bert
Here are 2,074 public repositories matching this topic...
-
Updated
Jul 25, 2021 - Jupyter Notebook
-
Updated
Jul 1, 2021 - Python
-
Updated
Oct 22, 2020
-
Updated
Jan 24, 2022 - Python
-
Updated
Feb 16, 2022 - Rust
-
Updated
Dec 27, 2021 - Python
chooses 15% of token
From paper, it mentioned
Instead, the training data generator chooses 15% of tokens at random, e.g., in the sentence my
dog is hairy it chooses hairy.
It means that 15% of token will be choose for sure.
From https://github.com/codertimo/BERT-pytorch/blob/master/bert_pytorch/dataset/dataset.py#L68,
for every single token, it has 15% of chance that go though the followup procedure.
PositionalEmbedding
_handle_duplicate_documents and _drop_duplicate_documents in the elastic search document store will always report self.index as the index with the conflict, which is obviously incorrect.
Edit: Upon further investigation, this is actually a lot worse. Using multiple indices with the ElasticSearch DocumentStore is completely broken due to the fact, that this is used in `_handle_duplicate_do
-
Updated
Feb 24, 2021 - Python
-
Updated
Feb 11, 2022 - Python
-
Updated
Oct 22, 2020 - Python
-
Updated
Jul 15, 2021 - Jupyter Notebook
-
Updated
Feb 16, 2022 - Python
文档增加tokenizer类别及样例建议
欢迎您反馈PaddleNLP使用问题,非常感谢您对PaddleNLP的贡献!
在留下您的问题时,辛苦您同步提供如下信息:
- 版本、环境信息
1)PaddleNLP和PaddlePaddle版本:请提供您的PaddleNLP和PaddlePaddle版本号,例如PaddleNLP 2.0.4,PaddlePaddle2.1.1
2)系统环境:请您描述系统类型,例如Linux/Windows/MacOS/,python版本 - 复现信息:如为报错,请给出复现环境、复现步骤
paddle版本2.0.8 paddlenlp版本2.1.0
建议,能否在paddlenlp文档中,整理列出各个模型的tokenizer是基于什么类别的based,如bert tokenizer是word piece的,xlnet tokenizer是sentence piece的,以及对应的输入输出样例
关于一些具体建议
-
Updated
Feb 11, 2022 - Python
-
Updated
Feb 16, 2022 - Scala
-
Updated
Jan 7, 2022 - Python
-
Updated
Jan 22, 2022 - Python
-
Updated
Jul 9, 2021 - Python
-
Updated
Aug 26, 2021 - Python
-
Updated
Feb 11, 2022 - Cuda
-
Updated
Jul 8, 2021 - Python
-
Updated
Apr 23, 2021 - Python
-
Updated
Feb 16, 2022 - Python
-
Updated
Feb 16, 2022 - Python
-
Updated
Feb 14, 2022 - Python
-
Updated
Mar 21, 2021
-
Updated
Jan 11, 2022 - Python
Improve this page
Add a description, image, and links to the bert topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the bert topic, visit your repo's landing page and select "manage topics."
Related to #5142,
AlbertTokenizer(which uses SentencePiece) doesn't decode special tokens (like [CLS], [MASK]) properly. This issue was discovered when adding the Nystromformer model (#14659), which uses this tokenizer.To reproduce (Transformers v4.15 or below):