Skip to content
#

xgboost

Here are 1,918 public repositories matching this topic...

trivialfis
trivialfis commented Dec 13, 2020

Currently many more Python projects like dask and optuna are using Python type hints. With the Python package of xgboost gaining more and more features, we should also adopt mypy as a safe guard against some type errors and for better code documentation.

ehoppmann
ehoppmann commented Aug 23, 2019

Our xgboost models use the binary:logistic' objective function, however the m2cgen converted version of the models return raw scores instead of the transformed scores.

This is fine as long as the user knows this is happening! I didn't, so it took a while to figure out what was going on. I'm wondering if perhaps a useful warning could be raised for users to alert them of this issue? A warning

bug help wanted good first issue
awesome-decision-tree-papers
mljar-supervised
ViacheslavDanilov
ViacheslavDanilov commented May 19, 2022

I trained models on Windows, then I tried to use them on Linux, however, I could not load them due to an incorrect path joining. During model loading, I got learner_path in the following format experiments_dir/model_1/100_LightGBM\\learner_fold_0.lightgbm. The last two slashes were incorrectly concatenated with the rest part of the path. In this regard, I would suggest adding something like `l

bug help wanted good first issue
awesome-gradient-boosting-papers

Improve this page

Add a description, image, and links to the xgboost topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the xgboost topic, visit your repo's landing page and select "manage topics."

Learn more