
code that could potentially contain vulnerabilities
now or in the future. Moreover, risk doesn’t solely
reflect how secure the code is but also the licensing
compliance of code you adopt and whether that

code is in violation of the license itself.

Almost half (43%) of
respondents have at least
20 direct dependencies,
amplifying the need to monitor
for open source vulnerabilities
introduced through
these libraries

Enterprises should use SCA tools on a regular basis to audit repositories that contain

software assets (such as version control and configuration management systems) to

ensure that the software developed and/or used by the enterprise meets security and

legal standards, rules and regulations. Application developers should have access to

SCA tools to inspect the components they plan to use.

— Mark Horvath, Hype Cycle For Application Security 2018, Gartner

Indirect dependencies

Itis hard to imagine the days of writing software
without any open source dependencies. Managing
dependencies for a project is an important task, and
requires due diligence to correctly keep track of the
libraries you depend upon. After all, the application
you are deploying bundles your code as well as

your dependencies.

Most dependencies in npm, Maven
and Ruby are indirect dependencies,
requested by the few libraries
explicitly defined. Vulnerabilities in
indirect dependencies account for
78% of overall vulnerabilities

Snyk has scanned over a million snapshot

projects and has discovered that vulnerabilities in
indirect dependencies account for 78% of overall
vulnerabilities. This further amplifies a critical need for
clear insight into the dependency tree and the need to
be able to correctly highlight nuances of a vulnerable

path in order to address these vulnerabilities.

Q snyk All rights reserved. 2019 © Snyk

Of course, finding the vulnerabilities in a dependency
is just the first step. Being able to precisely determine
all the paths through the dependency tree in which
the vulnerable dependency can be reached is a more

complex issue.

The direct and indirect dependency split across

ecosystems

@ Direct
100%

75%

50%

25%

0%
PHP
Packagist

PyPI

Maven
Central

Additionally, being able to suggest the steps

to take that will eliminate the vulnerability
while preserving the compatibility between
dependencies is an even greater and much more

interesting challenge.

g snyk

@ Indirect

RubyGems

10

Security posture of open source maintainers

Most developers and maintainers will likely agree that
security should play an important role when building
products and writing code. However there are no text-
book rules for maintainers to follow for building open
source projects, and as such their security standards

can vary significantly.

Maintainers find themselves using their time and
efforts on different aspects of the project, often
functional, which in turn, could make security less of

a priority for them in their process.
p y p

There’s a positive trend towards security engagement
and awareness since the time of our previous report,

released in 2017.

Open source maintainers
stated their security
knowledge is improving
but not high enough,
averaging 6.6/10

Q snyk All rights reserved. 2019 © Snyk

This year, the majority of users ranked their security
know-how as medium, with an average of 6.6 out of
ten. A small portion of them (7%) ranked themselves
as low, whereas the medium know-how ranking,
representing the majority of users, has actually

declined to 63% vs 56% last year.

The most movement is seen with the low and high
rankings. Last year, security know-how was ranked
as high by only 17%, while this year it has increased
to almost 30%. In addition, we can see similar
growth in low-ranked security know-how, which

reached 26% last year but only 7% this year.

OS maintainers are confident in their own

security knowledge

7%

@ High

@ Medium

® low

H snyk

11

Security audits

A security audit could exist as part of a code review
where peers ensure that secure code best practices are
followed, or by running different variations of security
audits such as static or dynamic application security
testing. Whether manual or automatic audits, they are
all a vital part of detecting and reducing vulnerabilities
in your application, and should be executed as
regularly and early in the development phase as
possible in order to reduce risks of exposure and data

breaches at a later stage.

One in four open
source maintainers
do not audit their
code bases

Last year 44% of respondents stated they had never
run a security audit, while this year, the number is
considerably lower with 26% of users stating they
do not audit their source code. We’re seeing positive

trends toward repeated auditing actions this year

Q snyk All rights reserved. 2019 © Snyk

across all audit cycles as compared to last year’s
report with an increase of an average 10% of users
auditing their source code more often over the

quarterly and yearly cycles.

Security professionals often cite the shift-left

mantra in support of handling security concerns and
potential problems earlier in the application lifecycle.
This approach can uncover many valuable insights

for developers through automation and help security

OS Maintainers differ in their code auditing cadence

10%

21%

keep up with the fast pace of modern,

continuous development.

Shifting left, especially in security, is key and

at times even critical, to reducing the cost

of security incidents that are only found in
production. One way to address security earlier
in the process and to increase the chances of
developers adopting those practices is to select
tools that are developer friendly and built to

integrate with their existing workflows.

H snyk

® Every couple of years
or more

21% @ Atleast once amonth
@ Atleastonceaquarter
At least once ayear

® Wwedont

12

02

Known open source
vulnerabilities

A vulnerability is a vulnerability, whether known or not.
The key difference between the two is the likelihood of

an attacker to be aware of this vulnerability, and try to

¢ exploit it. Therefore, the better known the vulnerability

is, the more urgent it is to deal with it.

A known vulnerability might have a CVE ID associated
» With it as part of a responsible disclosure, or it might
just be disclosed on the internet or stored in open
databases. These are all types of known vulnerabilities
that you should prioritize eliminating as they have a
higher chance of being attacked in production. After
these, vulnerabilities that are captured in closed
vulnerability databases or even shared in the dark web

should be considered.

Known vulnerabilities in application libraries

Today, we’re witnessing an increase in the number
of vulnerabilities reported across many of the
ecosystems that we track, including PHP Packagist,
Maven Central Repository, Golang, npm, NuGet,

RubyGems, and PyPI.

In 2017, we saw a 43% increase of vulnerabilities
reported across all registries, and in 2018 the

vulnerability count grew by a further 33%.

When examining the five different ecosystems:
PHP, Java, JavaScript, Python and Go, we see an
increasing trend in the number of vulnerabilities

disclosed across all of them since 2014.

Vulnerabilities are
found at an increasing
pace, nearly doubling in
the last 2 years

Q snyk All rights reserved. 2019 © Snyk

We may see further growth in numbers from 2018
due to undisclosed vulnerabilities that will only be
publicized later this year, further amplifying the

direction of this trend.

New vulnerabilities each year by ecosystem

In 2018, new disclosures
for npm grew by 47%, and
Maven Central grew by 27%

@ PHP Packagist

Maven Central

@
® npm

| J

@

® ryr

/:/ ¢

2000
1500
1000
500 —9
/s
= @
0
2014 2015 2016

2017 2018 ﬁ snyk

In 2018 vulnerabilities disclosed for PHP Packagist

grew by a staggering 56%, and for Maven Central, Since 2014, the number of
disclosures increased by 27%. Although Golang is a vulnerabilities in Snyk's
smaller ecosystem, it has growing security research database for npm grew
and reported 52% new vulnerabilities in 2018 over 2017. by 954% and for Maven
Central by 346%

Looking back at the data from 2014 in Snyk’s
vulnerability database, we see a strong overall

increase in the number of vulnerabilities across
the board.

Today, we track 1766 vulnerabilities in the Maven
Central Repository, 1268 in npm, 746 in PHP Packagist,
807 in PyPl,and 94 in Golang.

Since 2014, the number of vulnerabilities in the Snyk
database has increased by an astonishing 371%, with
npm vulnerabilities increasing by an incredible 954%

and Maven Central vulnerabilities increasing by 346%.

Q snyk All rights reserved. 2019 © Snyk

Trends in severity

When we look at vulnerability severity for Vulnerability severities by year
application libraries disclosed over the last three

years across all language ecosystems, 2018 shows a 1000
smaller number of high vulnerabilities as compared

to the previous year.

776

750
However an interesting insight for both 2017 660
and 2018 is that there were more high severity
vulnerabilities than medium or low vulnerabilities

500 . Low
as compared to 2016.

@ Medium
250 ® High
0 ﬁ snyk
2016 2017 2018 y

’ snyk All rights reserved. 2019 © Snyk 16

Spotlight: Zip Slip

In 2018, the Snyk Security research team responsibly disclosed many
instances of a vulnerability dubbed Zip Slip, a widespread arbitrary
file overwrite critical vulnerability. It can be exploited using a
specially crafted archive that holds directory traversal filenames

and typically results in remote command execution.

It was discovered and responsibly disclosed by the Snyk Security

team ahead of a public disclosure on 5th June 2018, and affects

thousands of projects, including ones fro

Pivotal, and many others.

The research that spanned various ecosystems unco
of vulnerabilities in libraries such as Apache Ant, adm-zip,
SharpCompress and others used by thousands of projects for Java,
npm, NuGet, Go, .NET, Ruby, Python and C++. Almost half of them

were found to be of high severity.

66

projects across ecosystems.

When we discovered the first instance of the Zip Slip vulnerability in a big project,
it was very exciting. It was our eureka moment, but when we discovered that every
other application had a vulnerable implementation, we were extremely surprised.

We realised that this vulnerability wasn’t just affecting a few apps, but loads of

— Danny Grander, Snyk CSO

ol
U snyk All rights reserved. 2019 © Snyk

17

https://github.com/snyk/zip-slip-vulnerability
https://github.com/snyk/zip-slip-vulnerability

Known vulnerabilities in system libraries

There is an increase in the number of vulnerabilities Linux OS vulnerabilities steadily increasing H snyk
reported for system libraries, affecting some of the
popular Linux distributions such as Debian, RedHat @ Debian RHEL @ Ubuntu

Enterprise Linux and Ubuntu. IIn 2018 alone we

tracked 1,597 vulnerabilities in system libraries with 2500
known CVEs assigned for these distros, which is
more than four times the number of vulnerabilities 2000

compared to 2017.
1500 /.

Z
500 ° /

@ ~ I
® o=
/

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Q snyk All rights reserved. 2019 © Snyk

As we look at the breakdown of vulnerabilities High and critical vulnerabilities in system libraries Q snyk
(high and critical) it is clear that this severity level

is continuing to increase through 2017 and 2018. @ High ® critical

5000
4000
3000
2000
- l

0

2014 2015 2016 2017 2018

Q snyk All rights reserved. 2019 © Snyk

Known vulnerabilities in docker images

The adoption of application container technology Accordingly, we’ve scanned through ten of
is increasing at a remarkable rate and is expected the most popular images with Snyk’s recently
to grow by a further 40% in 2020, according to released
451 Research. It is common for system libraries to Docker images almost
be available in many docker images, as these rely The findings show that in every docker image aIways bring known
on a parent image that is commonly using a Linux we scanned, we found vulnerable versions of vulnerabilities alongside
distribution as a base. system libraries. The official Node.js image ships their great value
580 vulnerable system libraries, followed by the
Docker Hub provides insights into the most popular others each of which ship at least 30 publicly
docker images. known vulnerabilities.
Number of OS vulnerabilities by docker image @ snyk
600 580

500

100

89 85
69
61 61
47 47 47
. - - - -

node postgres nginx httpd mongo mysql couchbase = memcached redis ubuntu

Q snyk All rights reserved. 2019 © Snyk

https://snyk.io/blog/container-vulnerability-management-for-developers/

Snyk recently released its container vulnerability
management solution to empower developers to fully
own the security of their dockerized applications.
Using this new capability, developers can find known
vulnerabilities in their docker base images and fix them
using Snyk’s remediation advice. Snyk suggests either
aminimal upgrade, or alternative base images that

contain fewer or even no vulnerabilities.

Based on scans performed by Snyk users, we found that
44% of docker image scans had known vulnerabilities,
and for which there were newer and more secure base
image available. This remediation advise is unique

to Snyk. Developers can take action to upgrade their

docker images.
Snyk also reported that 20% of docker image scans had

known vulnerabilities that simply required a rebuild of

the image to reduce the number of vulnerabilities.

Q snyk All rights reserved. 2019 © Snyk

Fix can be easy if you’re
aware. 20% of images can
fix vulnerabilities simply
by rebuilding a docker
image, 44% by swapping
base image

Vulnerability differentiation based on image tag

The current Long Term Support (LTS) version of the
Node.js runtime is version 10. The image tagged with
10 (i.e: node:10) is essentially an alias to node:10.14. 2-
jessie (at the time that we tested it) where jessie
specifies an obsolete version of Debian that is no

longer actively maintained.

If you had chosen that image as a base image in

your Dockerfile, you’d be exposing yourself to 582
vulnerable system libraries bundled with the image.
Another option is to use the node:1o-slim image tag
which provides slimmer images without unnecessary
dependencies (for example: it omits the main pages
and other assets). Choosing node:10-slim however

would still pull in 71 vulnerable system libraries.

The node:1o-alpine image is a better option to choose
if you want a very small base image with a minimal set
of system libraries. However, while no vulnerabilities
were detected in the version of the Alpine image we
tested, that’s not to say that it is necessarily free of

security issues.

Q snyk All rights reserved. 2019 © Snyk

Alpine Linux handles vulnerabilities differently than
Most vulnerabilities

originate in the base image
you selected. For that reason,
remediation should focus on
base image fixes

the other major distros, who prefer to backport sets
of patches. At Alpine, they prefer rapid release cycles
for their images, with each image release providing a

system library upgrade.

Number of vulnerabilities by node image tag

600 582 H snyk
500
400

300

200

100 71

I

node:10-slim

node:10

node:10-alpine

Moreover, Alpine Linux doesn’t maintain a security A practice that some teams follow is to use a specific Using the Snyk Docker scanning features we found

advisory program, which means that if a system version tag instead of an alias so that their base that when a project uses a specific version tag such
library has vulnerabilities, Alpine Linux will not issue image would be node:10.8.0-jessie for example. as node:10.8.0-jessie, we could then recommend
an official advisory about it; Alpine Linux will mitigate However, as newer releases of Node 10 are released, newer images that contain fewer vulnerabilities.
the vulnerability by creating a new base image version there is a good chance those newer images will

including a new version of that library that fixes the include fewer system library vulnerabilities.

issue, if one is available (as opposed to backporting

as mentioned).

There is no guarantee that the newer fixed version, of
avulnerable library will be immediately available on
Alpine Linux, although that is the case many times.
Despite this, if you can safely move to the Alpine
Linux version without breaking your application, you
can reduce the attack surface of your environment

because you will be using fewer libraries.

The use of an image tag, like node:10, is in reality
an alias to another image, which constantly rotates
with new minor and patched versions of 10 as they

are released.

Q snyk All rights reserved. 2019 © Snyk

Spotlight: Malicious packages

You may have heard about malicious packages in a variety of
contexts, such as a malicious docker container or perhaps a malicious
package in a public registry of one ecosystem or another. We have
also discussed developers as a malware distribution vehicle in several
other contexts such as the Induc malware that infected Delphi

compilers and XCodeGhost that targeted iOS and OSx developers.

However, not all malicious packages are the same in nature.
With regards to ecosystem registries we can broadly classify them

into the following:

D atyposquatting attack where a malicious package uses a very

similar name of a more popular package

> acompromised maintainer’s Cl or registry account resulting in
the publishing of a malicious version, or a malicious package

residing in a project’s list of dependencies

ol
U snyk All rights reserved. 2019 © Snyk

> asocially engineered inclusion of a malicious package (or
package that will be malicious after inclusion) into a project

list of dependencies

In 2018 we saw occurrences of all of these malicious package types

in the npm ecosystem, known for being one of the registries that
suffers from malicious packages more than others. The package that
recently made the news in December 2018 was event-stream. It relied
on a malicious dependency that was delivered through a seemingly

innocent attempt to make an open source contribution.

This hack affected a staggering 8 million downloads of the malicious
package in only two months. Another example in 2018 is the ESLint-
scope package in which the maintainer’s account was compromised.
We also saw a total of 11 typosquatting attacks for malicious packages

published in 2018 on the npm registry.

24

In 2018, a malicious
package was downloaded
arecord 8 million times. It
was one of 25 typosquatting

attacks in npm and PyPI
[
® : °
- . e

ol
U snyk All rights reserved. 2019 © Snyk

In addition to the typical typosquat
in the past, we also saw more mature m
the npm ecosystem than in previous years, s
attack. With much higher sophistication, the event-
exposed a high level of expertise and targeted attacks than

seen in previous malicious attempts in the ecosystem to date.

In contrast to the npm registry, the only other registries in which
we identified malicious packages were RubyGems with just one
malicious package in 2018, and Python with ten malicious packages

in 2017 and thirteen in 2018.

25

03

Vulnerability
characteristics

of each
ecosystem

We were curious to learn more about the distinct

vulnerability families found within each ecosystem

o .
in order to better understand what attackers target

for exploitation.

XSS vulnerabilities

Cross-site Scripting (XSS) attacks have been an ever- XSS vulnerabilities disclosed by year @ snyk
increasing pain point for web applications and we see
the trend in XSS vulnerabilities spiking in 2018 across 200
all ecosystems that Snyk has been monitoring.
[
(]
150 0/— \
XSS vulnerabilities in open ®
source libraries are still on
the rise, despite being a top 100
concern by OWASP for more /o
than 15 years
50
Within these ecosystems, we’ve detected that the
npm ecosystem has seen the most XSS vulnerabilities, 0
2014 2015 2016 2017 2018

disclosing 225 in total; followed by Maven Central
Repository with 167; and PyPI with 163 total cross-
site scripting vulnerabilities. In 2018, the PHP
Packagist ecosystem disclosed the most with 56 XSS
vulnerabilities, followed by npm with 54, and Maven

Central with 29.

Q snyk All rights reserved. 2019 © Snyk

SQL injection vulnerabilities

Another common attack vector that is consistently SQL injection disclosures show spikes by "
featured in the OWASP’s top 10 over the past decade year and ecosystem a sny

is CWE-89, more commonly known as SQL Injection.

@ 2016 ® 2017 @ 2018

Looking across the last three years, we can see that

20
each of the three main ecosystems we reviewed have
peaks during different years. Maven libraries lead

R . 16

the number of SQL injection vulnerabilities disclosed
in both 2016 and 2017, followed by PHP Packagist 15
libraries, which hit a peak in 2018.

10

5

4
Ol

pm Maven Central PHP Packagist

3
B
n

Q snyk All rights reserved. 2019 © Snyk 28

Sensitive information exposure

Looking at the Maven Central and PHP Packagist The PyPI registry also has a good amount of
registries we found they had the most vulnerabilities vulnerabilities found in libraries, with examples of
related to information exposure, peaking in 2018 for information exposure vulnerabilities. Packages such
both ecosystems. as displayed a user password hash to admin

users who only had View permissions. The package
Information exposures often happen unintentionally. saved API keys in
They occur when a program or system discloses plain text.
potentially sensitive information, such as environment

variable names and values. Cases of information

exposure may also occur “by design” such as when Sensitive information exposure vulnerabilities "
sensitive data is provided within URL parameters. affecting the Java ecosystem H sny
Several examples of information exposure 100
vulnerabilities in the Maven Central registry are @ 2016 ® 2017 @ 2018
packages. Jenkins ssh-agent Cl plugin, for example, 75
in the build logs for anyone
with Read permissions to see. 50
25 23
8 g 12
o W

npm PHP Packagist RubyGems Maven Central PyPI

Q snyk All rights reserved. 2019 © Snyk 29

https://snyk.io/vuln/SNYK-JAVA-ORGAPACHESPARK-72494
https://snyk.io/vuln/SNYK-JAVA-ORGJENKINSCIMAIN-72670
https://snyk.io/vuln/SNYK-JAVA-ORGKEYCLOAK-72428
https://snyk.io/vuln/SNYK-JAVA-ORGJENKINSCIPLUGINS-32452
https://snyk.io/vuln/SNYK-PYTHON-DJANGO-72562
https://snyk.io/vuln/SNYK-PYTHON-DJANGORESTFRAMEWORKAPIKEY-72560

Regular expression denial of service

The Node.js runtime is known to have many Regular expression denial of service (ReDoS)
strengths, but one of them, the single threaded Event disclosures on the rise g snyk
Loop, can also be its weakest link if not used correctly.
This happens more regularly than one might think. 80
| J

Regular expression denial of service (ReDoS)
attacks exploit the non-linear worst-case complexity 60
vulnerabilities that some regex patterns can lead
to. For a single-threaded runtime this could be
devastating, and this is why Node.js is significantly
affected by this type of vulnerability. 40
We found that there were a growing number of e
ReDoS vulnerabilities disclosed over the last three 20
years, with a spike of 143% in 2018 alone. ®

0

2016 2017 2018

Q snyk All rights reserved. 2019 © Snyk

Path traversal

Path and directory traversal vulnerabilities fiercely Path traversal vulnerabilities most commonly

stand out in the npm ecosystem with record seenin npm @ snyk
numbers of 146 and 143 disclosures in 2017 and 2018,

respectively. The other ecosystems are much further @ 2016 ® 2017 ® 2018

behind, which is a good thing! 200

One might presume that this may be attributed to the

plethora of static and dynamic web servers built with b
Node.js for both production and development use,
and therefore there are many more packages in which 100
such vulnerabilities might also be found.
50
21 17
co2z3 a3s e L

RubyGems PHP Packagist PyPI Maven Central npm

Q snyk All rights reserved. 2019 © Snyk 31

Cleartext transmission of sensitive information

Last but not least is another unique vulnerability
worthy of mention in the npm ecosystem, CWE-319,

also known as Cleartext Transmission of Sensitive The state of an ecosystem's security and its public perception are often

Information, in which resources are accessed over extremely different. The lack of typing in JavaScript has spread the idea

insecure protocols. We were able to find 44 new that it is an unsafe language due to type manipulation, but in any case, the

reported vulnerabilities in packages from 2016, number of vulnerabilities discovered in npm modules over the last couple

and this number further rises to a hefty total of 110 of years is still lower than those discovered on Maven central. At the same

packages in 2017,a 250% increase. time, some vulnerabilities may be exacerbated because Node.js is still
mono-threaded. ReDoS (or other CPU-exhaustion DoS), which is much
more common in the Node.js world, is an example of this. Hopefully,
Worker Threads will soon enable Node.js, in order to reduce these risks.
The security community in Node.js has been more and more active in
the past years and we can continue to work hard so that the ecosystem

becomes safer in the future.

— Vladimir de Turckheim, Node.js Foundation Security WG

Q snyk All rights reserved. 2019 © Snyk

04

The open source
security
lifecycle

A healthy approach to embracing security as part
of the SDLC is to integrate it within the entire
development lifecycle, from design to production.
This significantly differs from the more traditional
one-off phase of security testing that occurs
periodically’and doesn’t fit the modern, fast-paced
software delivery model. However, processes and
guidglines may not be enough. Education, friendly
tooling, and engagement with R&D teams and
stakeholders are just as important to the healthy

adoption of security practices within an organization.

Discovering vulnerabilities

It takes a great deal of knowledge, experience, and

a sharp eye to properly code review for potential
security vulnerabilities within one’s own code. As
this isn’t a straightforward task, if carried out at all, it
suggests that vulnerable code may stay dormant for a

long time until it is picked up by anyone.

Teams that practice DevOps or have a mature Cl/
CD pipeline may find it easier to introduce security
testing as part of their build automation, yet we find
that almost 40% of users don’t implement any sort
of security testing during their Cl runs. A reassuring
note however is that more than half of them are at
the very least testing for vulnerabilities in their open

source dependencies.

37% of users of users
don’timplement any sort
of security testing
during Cl

Q snyk All rights reserved. 2019 © Snyk

Another finding in our research is that teams that build security into their work also
do better at continuous delivery. A key element of this is ensuring that information
security teams make pre-approved, easy-to-consume libraries, packages, toolchains,

and processes available for developers and IT operations to use in their work.

— Nicole Forsgren, Accelerate: The Science of Lean Software and DevOps: Building

and Scaling High Performing Technology Organizations

Security testing during Cl

H snyk

No, we don’t have any automated 37%
security testing during CI

We statically test our own

0,
source code for vulnerabilities 36%
We test for known vulnerabilities in o
. 57%
our open source dependencies
We test for known vulnerabilities 14%
in our container images °
0% 10% 20% 30% 40% 50% 60%

Open source security ownership

When facing such alarming statistics, we set out to

According to 81% of respondents, developers should

find who in practice owns the security responsibility own the security of their application code, sending

of an application or library today, as well as who users a strong statement about the involvement and

think should take ownership of security.

Who is responsible for security?

100%

81%

75%

50%

28%

25%

o,
0%
Security team Developers

Q snyk All rights reserved. 2019 © Snyk

engagement level that is expected from developers,
and supports the strong DevSecOps movement

which many are adopting today.

ﬁ snyk

23%
12%
]
Operations Other Nobody

35

Finding out about vulnerabilities

From the user’s perspective, it is interesting to gain A worrying 27% of respondents stated they do not
insights into how they learn about vulnerabilities in have any proactive or automatic way to find out
their application dependencies in order to respond to about newly discovered vulnerabilities in their
potential threats as they are discovered. applications. Only 36% of users confirmed that they

use a dependency management or scanning tool to

help surface vulnerabilities.

How do you find about vulnerabilities?

2%

‘ | probably won’t
) I read the release notes of most of my direct and
indirect dependencies

36%

Py When my security team reports a severe vulnerability,
we search for apps using this component

We track the list of dependencies against public
databases (e.g. CVEs) ourselves
® We use a dependency management/ scanning tool
‘ 16% that notifies us

Other
9% e H snyk
10%

Q snyk All rights reserved. 2019 © Snyk

Snyk stats

> In the second half of 2018 alone, Snyk opened

more than 70,000 Pull Requests for its
users across Maven, RubyGems and npm
ecosystems to remediate vulnerabilities in

their projects.

> Outof all the dependencies in a scanned
Java project, Snyk provided a remediation
path to fix vulnerabilities that were found
in 60% of them. It’s not always possible
to fix remediation paths when there is no

compatibility between a direct dependency

and a fixed version of an indirect dependency.

The Snyk Security team can provide custom

patches to fix some of these situations.

36

Spotlight: Vulnerabilities without CVEs

It is common for security teams to keep track of, and to react to,
new vulnerabilities as they are disclosed through the National

Vulnerabilities Database (NVD), or other public CVE repositories.

However, a good number of security vulnerabilities are discovered
and fixed in non-official channels such as through informal
communication between maintainers and their users in an

issue tracker.

The Snyk database is carefully curated by an internal security
analysts team, and tracks vulnerabilities not included in these official
sources but mentioned in public locations such as forums or release
notes. Using Snyk's DB as a barometer, we see it uncovers 67% more

vulnerabilities than public databases.

ol
U snyk All rights reserved. 2019 © Snyk

In addition to comprehensiveness, CVEs and publi
often slow to add vulnerabilities. If we look at npm as
vulnerabilities only show up in npm audit an average of 92

they are captured in Snyk's DB, and lag behind 72% of the time.

These gaps indicate the CVE system and public open source
databases are not currently coping with the pace and volume of
open source software vulnerabilities. These mechanisms should be
reevaluated, and security conscious organisations should seek out

commercial databases for timely and broad coverage.

37

Time to adopt security fixes

How long does it take users to adopt new releases that Downloads of the vulnerable PyPI e k
sny

provide security fixes to known vulnerabilities? We websockets package in 2018
turned to Python’s PyPI registry and its websockets

package for an example to see how popular 30000 @ Vulnerability disclosed
vulnerable releases continued to be used even after a

vulnerability fix was released.

25000
The websockets project is a fairly popular and
well-maintained package, dating back to 2013 and 20000
showcasing regular releases to the present day. o

°
In August 2018 a denial of service vulnerability was 15000 /
°

disclosed to the community, affecting versions 4.0

and 4.0.1 of the package. At the time of disclosure, 10000 e
newer versions already existed on the registry that
provided the security fix, however looking at the
download counts for the vulnerable versions, a 5000
long trail of users still fetch vulnerable versions of
websockets can be seen. 0
August September October November December

By December 2018 we’re still tracking 11k downloads of
the websockets package that contain the vulnerability,
even though there is a fixed version available as a

major upgrade with websockets version 5.0.

Q snyk All rights reserved. 2019 © Snyk

How do maintainers find out about vulnerabilities?

It is more likely that maintainers be alerted to Furthermore, while the majority of users (72%) say

a security concern than it is that they find out they review their own code to find vulnerabilities,
themselves. An industry-accepted best practice is 48% of users still learn about vulnerabilities in their
a responsible disclosure policy, which details how code only when someone else opens a public issue,
security researchers and individuals should safely demonstrating how hard it is to rely on just one
report security vulnerabilities to project maintainers. maintainer reviewing code even if that maintainer is

perceived to have good security knowledge.
From the survey data, we can conclude that almost
half (48%) of respondents find out about a security
vulnerability that is in their code from a public

How do maintainers find out about vulnerabilities? a snyk
channel, such as when someone else is opening a

public issue or contacting them over email.
When | review my code 72%

72% of users said they find out about vulnerabilities Through an external audit _ 30%
in their code when they review their own code

By someone opening o
personally; however 62% of users have stated they a public issue 48%
have only medium-level security know-how whereas .

By someone sending 37%

. H (]
only 30% of them state their security expertise is high. me an email
Other - 9%
0% 10% 20% 30% 40% 50% 60% 70% 80%

Q snyk All rights reserved. 2019 © Snyk

Inclusion to disclosure

One of the research questions we wanted to As this is more time-consuming and tricky to Of these six libraries, we saw that the quickest
answer was how long it takes from the time a accurately automate, we looked at the top six time-to-fix from inclusion was almost one year, or
vulnerability enters the code base and until it npm libraries and analysed their code bases to see 289 days to be precise. The median time is almost
is discovered and disclosed? To answer this, we the differences between the dates of the commits 2.5 years, and the worst case we saw was 5.9 years.
set out to analyze several top libraries in the that introduced the vulnerability and fixed the

npm ecosystem and the vulnerabilities that were vulnerability. Of course, these calculations are

discovered in them during 2018. slightly biased because we’re using such a small

sample size, but the range and order of numbers are

interesting all the same!

Vulnerabilities - days of inclusion to disclosure @ snyk
Day
Quickest 886 Slowest
time-to-fix response time
o I © BN e [
Vulnerability Median

included

Day

289

Q snyk All rights reserved. 2019 © Snyk 40

Spotlight: Equifax, a year later

A recent report released by the US government deemed the
infamous Equifax breach as completely preventable, and
demonstrated how important it is to shift security to the left by

integrating it into the development workflow.

EQUIFAX

With a DevSecOps mindset and good practices employed, a
development team could have prevented the Struts vulnerability

making such an impact if:

[]
. > developerswould have found the issue by adopting open source
5 dependency scanning tools that integrate with their workflow
[]
o using IDE plugins or code linters.

[]
\ []
W -

ol
U snyk All rights reserved. 2019 © Snyk

< L]
o
> any new build run by a CI server would automatically test
application dependencies via a Cl server plugin or a CLI
invocation as a task. This would immediately flag the new
vulnerability, breaking the Cl job and forcing a remediation
action before continuing.
> amonitoring solution was in place that notified developers of
the new vulnerability in their dependencies.
Further monitoring and runtime insights into how the application
behaves and what vulnerable functions it invokes could have alerted
of vulnerabilities in the Struts library.
([
41

Releasing fixes

A crucial part of a responsible security disclosure is Vu|nerabi|ity report response times
the speed of fix and roll out. It’s important to be able

to address the vulnerable issue as quickly as possible, 6%

thereby reducing the time it exists in the code, and
also to provide sufficient time for users to upgrade to
@ Afewhours

a fixed version, preferably before the issue is

common knowledge.

A day or less

As the nature of open source communities revolves

@ Aweekorless
around mostly volunteer work of developers (a BIG

thank you to all the wonderful people who contribute A month or less
to open source software—your kind work is very

much appreciated and rarely acknowledged or @ oOveramonth

ﬁ snyk

appreciated publicly!), it is interesting to gauge how 27%
fast maintainers of open source software can react to a

security vulnerability and provide a fix.

An overwhelming majority of users, totaling 84%,

state they are likely to respond with a fix in less than
a week. 56% are likely to address it within a day, while
22% state they can address a security issue within a
few hours after the vulnerability has been reported —

not all heroes wear capes!

Q snyk All rights reserved. 2019 © Snyk

Rate of fixing

Examining the Snyk vulnerability database we can Package vulnerabilities with known fixes H snyk
determine which packages have released versions

that contain vulnerability fixes. This paints a less

than ideal picture for some ecosystems— looking at

RubyGems 84%
you JavaScript! Java and Python exhibit ecosystems
with strong attention to security vulnerabilities,
whereas JavaScript and Node.js as a whole show
that only 59% of packages have known fixes for npm 59%
disclosed vulnerabilities.
Maven)
0% 25% 50% 75% 100%

Q snyk All rights reserved. 2019 © Snyk

[]
° ..
° L .

Spotlight: Responsible security disclosures .
.

A significant benefit of having a responsible disclosure policy is to About 21% of maintainers with no public disclosure policy have
keep users out of harm’s way. When a vulnerability is reported and been notified privately about a vulnerability, as compared to 73% of
triaged in a confidential manner with the project maintainer it allows maintainers with a disclosure policy in place.
the maintainer to prepare a fix before the information is disclosed
to the general public. If maintainers can act quickly and release a Websites are susceptible to web security vulnerabilities and would
fix, then they provide a window of time during which their users benefit from clear guidelines about web security policies.
can upgrade to the fixed version. This time window significantly An emerging proposal to aid with this is the SECURITY.TXT (RFC
decreases the number of users that consume the vulnerable versions. 5785) which has seen early adoption already. The purpose of such

as policy file is to effectively communicate to security researchers
We believe that having a responsible disclosure policy in place will the relevant contacts, preferred languages, exact policy and ways
also communicate the maintainer’s high commitment to security. of communication, including public keys to securely and efficiently
We recommend to use a badge on the project’s homepage, and disclose security vulnerability.
including a SECURITY.MD policy file in the project’s repository as a
good practice.
In the last report we found that maintainers who have a public-facing

A disclosure policy in place are far more likely to receive disclosures
h :o from users in confidence, than those who do not. ¢
..
[
o °
® O
@I snyk All rights reserved. 2019 © Snyk 44

The future of open source

Open source is a core part of virtually all software applications today. Even the Java and Node.js platforms are open s
away from the obvious fact that open source is here to stay and a welcome part of modern software development. It’s e
to create a new open source project, as well as use other projects from other members of the community. This speed of dev

has led to coding standards and practices varying greatly between open source projects, as it’s not always easy for developers to

consequences of unintentionally sharing insecure code. In the great, wise, and slightly adapted words of Dr. Malcolm: /
Your developers were so preoccupied with whether or not they could, they didn't
stop to think if they should.
— Dr. lan Malcolm, Jurassic Park
° : We’d like to conclude this report with some security advice for both open source project maintainers as well as those who consume open source
-y : dependencies. Oh, | guess that’s pretty much everyone then!
)
([]
[
L]
o o °
/
" . , [
U snyk All rights reserved. 2019 © Snyk 45

Take action

As OS maintainers and developers there are actions you can take to improve the security in projects you own and contribute to.

Open source maintainers

As an open source maintainer, you should offer secure releases of your code and
provide a communication strategy to those consumers in order to positively
impact other projects and applications, ultimately benefiting your own projects

as well.

D Practice secure code review with your peers if possible and follow secure-
code best practices. Make security considerations part of your code review
checklist and educate those who are reviewing so that they know what they

should be looking for.

> Regularly audit your code base for vulnerabilities, through static and dynamic
code analysis, for example, that can be automated into your development
workflow and make it easier to catch vulnerabilities before they

become public.

> Clearly define a simple process for communication of responsible disclosures,

using your own policy or by referring to an existing program. To communicate

your security awareness consider adopting a SECURITY.MD policy and a

project badge that reflects the security health of the project.

> Implement a shift-left security strategy that provides your team the insight
into security issues during development, Cl, and even when pull requests are

created to eliminate all chances of vulnerable code entering your projects.

Q snyk All rights reserved. 2019 © Snyk

Open source developers

As a consumer of open source components, it’s your responsibility to fully
understand the direct and indirect dependencies your projects use, including
any security flaws that might exist in that dependency tree. Consider adopting

the following security guidelines:

D Regularly audit your code base with a tool that automatically detects
vulnerabilities in your third-party dependencies, providing remediation
advice to your team and monitoring a project’s dependencies even after it

has been deployed.

> Follow responsible disclosure policies if you are reporting a security
vulnerability to make sure you don’t put users in harm’s way. If you are
unsure about how to do this, consider disclosing to a security company
that work through the disclosure with you, such as Snyk’s responsible

disclosure program.

> Subscribe to the security communication channels of your open source
dependencies, if they have them, so you’re aware of any potential

vulnerabilities as they are reported.

TL;DR - Report summary

Data in this report was collected from the

following sources:

D Over 500 open source maintainers and users

0 Internal data from the Snyk vulnerability database

0 Hundreds of thousands of projects monitored and protected by Snyk

D Research taken from external sources published by various vendors

D Scanning millions of GitHub repositories and packages on public registries

Known vulnerabilities in application libraries

> Security vulnerabilities almost double in two years. In 2017 we saw a 43%
increase in the number of vulnerabilities reported. In 2018, that total
increased by a further 33% across all registries

> The number of Golang vulnerabilities grew in 2018 by 52%

D Since 2014, the number of vulnerabilities in the Snyk database has increased
by an astonishing 371%, with npm vulnerabilities increasing by an incredible
954% and Maven vulnerabilities increasing by 346%

Security ownership

D 81% of users feel developers are responsible for security

D Only 28% of users feel security teams are responsible for security

D 68% of users feel that developers should own the security responsibility of

their docker container images

Q snyk All rights reserved. 2019 © Snyk

Open source adoption

D

GitHub saw a 40% rise in new organizations and new repositories
created in 2018

Almost one third of all repositories that exist on GitHub were created in 2018

Growth in indexed packages from 2017 to 2018.
Maven Central - 102% growth
PyPI - 40% growth
npm - 37% growth
NuGet - 26% growth
RubyGems - 5.6% growth

The CVE list reported a record-breaking number of vulnerabilities reported
in 2018, which now totals more than 16,000 vulnerabilities in the
database overall

npm reported 304 billion package downloads for the entire year of 2018.

Docker reported over 1 billion container downloads every 2 weeks over the
last year, and about 50 billion to date

Docker also reported 1 million new applications added into Docker Hub over
the last year

78% of vulnerabilities are found in indirect dependencies

On average, open source maintainers rate their own security knowledge
as 6.6/10

Only 3 in ten open source maintainers consider themselves to have high
security knowledge

One in four open source maintainers do not audit their code bases

Vulnerabilities in docker images

D

Each of the top ten most popular default docker images contains at least 30
vulnerable system libraries

44% of scanned docker images can fix known vulnerabilities by updating
their base image tag

20% of docker image scans had known vulnerabilities that simply required
a rebuild of the image to reduce the number of vulnerabilities

37% of open source developers don’t implement any sort of security testing
in their Cl and 54% of developers don’t do any docker image security testing

Known vulnerabilities in system libraries

2

1597 vulnerabilities in system libraries with known CVEs were raised in
2018 for the Debian, RHEL and Ubuntu distributions

In 2018, we tracked over four times more vulnerabilities found in RHEL,
Debian and Ubuntu compared to 2017

According to 451 Research, the adoption of application container
technology is expected to grow by a further 40% in 2020

Ruby's default docker image ships with 583 system library vulnerabilities

Q snyk All rights reserved. 2019 © Snyk

Vulnerability characteristics of each ecosystem

> In 2018 there were 11 typosquatting attacks for malicious packages
published on the npm registry

> The number of XSS vulnerabilities is again on the increase. In 2018 the
PHP Packagist ecosystem disclosed the most with 56 XSS vulnerabilities,
followed by npm with 54, and Maven Central with 29

> Path and directory traversal vulnerabilities fiercely stand out in the npm
ecosystem with record numbers of 146 and 143 disclosures in 2017 and
2018, respectively

» The number of Cleartext Transmission of Sensitive Information
vulnerabilities has increased by 250% since 2016

Discovering vulnerabilities
> Almost 40% of open source users don’t implement any sort of security
testing during Cl

D Over half of open source users test for vulnerabilities in their open
source dependencies

The Snyk Vulnerability database

> CVE/NVD and public vulnerability databases miss many vulnerabilities, only
accounting for 60% of the vulnerabilities Snyk tracks

> In2018 alone, 500 vulnerabilities were disclosed by our proprietary research

> 72% of the vulnerabilities in npm audit were added to the Snyk vulnerability
database first

D On average, Snyk discloses vulnerabilities 92 days sooner than they are
published on npm-audit

How do maintainers find out about vulnerabilities?

0 Almost half (48%) of respondents find out about a security vulnerability that
is in their code from a public channel, such as a public issue

> 72% of users said they find out about vulnerabilities in their code when they
review it

Inclusion to disclosure

> Of the seven libraries we analysed, the quickest time-to-fix from inclusion
was 289 days. The median time is almost 2.5 years, and the worst case we
saw was 5.9 years

Q snyk All rights reserved. 2019 © Snyk

Adopting fixes

D 84% of users state they are likely to respond to a fix in less than a week
D 22% state they can address a security issue within a few hours of a report

D 27% of users stated they do not have any proactive or automatic way to
find out about newly discovered vulnerabilities in their applications.

> Only 36% of users confirmed that they use a dependency management or
scanning tool to help surface vulnerabilities

> In the second half of 2018 alone, Snyk opened more than 70,000 Pull
Requests for its users across Maven, RubyGems and npm ecosystems to
remediate vulnerabilities in their projects

e ope e and sta
d at snyk.io

Report author

Liran Tal (@liran_tal)

Report contributors

f Simon Maple (@sjmaple)
ice info \ ‘ Guy Podjarny (@guypod)

Rachel Cheyfitz (@spinningrachel)

London Tel Aviv oston

1Mark Square 40 Yavne st., first floor Work gth Floor

London EC2A 4EG 501 Boylston St
Boston, MA 02116 Growth Labs (@GrowthLabsMKTG)

Report design

http://twitter.com/snyksec
https://snyk.io
http://twitter.com/Liran_Tal
http://twitter.com/sjmaple
http://twitter.com/guypod
http://twitter.com/spinningrachel
http://twitter.com/GrowthLabsMKTG
https://snyk.io

