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Abstract

The principle of relative locality is a generalization of the principle of relativity in which
even locality – the coincidence of events – is no longer absolute, and each observer has a
different notion of spacetime. This is achieved by allowing (energy-)momentum space to be
curved independently of spacetime. Phase space is the only truly invariant structure, that is,
independent of the observer. This principle has recently been implemented in metastring theory,
a new formulation of string theory in which the strings propagate on the entire phase space. In
addition to the symplectic form ω, the metastring phase space possesses a polarization metric
η, which specifies how phase space is decomposed into spacetime and momentum space, and a
generalized metric H, which encodes the independent curvatures of these spaces. Our aim in this
essay is to make the first step towards understanding this so-called metageometry, postulated
to uniquely define a generalization of Einstein gravity which we refer to as metagravity. This is
accomplished by conjuring some “string magic”. If we ask the strings of string theory what
kind of background spacetime they are willing to propagate on, their reply, compelled by
mathematical consistency alone, is that the spacetime metric must satisfy Einstein’s equations
of general relativity. Deriving the metagravity equations is thus simply a matter of posing
the same question in metastring theory. More precisely, we perturb the background fields
and require that the resulting worldsheet theory remains a conformal field theory. Using this
method of conformal deformations, we find linearized equations of motion for the perturbations.
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1 Introduction

1.1 Relative Locality

In Einstein’s theory of relativity, there is no notion of absolute space or absolute time. Instead,
both space and time are relative; two observers in different reference frames will generally not agree
on measurements of the length and duration of an event. Space and time may be said to emerge
from the more fundamental notion of spacetime, which is absolute and does not depend on the
observer. Locality is also absolute; that is, any two observers will agree that two events coincide.

The principle of relative locality [1] is a generalization of the relativity principle. In relative locality,
spacetime is no longer absolute, nor is locality. The absolute, fundamental structure is phase space,
and each observer’s individual notion of spacetime emerges from it. Spacetime becomes energy
and momentum dependent. Two different observers will in general not agree, not only on length
or durations, but also on the coincidence of events. Absolute locality is thus replaced by relative
locality.

The energy and momentum dependence of spacetime in relative locality comes from the curvature
of momentum space. Adding momenta and energies is now a nonlinear operation, similar to
addition of velocities in relativity. In addition to the invariant velocity c, we now have an invariant
energy/momentum scale ε, to be determined experimentally1. The effects of relative locality should
only becomes noticeable at energy/momentum scales close to the invariant scale ε.

1.2 Metastring Theory

Metastring theory is a reformulation of string theory recently introduced by Freidel, Leigh and
Minic [2] (see also [3, 4]). This reformulation generalizes string theory, relaxes some assumptions
which are usually taken for granted such as locality, and introduces several novel concepts such as
modular spacetime.

Most importantly for our particular context, it incorporates a notion of relative locality. This
is done by replacing the target space of the worldsheet nonlinear sigma model, usually taken to
be spacetime, with the entire phase space, in a way that is compatible with standard bosonic
string theory. The strings of metastring theory – or metastrings – thus propagate in phase space.
This phase space may be curved, and the curvature generally depends on both spacetime and
momentum-space coordinates.

The geometry of phase space in metastring theory, which we shall refer to as the metageometry,
includes three fundamental geometric structures. Since the phase space P is 2D-dimensional, where
D is the dimension of spacetime, these structures are 2D-dimensional. The first structure is a
symplectic form, ω, which is the usual symplectic form associated with any phase space, and in
metastring theory it is allowed to be dynamical. As we will see, both spacetime L and momentum
space L̃ are Lagrangian submanifolds of P, meaning manifolds of maximum dimension on which ω
vanishes.

1This may or may not be the Planck mass.
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The second structure is the polarization metric (P-metric) η. It has the property that both spacetime
L and momentum space L̃ are null subspaces with respect to η. Thus, when η is allowed to be
dynamical, the definition of spacetime and momentum space also changes. The choice of L and
L̃ as Lagrangian submanifolds of P is called a polarization. These two manifolds are transverse,
making up a bilagrangian structure on P such that TP = TL ⊕ T L̃ and TL ∩ T L̃ = {0}. They
may be defined by L ≡ ker (η + ω) and L̃ ≡ ker (η − ω).

Finally, the third structure is the generalized metric or quantum metric (Q-metric) H. It is a
generalization of the standard spacetime metric, encoding the curvature of both spacetime and
momentum space, which in general are allowed to be completely independent. When restricted to
the spacetime submanifold L, it reduces to the usual spacetime metric.

Using these three fundamental structures we may construct additional derived structures. The
most important of these are J , the chiral structure, and the chiral projectors P±. We will discuss
them at length below.

Two other structures of interest on the metageometry are a complex structure I and a real structure
K. Together, I, J and K possess a para-quaternionic structure, −I2 = J2 = K2 = 1 and
IJK = −1. The metageometry described by them is referred to as Born geometry ; it unifies the
complex geometry of quantum theory, the symplectic geometry of Hamiltonian dynamics and the
real geometry of general relativity. Unfortunately, we will not have the opportunity to discuss Born
geometry at more depth in this work.

1.3 Conformal Deformations and Metagravity

In string theory, the strings propagate on a fixed background spacetime given by three massless
fields: the spacetime metric gµν , the 2-form Bµν and the scalar dilaton Φ. Upon quantization, these
fields are seen to coincide with excited states of closed strings. The standard Polyakov action of
bosonic string theory defines a 2-dimensional conformal field theory of D massless scalar fields Xµ,
which are none other than the spacetime coordinates themselves. This is known as a nonlinear
sigma model, and spacetime is referred to as the target space. Different spacetime backgrounds gµν ,
Bµν and Φ then correspond to a different choice of conformal field theory for the string worldsheet.

If we perturb the background fields, we change, or deform, the worldsheet theory. An important
question is, therefore, what kinds of perturbations are allowed such that the deformed worldsheet
theory is still a conformal field theory, and thus still describes a string? We will investigate this
question only for perturbations of the spacetime metric and assuming the B-field and dilaton
vanish, using the method of conformal deformations, originally developed for string field theory
[5, 6, 7, 8]. We shall discover that the allowed perturbations are exactly those which satisfy the
linearized Einstein field equations. In other words, the string tell us it wants to propagate only on
a background that obeys the (vacuum) Einstein equations. In some sense a string, presumably the
smallest thing in existence, controls the behavior of the entire universe!

It is therefore natural to attempt to apply this method to the phase space metageometry described
by metastring theory. Indeed, we shall see that metastrings will only propagate on a metageometry
obeying a specific set of equations, generalizing Einstein gravity to a new theory of metagravity2.

1.4 Notation and Conventions

We will mostly follow the notation and conventions of [9]. For brevity we take α′ ≡ 2 everywhere.
D is always the number of spacetime dimensions.

The meaning of indices is taken to be as follows:

2Gravity is the dynamical curvature of spacetime. However, in relative locality, spacetime itself is a relative
notion. Thus, before we are able to describe gravity on spacetime, we must first refer to the metageometry in order
to determine what spacetime is. The restriction of the dynamics to this particular submanifold would then give
us the usual notion of gravity. The dynamical curvature of phase space is thus, in a sense, “gravity of gravity”, or
metagravity.
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• Lowercase Latin indices from the beginning of the alphabet a, b, c, . . . ∈ {0, 1} or ∈ {1, 2}:
Lorentzian or Euclidean worldsheet coordinates, respectively.

• Lowercase Latin indices from the middle of the alphabet . . . , l,m, n, . . . ∈ {0, 1}: internal
frame field coordinates on a Lorentzian worldsheet.

• Lowercase Latin indices from the end of the alphabet . . . , x, y, z ∈ {0, 1}: complex/chiral
worldsheet coordinates.

• Uppercase Latin indices from the beginning of the alphabet A,B,C, . . . ∈ {1, . . . , 2D}:
“unified” phase space coordinates.

• Uppercase Latin indices from the end of the alphabet . . . , X, Y, Z ∈ {+,−}: phase space
chiral projection components.

• Lowercase Greek indices α, β, . . . , µ, ν, . . . ∈ {1, . . . , D}: spacetime or momentum-space
coordinates.

If an object has both phase space indices A,B, . . . and chiral projection indices X,Y, . . . then they
will be separated by parentheses and the projection indices will always be the inner indices, for
example (VXY )AB .

Vectors will always have upper indices (Xµ,XA, . . .) while covectors will always have lower indices
(Pµ,PA, . . .).

We use the following metrics:

• HAB is the 2D-dimensional phase space Q-metric,

• ηAB is the 2D-dimensional phase space P-metric,

• hµν is the D-dimensional spacetime Minkowski metric,

• γab is the 2-dimensional worldsheet Minkowski metric.

The coordinates on a Lorentzian worldsheet are τ, σ, and we define σ0 ≡ τ , σ1 ≡ σ. The coordinates
on a Euclidean worldsheet are σ1, σ2.

Holomorphic fields on the string worldsheet are also referred to as “left-moving”, while antiholo-
morphic fields are “right-moving”. Projections on the + (−) eigenspace of the chiral structure J on
the target space correspond to holomorphic (antiholomorphic) fields on the worldsheet.

2 Conformal Deformations in Standard String Theory

We first discuss deformations of the worldsheet conformal field theory in standard string theory,
and show how they automatically give rise to the linearized Einstein equations.

2.1 Deformations of Conformal Field Theories

For our purposes, a 2-dimensional conformal field theory parametrized by complex coordinates z, z̄
is defined by the existence of a traceless energy-momentum tensor with a holomorphic (left-moving)
component T and an antiholomorphic (right-moving) component T̄ which satisfy the operator
product expansions (OPEs):

T (z)T (w) ∼ c/2

(z − w)
4 +

2T (w)

(z − w)
2 +

∂T (w)

z − w
, (2.1)

T̄ (z̄) T̄ (w̄) ∼ c̄/2

(z̄ − w̄)
4 +

2T̄ (w̄)

(z̄ − w̄)
2 +

∂̄T̄ (w̄)

z̄ − w̄
,

T (z) T̄ (w̄) ∼ 0,
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where the notation ∼ means “up to nonsingular terms as z, z̄ approach w, w̄”. Here c and c̄ are the
left-moving and right-moving central charges, respectively, and might in general be different.

A field Φ (z, z̄) is a primary field of weight
(
h, h̄

)
if and only if it has the following OPEs with T

and T̄ :

T (z) Φ (w, w̄) ∼ hΦ (w, w̄)

(z − w)
2 +

∂Φ (w, w̄)

z − w
, (2.2)

T̄ (z̄) Φ (w, w̄) ∼ h̄Φ (w, w̄)

(z̄ − w̄)
2 +

∂̄Φ (w, w̄)

z̄ − w̄
.

We see that T (z) is a field of weight (2, 0) and T̄ (z̄) is a field of weight (0, 2), but neither of them
are primary fields due to the 1/z4 term in the OPE. Alternatively, a field Φ (z, z̄) is a primary field
of weight

(
h, h̄

)
if it transforms under a conformal transformation z 7→ w (z) and z̄ 7→ w̄ (z̄), where

w, w̄ are arbitrary (anti)holomorphic functions, as

Φ (z, z̄) 7→ Φ′ (w, w̄) ≡
(
∂w

∂z

)−h(
∂w̄

∂z̄

)−h̄
Φ (z, z̄) . (2.3)

Let us now define an infinitesimal perturbation of the components of the energy-momentum tensor,

T (z) 7→ T (z) + δT (z, z̄) , T̄ (z̄) 7→ T̄ (z̄) + δT̄ (z, z̄) , (2.4)

where δT and δT̄ are in general independent. By perturbing the energy-momentum tensor, we
are deforming the conformal field theory into a new theory, defined by the new energy-momentum
tensor components T + δT and T̄ + δT̄ . We will only be interested in conformal deformations, for
which the new theory is also a conformal field theory. In other words, conformal deformations are
those that preserve the conformal symmetry.

Achiral canonical deformations (or just canonical deformations) are deformations where δT =
δT̄ = Φ and Φ is a (1, 1) primary field. Such deformations are automatically conformal. They
naturally appear in string theory, where (1, 1) primary fields are the vertex operators corresponding
to physical states of the string.

Chiral canonical deformations are a generalization of achiral canonical deformations where δT and
δT̄ are two independent (1, 1) primary fields; that is, in general δT 6= δT̄ . As we shall see, chiral
canonical deformations naturally appear in metastring theory.

More general conformal deformations, by (1, 1) primary fields plus additional boundary deformations,
may be used to study the symmetries of the theory [6]. They will be thoroughly investigated in
future work.

2.2 The Polyakov Action

We begin by introducing the worldsheet CFT of bosonic string theory and deriving some basic
results. These derivations are given here mainly to enable comparison with the subsequent derivation
of similar results in metastring theory. The educated reader should feel free to skip ahead to section
2.6.

The Polyakov action for a bosonic string propagating in flat spacetime is

SP [X] ≡ 1

8π

ˆ
Σ

hµν (?dXµ ∧ dXν) , (2.5)

where Σ is the 2-dimensional string worldsheet with local coordinates (σ, τ) and Lorentzian metric,
? is the Hodge dual on the worldsheet such that ?dτ = dσ and ?2 = 1, d is the exterior derivative on
the worldsheet and Xµ are local coordinates on a D-dimensional3 target space M with Minkowski

3In order to avoid a Weyl anomaly in the quantum theory, the central charge c of the worldsheet CFT must vanish.
As it turns out, canceling the unphysical gauge degrees of freedom in the path integrals requires the introduction of
Faddeev-Popov ghost fields, which contribute −26 to the central charge. Since the fields Xµ each contribute +1 to
the central charge, we must have 26 of them, which means that the target space must have D = 26 dimensions. This
fact will not, however, be of particular significance to us in this work.
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metric hµν , which we interpret as a (flat) spacetime. Note that the numerical factor is 1/4πα′ = 1/8π,
as we are taking α′ ≡ 2.

This action may be put into a more familiar form by writing it in local coordinates, with Lorentzian
worldsheet metric γab. This gives

SP,L [X] = − 1

8π

ˆ
d2σ
√
−γ γab∂aXµ∂bX

νhµν , (2.6)

where d2σ ≡ dσ ∧ dτ and γ ≡ det γab. The subscript L denotes Lorentzian signature. We define the
expectation value of an arbitrary functional F [X] with respect to the Lorentzian Polyakov action
using a path integral as follows:

〈F 〉 ≡
ˆ
DX eiSP,L[X] F [X] . (2.7)

We switch from the Lorentzian coordinates (σ, τ) to Euclidean coordinates
(
σ1, σ2

)
by performing

a Wick rotation: σ1 7→ σ and σ2 7→ − i τ . The action receives a factor of i. By convention we would
like the exponent in the Euclidean path integral to have a negative sign:

〈F 〉 ≡
ˆ
DX e−SP,E[X] F [X] , (2.8)

where the subscript E denotes Euclidean signature. This prompts us to define the Euclidean
Polyakov action with the opposite sign compared to the Lorentzian one:

SP,E [X] =
1

8π

ˆ
d2σ
√
γ γab∂aX

µ∂bX
νhµν , (2.9)

where now γab is a Euclidean worldsheet metric.

Finally, we switch from the Euclidean coordinates
(
σ1, σ2

)
to complex coordinates (z, z̄):

z ≡ σ1 + iσ2, z̄ ≡ σ1 − iσ2. (2.10)

We define the holomorphic and antiholomorphic partial derivatives as

∂ ≡ ∂z ≡
1

2
(∂1 − i ∂2) , ∂z̄ ≡ ∂̄ ≡

1

2
(∂1 + i ∂2) , (2.11)

respectively. This gives the desired result

∂z = ∂̄z̄ = 1, ∂z̄ = ∂̄z = 0. (2.12)

We can also invert these relations to obtain the Euclidean derivatives in terms of the complex
derivatives:

∂1 = ∂ + ∂̄, ∂2 = i
(
∂ − ∂̄

)
. (2.13)

Hence, after Wick-rotating, the Lorentzian derivatives are replaced with the complex derivatives as
follows:

∂σ 7→ ∂ + ∂̄, ∂τ 7→ ∂ − ∂̄. (2.14)

The flat Euclidean metric becomes, in complex coordinates, the off-diagonal metric

γxy ≡
∂σa

∂zx
∂σb

∂zy
γab =

1

2

(
0 1
1 0

)
. (2.15)

The integration measure gets a factor of 2 from the Jacobian, d2z = 2d2σ, and since
√
|γ| = 1/2

we have √
|γ|d2z =

√
|γ|d2σ. (2.16)

In complex coordinates, the action thus becomes

SP,C [X] =
1

4π

ˆ
d2z hµν∂X

µ∂̄Xν , (2.17)

where the subscript C stands for complex. We shall hereafter write the Polyakov action simply as
S; the signature and coordinate system are understood from context.

The equation of motion obtained by varying S with respect to X is ∂∂̄X = 0, from which we
conclude that ∂X (z) is holomorphic (left-moving) and ∂̄X (z̄) is antiholomorphic (right-moving).
As we shall see, this notion of worldsheet chirality will be of great importance in metastring theory.

7



2.3 The Energy-Momentum Tensor

The energy-momentum tensor of the worldsheet CFT may be calculated by varying the action with
respect to the metric:

Tab ≡ −
4π
√
γ

δS

δγab
, (2.18)

where the factor of −4π is just a convention. An alternative definition in terms of frame fields is

Tab ≡
2πγace

c
l

det (e)

δS

δe bl
. (2.19)

The calculation is straightforward, and may be found in Appendix A. Both definitions produce the
result

Tab = −1

2
hµν

(
∂aX

µ∂bX
ν − 1

2
γab∂cX

µ∂cXν

)
. (2.20)

In components, we have

T00 = T11 = −1

4
hµν (∂0X

µ∂0X
ν + ∂1X

µ∂1X
ν) , (2.21)

T01 = T10 = −1

2
hµν∂0X

µ∂1X
ν . (2.22)

We should also write the components of the energy-momentum tensor in complex coordinates, using
the metric

γxy =
1

2

(
0 1
1 0

)
. (2.23)

This gives

T (z) ≡ Tzz = −1

2
hµν∂X

µ∂Xν , T̄ (z̄) ≡ Tz̄z̄ = −1

2
hµν ∂̄X

µ∂̄Xν , (2.24)

and Tzz̄ = Tzz̄ = 0, which means the energy-momentum tensor is traceless, as it indeed must be.
Since it is also conserved, we have

γxy∂xTyz = 2∂zTz̄z + 2∂z̄Tzz = 2∂̄T (z) = 0, (2.25)

γxy∂xTyz̄ = 2∂zTz̄z̄ + 2∂z̄Tzz̄ = 2∂T̄ (z̄) = 0. (2.26)

This means that T (z) is holomorphic and T̄ (z̄) is antiholomorphic, justifying the notation T (z)
and T̄ (z̄).

2.4 The Propagator

In order to calculate OPEs in string theory, we first need to derive the XX OPE, also known as
the propagator. Recall that the Polyakov action in complex coordinates is

S =
1

4π

ˆ
d2z hµν∂X

µ∂̄Xν . (2.27)

The path integral of a total functional derivative vanishes, and thus we may write

0 =

ˆ
DX δ

δXµ (z, z̄)

(
e−S Xν (w, w̄)

)
=

ˆ
DX e−S

(
hµνδ (z − w, z̄ − w̄) +

1

2π
∂∂̄Xµ (z, z̄)Xν (w, w̄)

)
= hµν 〈δ (z − w, z̄ − w̄)〉+

1

2π
∂∂̄ 〈Xµ (z, z̄)Xν (w, w̄)〉 ,
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where ∂ ≡ ∂z and ∂̄ ≡ ∂z̄. Thus the following holds as an operator equation4:

∂∂̄Xµ (z, z̄)Xν (w, w̄) = −2πhµνδ (z − w, z̄ − w̄) . (2.28)

It’s easy to check that −hµν ln |z − w|2 solves this equation. Indeed, for z 6= w we have

∂∂̄
(
−hµν ln |z − w|2

)
= −hµν∂∂̄ (ln (z − w) + ln (z̄ − w̄)) = 0. (2.29)

For z → w we use the divergence theorem:ˆ
A

(
∂ωz − ∂̄ωz̄

)
d2z =

i

2

˛
∂A

(
ωz dz̄ + ωz̄ dz

)
, (2.30)

where ∂A is a counterclockwise circle around the integration region A. Integrating the left-hand
side of the above equation, we obtain

ˆ
A

∂∂̄
(
−hµν ln |z − w|2

)
d2z = −hµν

ˆ
A

(
∂

1

z̄ − w̄
+ ∂̄

1

z − w

)
d2z

=
i

2
hµν
˛
∂A

(
1

z − w
dz − 1

z̄ − w̄
dz̄

)
= −2πhµν

= −2πhµν
ˆ
A

δ (z − w, z̄ − w̄) d2z.

We thus conclude that
Xµ (z, z̄)Xν (w, w̄) = −hµν ln |z − w|2 . (2.31)

2.5 Calculating OPEs

In the quantum theory, the components of the energy-momentum tensor are

T (z) = −1

2
hµν : ∂Xµ∂Xν :, T̄ (z̄) = −1

2
hµν : ∂̄Xµ∂̄Xν :, (2.32)

where the :: indicate normal ordering. The OPE of two normal-ordered operators is given by

: A :: B :≡: AB : +
∑

contractions, (2.33)

where the sum is over all possible choices of different pairs of fields Xµ, one from A and one from
B, replacing each pair with the contraction given by the propagator found in section 2.4:

〈Xµ (z, z̄)Xν (w, w̄)〉 = −hµν ln |z − w|2 . (2.34)

We use 〈〉 to denote the contraction of any two fields. By taking derivatives of both sides, we may
derive additional contractions:

〈∂Xµ (z) ∂Xν (w)〉 = −hµν 1

(z − w)
2 , (2.35)

〈∂̄Xµ (z) ∂̄Xν (w)〉 = −hµν 1

(z̄ − w̄)
2 , (2.36)

〈∂Xµ (z) ∂̄Xν (w̄)〉 = 0. (2.37)

Another important contraction is that of a coordinate field and an exponential, given by the OPE
of ∂Xµ with ei p·X . Expanding the exponential in a series, we get:

∂Xµ (z) ei p·X(w,w̄) = ∂Xµ (z)
∞∑
n=0

(i pνX
ν (w, w̄))

n

n!
. (2.38)

4An operator equation of the form F (z, z̄) = 0 should be interpreted as a statement about expectation values
〈F (z, z̄) . . . 〉 = 0, where . . . stands for arbitrary operator insertions at points 6= z, z̄.
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For each n, there are exactly n ways to perform a contraction of ∂Xµ (z) with an Xν (w, w̄). Such
a contraction is of the form

〈∂Xµ (z)Xν (w, w̄)〉 = −hµν ∂
∂z

ln |z − w|2 = −hµν 1

z − w
. (2.39)

We thus get

: ∂Xµ (z) :: ei p·X(w,w̄) : =

∞∑
n=0

n· : (i pαX
α (w, w̄))

n−1

n!
: i pν 〈∂Xµ (z)Xν (w, w̄)〉

= − ihµνpν
1

z − w

∞∑
n=0

:
(i pαX

α (w, w̄))
n

n!
:

= − ihµνpν
1

z − w
: ei p·X(w,w̄) :,

or

〈∂Xµ (z) ei p·X(w,w̄)〉 = − ihµνpν
1

z − w
ei p·X(w,w̄), (2.40)

where it should be understood that the exponential on the right-hand side is not part of the
contraction; it remains, untouched, in the original expression, just as it would if one attempted to
differentiate or integrate it.

2.6 Perturbations of the Spacetime Metric

The Polyakov action with flat Lorentzian metric is of the form

S ∼
ˆ

d2σ hµν (∂τX
µ∂τX

ν − ∂σXµ∂σX
ν) . (2.41)

From this action we may find the momentum conjugate to X:

Pµ ≡
δS

δ (∂τXµ)
= hµν∂τX

ν . (2.42)

Recall that the components of the energy-momentum tensor are

T (z) = −1

2
hµν∂X

µ∂Xν , T̄ (z̄) = −1

2
hµν ∂̄X

µ∂̄Xν . (2.43)

The holomorphic and antiholomorphic derivatives are given by

∂Xµ =
1

2
(∂σX

µ + ∂τX
µ) =

1

2
(∂σX

µ + hµνPν) , (2.44)

∂̄Xµ =
1

2
(∂σX

µ − ∂τXµ) =
1

2
(∂σX

µ − hµνPν) . (2.45)

Note the appearance of the (inverse) metric, hµν , in these expressions. We can invert them to find

∂σX
µ = ∂Xµ + ∂̄Xµ, Pν = hµν

(
∂Xµ − ∂̄Xµ

)
. (2.46)

Now, we perturb hµν 7→ hµν + δhµν . Then

δ (∂Xµ) = +
1

2
δhµνPν = +

1

2
δhµνhαν

(
∂Xα − ∂̄Xα

)
, (2.47)

δ
(
∂̄Xµ

)
= −1

2
δhµνPν = −1

2
δhµνhαν

(
∂Xα − ∂̄Xα

)
. (2.48)

Using the identity5

hαβδh
βγ = −δhαβhβγ , (2.49)

5This comes from hαβδh
βγ + δhαβh

βγ = δ
(
hαβh

βγ
)

= δ
(
δγα

)
= 0.
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we discover that the energy-momentum tensor changes as follows:

δT = −1

2
δhµν∂X

µ∂Xν − hµν∂Xµδ (∂Xν)

= −1

2
δhµν∂X

µ∂Xν − 1

2
hµν∂X

µδhναhαβ
(
∂Xβ − ∂̄Xβ

)
= −1

2
δhµν∂X

µ∂Xν +
1

2
δhµν∂X

µ
(
∂Xν − ∂̄Xν

)
= −1

2
δhµν∂X

µ∂̄Xν ,

δT̄ = −1

2
δhµν ∂̄X

µ∂̄Xν − hµν ∂̄Xµδ
(
∂̄Xν

)
= −1

2
δhµν ∂̄X

µ∂̄Xν +
1

2
hµν ∂̄X

µδhναhαβ
(
∂Xβ − ∂̄Xβ

)
= −1

2
δhµν ∂̄X

µ∂̄Xν − 1

2
δhµν ∂̄X

µ
(
∂Xν − ∂̄Xν

)
= −1

2
δhµν∂X

µ∂̄Xν .

In particular, we see that δT = δT̄ . According to our definitions in section 2.1, we see that these
perturbations define an (achiral) canonical deformation if they are primary fields of weight (1, 1).

2.7 Deforming the Worldsheet CFT

Let us denote Vµν ≡ δhµν . Based on the analysis of section 2.6, we define

δT ≡ δT̄ ≡ Vµν∂Xµ∂̄Xν , (2.50)

and demand that the deformation is canonical, that is, δT and δT̄ are (1, 1) primary fields. This will
ensure that conformal symmetry is not broken. Of course, since δT = δT̄ , it’s enough to consider
only δT . In order to determine the necessary conditions on Vµν for δT to be of weight (1, 1), we
must calculate its OPE with T .

To facilitate this calculation, we expand Vµν as a superposition of plane waves, or in other words,
we perform a Fourier transform:

Vµν (X) ≡
ˆ

dDp

(2π)
D

Πµν (p) ei p·X , (2.51)

where p ·X ≡ pµXµ is the spacetime (Minkowski) inner product, pµ is the string’s D-momentum
and Πµν is a polarization tensor. Note that pµ and Πµν (p) are constant on the worldsheet, that
is, they don’t depend on z, z̄. We assume that Πµν is symmetric since we are only interested in
perturbations of the spacetime metric. Now we can focus on a single plane wave of momentum p:6

δT = Πµν ei p·X ∂Xµ∂̄Xν . (2.52)

Let us calculate the OPE of T and δT :

T (z) δT (w, w̄) = −1

2
hµνΠαβ : ∂Xµ (z) ∂Xν (z) :: ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) : . (2.53)

6The astute reader will recognize a similarity with the graviton vertex operator,
´

d2zΠµν ei p·X ∂Xµ∂̄Xν ,
corresponding to the first excited state of a closed string. This is, of course, not a coincidence, as we have briefly
mentioned in section 2.1. However, we will not discuss the string spectrum in this work.
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First, we sum on all possible contractions:

T (z) δT (w, w̄) =

− 1

2
hµνΠαβ : ∂̄Xβ (w̄) ei p·X(w,w̄) : 〈∂Xµ (z) ∂Xα (w)〉〈∂Xν (z) ei p·X(w,w̄)〉+ (µ↔ ν) +

− 1

2
hµνΠαβ : ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) : 〈∂Xµ (z) ei p·X(w,w̄)〉〈∂Xν (z) ei p·X(w,w̄)〉+

− 1

2
hµνΠαβ : ∂Xν (z) ∂̄Xβ (w̄) ei p·X(w,w̄) : 〈∂Xµ (z) ∂Xα (w)〉+ (µ↔ ν) +

− 1

2
hµνΠαβ : ∂Xν (z) ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) : 〈∂Xµ (z) ei p·X(w,w̄)〉+ (µ↔ ν) .

Writing the contractions explicitly, we get

T (z) δT (w, w̄) = − ihαγpγ

(z − w)
3 Παβ : ∂̄Xβ (w̄) ei p·X(w,w̄) : +

+
p2/2

(z − w)
2 Παβ : ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) : +

+
1

(z − w)
2 Παβ : ∂Xα (z) ∂̄Xβ (w̄) ei p·X(w,w̄) : +

+
i pµ
z − w

Παβ : ∂Xµ (z) ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) : .

Next, we expand ∂Xµ (z) around z = w and disregard terms nonsingular as z → w:

T (z) δT (w, w̄) =

− ihαγpγ

(z − w)
3 Παβ : ∂̄Xβ (w̄) ei p·X(w,w̄) : +

1 + p2/2

(z − w)
2 Παβ : ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) : +

+
1

z − w
Παβ

(
i pµ : ∂Xµ (w) ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) : + : ∂∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) :

)
.

Recognizing the last line as a derivative

∂
(

: ∂Xα (w) ∂̄Xβ (w̄) ei p·X(w,w̄) :
)
, (2.54)

and plugging in the original expression for δT , we obtain

T (z) δT (w, w̄) = − ihαγpγ

(z − w)
3 Παβ : ∂̄Xβ (w̄) ei p·X(w,w̄) : +

(
1 + p2/2

)
δT (w, w̄)

(z − w)
2 +

∂δT (w, w̄)

z − w
.

(2.55)
The OPE with T̄ may be calculated analogously. From the definition (2.2) of a primary field we see
that δT is a primary field with weight (1, 1) only of two conditions are satisfied. First, since the
weight is

h = h̄ = 1 +
p2

2
, (2.56)

we must have p2 = 0, i.e. the field is massless. Second, in order to get rid of the (z − w)
−3

term we
must have

pµΠµν = 0. (2.57)

These two conditions may alternatively be written in terms of a single plane wave δhµν = Vµν =
Πµν ei p·X as follows:

�δhµν = 0, ∂µδh
µν = 0, (2.58)

where � ≡ ∂µ∂µ is the spacetime d’Alembertian.

In conclusion, by considering canonical deformations of the worldsheet CFT, we have discovered
that the perturbation of the metric, δhµν , must obey the linearized Einstein equation, albeit in
a particular gauge. As shown in [6], it is possible to obtain a gauge-invariant equation of motion
(and much more) by considering more general deformations. This procedure, and its generalization
to metastring theory, will be the focus of future investigation.
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3 Conformal Deformations in Metastring Theory: Part I

We now turn our attention to metastring theory. We would like to find the equations of motion for
the background fields – the so-called metagravity equations – by generalizing the procedure used
above. However, we will soon learn that such a generalization is not quite straightforward.

First, let us introduce the theory, derive similar results to those derived above for standard string
theory, and discuss some features unique to the metastring formulation such as target space chirality
and the metageometry.

3.1 The Metastring Worldsheet Theory

3.1.1 The Momentum-Space Polyakov Action

Let us derive the metastring action. The first step is to write down the Polyakov action in terms of
momentum-space coordinates. We introduce a momentum scale ε and a length scale λ such that

~ ≡ λε, α′ ≡ λ

ε
=⇒ λ2 = ~α′, ε2 =

~
α′
. (3.1)

Then we may write the Polyakov action (2.5) as a dimensionless first-order action:

Ŝ [X,P] ≡ 1

2π

ˆ
Σ

(
1

λε
Pµ ∧ dXµ +

1

2ε2
hµν (?Pµ ∧Pν)

)
, (3.2)

where P is an auxiliary 1-form with dimension of momentum. To see that this action is equivalent
to (2.5), we should integrate out P. Varying the action with respect to P, we get

δŜ =
1

2π

ˆ
Σ

(
− 1

λε
dXµ ∧ δPµ +

1

ε2
hµν (?Pν ∧ δPµ)

)
, (3.3)

and thus
Pµ =

ε

λ
hµν (?dXν) . (3.4)

Plugging this back into the action (3.2), it’s easy to see that we indeed obtain (2.5) back, or more
precisely that

Ŝ [X] =
1

4πλ2

ˆ
Σ

hµν (?dXµ ∧ dXν) =
α′

λ2
SP [X] =

1

~
SP [X] , (3.5)

where we continue to take α′ ≡ 2 as before. Alternatively, we can write the equation of motion
(3.4) as

dXµ =
λ

ε
hµν (?Pν) , (3.6)

and plug it into (3.2) to obtain

Ŝ [P] = − 1

4πε2

ˆ
Σ

hµν (?Pµ ∧Pν) . (3.7)

Furthermore, by integrating out X, it’s easy to see that we get dP = 0, i.e. P is closed. Thus we
can locally write P ≡ dY where Y is a 0-form with dimensions of momentum; we may think of
it as a momentum-space coordinate, as in some sense it locally encodes the degrees of freedom of
P. We may then plug P = dY into (3.2) to obtain the Polyakov action for the momentum-space
coordinates Y plus a boundary term:

Ŝ [X,Y ] =
1

2π

ˆ
Σ

(
1

λε
dYµ ∧ dXµ +

1

2ε2
hµν (?dYµ ∧ dYν)

)
=

1

2πλε

ˆ
∂Σ

YµdXµ +
α′

ε2
SP [Y ] .

Observe that

Ŝ [X,Y ] =
α′

λ2
SP [X] ∼ α′

ε2
SP [Y ] . (3.8)

In this way, the momentum scale ε is replacing the length scale λ in the dual theory.
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3.1.2 The Phase Space Metastring Action

The worldsheet of a metastring is a nonlinear sigma model with a 2D-dimensional phase space as
the target manifold. To formulate the appropriate action, we decompose P in local coordinates as

Pµ ≡ Pµ dσ +Qµ dτ. (3.9)

Then the action (3.2) reads

Ŝ [X,Q,P ] =
1

2π

ˆ
d2σ

(
1

λε
(Pµ∂τX

µ −Qµ∂σXµ) +
1

2ε2
hµν (QµQν − PµPν)

)
, (3.10)

where we used dX = ∂σX dσ + ∂τX dτ and d2σ ≡ dσ ∧ dτ . It’s easy to see that the equations of
motion for P and Q are

Pµ =
ε

λ
hµν∂τX

ν , Qµ =
ε

λ
hµν∂σX

ν . (3.11)

Of course, this also follows directly from our earlier result that ?Pµ = ε
λhµν dXν . Let us integrate

out Q by inserting its equation of motion into the action:

Ŝ [X,P ] =
1

2π

ˆ
d2σ

(
1

λε
Pµ∂τX

µ − 1

2λ2
hµν∂σX

µ∂σX
ν − 1

2ε2
hµνPµPν

)
. (3.12)

Recalling our earlier definition P ≡ dY , we take P ≡ ∂σY where Y is a momentum-space coordinate.
Then the action becomes

Ŝ [X,Y ] =
1

2π

ˆ
d2σ

(
1

λε
∂τX

µ∂σYµ −
1

2λ2
hµν∂σX

µ∂σX
ν − 1

2ε2
hµν∂σYµ∂σYν

)
. (3.13)

Now comes the moment we have been building up for. We unify X and Y into a dimensionless
coordinate on phase space which, in a notation borrowed from double field theory7, is defined as

XA ≡
(
Xµ/λ
Yµ/ε

)
. (3.14)

From now on we will always take λ ≡ ε ≡ 1 for brevity, such that X ≡ (X,Y ). The phase space
P, with coordinates XA, has 2D dimensions. In terms of indices, if spacetime has D dimensions
then µ = 1, . . . , D while A = 1, . . . , 2D. In order to write the action in terms of X we must have
a way to project it onto X and Y . For this purpose we define a constant polarization metric (or
P-metric) η of signature (D,D):

ηAB ≡
(

0 δ
δT 0

)
, (3.15)

where δ is the D-dimensional identity matrix, such that

XAηABX′B =
(
Xµ Yµ

)( 0 δνµ
δµν 0

)(
X ′ν

Y ′ν

)
= XµY ′µ + YµX

′µ. (3.16)

We also define a constant quantum metric (or Q-metric) H of signature (2, 2D − 2):

HAB ≡
(
h 0
0 h−1

)
, (3.17)

where hµν is the D-dimensional Lorentzian metric, such that

XAHABX′B =
(
Xµ Yµ

)( hµν 0
0 hµν

)(
X ′ν

Y ′ν

)
= XµhµνX

′ν + Yµh
µνY ′ν . (3.18)

Finally, we define a constant symplectic form ω:

ωAB ≡
(

0 δ
−δT 0

)
, (3.19)

7For a review see, for example, [10].
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such that

XAωABX′B =
(
Xµ Yµ

)( 0 δνµ
−δµν 0

)(
X ′ν

Y′ν

)
= XµY ′µ − YµX ′µ. (3.20)

It’s easy to see that the last two terms in the action (3.13) may be written succinctly using the
Q-metric H and the phase space coordinates X as

1

2ε2
hµν∂σYµ∂σYν +

1

2λ2
hµν∂σX

µ∂σX
ν =

1

2
∂σXAHAB∂σXB . (3.21)

To write the first term in (3.13) in terms of X we note that the combination 1
2 (η + ω) projects

X ≡ (X,Y ) onto (Y, 0) while 1
2 (η − ω) projects it onto (0, X):

1

2
(η + ω)AB XB =

(
0 δνµ
0 0

)(
Xν

Yν

)
=

(
Yµ
0

)
, (3.22)

1

2
(η − ω)AB XB =

(
0 0
δµν 0

)(
Xν

Yν

)
=

(
0
Xµ

)
. (3.23)

We can thus write
1

λε
∂τX

µ∂σYµ =
1

2
∂τXA (η + ω)AB ∂σX

B . (3.24)

This allows us to finally write the Lorentzian metastring sigma-model action, also known as the
Tseytlin action:

S [X] ≡ 1

4π

ˆ
d2σ

(
∂τXA (η + ω)AB ∂σX

B − ∂σXAHAB∂σXB
)
. (3.25)

Together, the metrics H and η and the symplectic form ω describe the geometry of the metastring
target space, which we shall refer to as the metageometry. In this work we will take them to be a
flat and fixed background, and find the behavior of small perturbations over this fixed background.
However, in general the metageometry can and should be completely dynamical. The theory
describing the dynamics of the metageometry is called metagravity.

The symplectic structure ω expresses the fact that our phase space P is a symplectic manifold.
Both spacetime L and momentum space L̃ are D-dimensional Lagrangian submanifolds of the
2D-dimensional phase space. Indeed, it’s easy to see that ω vanishes on pure spacetime vectors of
the form (X, 0) as well as pure momentum-space vectors of the form (0, Y ).

Furthermore, as may be seen from equations (3.22) and (3.23) above, the kernel of η + ω (η − ω)
consists of pure spacetime (momentum-space) vectors: L ≡ ker (η + ω) and L̃ ≡ ker (η − ω).
Together, the spacetime and momentum-space manifolds make up a bilagrangian structure on
P, decomposing it into two transverse Lagrangian submanifolds such that TP = TL ⊕ T L̃ and
TL ∩ T L̃ = {0}.

The P-metric η has the property that XAηABXB = 0 on L and L̃, that is, they are null subspaces
of η. If we allow η to be arbitrary, it changes the definition of spacetime and momentum space.
The choice of L and L̃ as Lagrangian submanifolds of P is called a polarization, and thus η is called
the polarization metric.

The Q-metric H is the generalized metric on P; when allowed to be dynamical, it endows phase
space with a dynamical metric structure8. When restricted to the spacetime manifold L it reduces
to the usual spacetime metric, h ≡ H

∣∣
L

.

8Note that in a more general background containing a 2-form B-field, H will depend on B. However, as previously
stated, in this work we are assuming a vanishing B-field.
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3.1.3 The Metastring Energy-Momentum Tensor

Our next step is to find the energy-momentum tensor for the metastring worldsheet. Since our
action is not symmetric in τ, σ, we use the frame field method introduced in 2.3 and Appendix A.
We define the frame fields ∂l and co-frame fields el by

el ≡ ela dσa, ∂l ≡ e al ∂a, glme
l
ae
m
b = γab, γabe

a
l e

b
m = glm, ∂le

m = δml . (3.26)

We take ela = δla and e al = δal . Thus we may write the Lorentzian metastring action as

S =
1

4π

ˆ
d2σ det (e)

(
∂0XA (η + ω)AB ∂1XB − ∂1XAHAB∂1XB

)
, (3.27)

where 0, 1 are internal indices. Recall that the energy-momentum tensor is given by

Tab = γace
c
l T

l
b =

2πγace
c
l

det (e)

δS

δe bl
. (3.28)

To calculate this, we use

δ det (e) = − det (e) elaδe
a
l , δ∂l = δe al e

m
a∂m, (3.29)

to get

δS = − 1

4π

ˆ
d2σ det (e)

(
∂0XA (η + ω)AB ∂1XB − ∂1XAHAB∂1XB

)
elbδe

b
l +

+
1

4π

ˆ
d2σ det (e) ∂lXA (η + ω)AB ∂1XBelbδe b0 +

+
1

4π

ˆ
d2σ det (e)

(
∂0XA (η + ω)AB ∂lX

B − 2∂1XAHAB∂lXB
)
elbδe

b
1 .

Therefore

Tab =
2πγace

c
l

det (e)

δS

δe bl

=
1

2
(η + ω)AB

(
∂bXA∂1XBγa0 + ∂0XA∂bXBγa1 − ∂0XA∂1XBγab

)
+

+
1

2
HAB

(
∂1XA∂1XBγab − 2∂1XA∂bXBγa1

)
.

The individual components are:

T00 = −1

2
∂1XAHAB∂1XB , T01 = −1

2
∂1XA (η + ω)AB ∂1XB , (3.30)

T10 = −∂0XAHAB∂1XB +
1

2
∂0XA (η + ω)AB ∂0XB , T11 = −1

2
∂1XAHAB∂1XB . (3.31)

For brevity we denote contraction using the P-metric η by · and define the chiral structure J ≡ η−1H,
such that for two phase-space vectors V,W we have

V ·W ≡ V AηABWB , V · JW ≡ V AHABW
B . (3.32)

Noting in addition that ω is antisymmetric, and thus vanishes when contracted with two identical
vectors, we may write:

T00 = −1

2
∂1X · J∂1X, T01 = −1

2
∂1X · ∂1X, (3.33)

T10 = −∂0X · J∂1X +
1

2
∂0X · ∂0X, T11 = −1

2
∂1X · J∂1X. (3.34)

Observe that the energy-momentum tensor is traceless, T aa = 0, as expected.
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3.1.4 The Lorentz Constraint and Gauge Fixing

Recall that the worldsheet metric is the Minkowski metric ds2 = −dτ2 + dσ2. An infinitesimal
Lorentz transformation on the worldsheet with parameter λ is of the form δ dτ = λdσ and
δ dσ = λ dτ . This gives

δ (∂τX) =
1

λ
∂σX, δ (∂σX) =

1

λ
∂τX. (3.35)

Let us write down the variation of the action (3.25) with respect to this transformation:

δS =
1

2π

ˆ
d2σ

1

λ

(
1

2

(
∂σXAηAB∂σXB + ∂τXAηAB∂τXB

)
− ∂τXAHAB∂σXB

)
, (3.36)

where we used the fact that ω is antisymmetric. Thus the action is Lorentz-invariant if the following
(Lorentz) constraint is satisfied:

L̂ ≡ 1

2

(
∂σXAηAB∂σXB + ∂τXAηAB∂τXB

)
− ∂τXAHAB∂σXB = 0. (3.37)

With the η inner product · defined above and J ≡ η−1H, we may write L̂ as

L̂ =
1

2
(∂τX · ∂τX + ∂σX · ∂σX)− ∂τX · J∂σX. (3.38)

Let us now define the phase-space vector

S ≡ ∂τX− J∂σX. (3.39)

Then
1

2
S · S =

1

2

(
∂τX · ∂τX + ∂σX · J2∂σX

)
− ∂τX · J∂σX, (3.40)

and thus we may write

L̂ =
1

2
S · S +

1

2
∂σX ·

(
1− J2

)
∂σX. (3.41)

We see that this constraint imposes J2 = 1 and S · S = 0. Now, the equation of motion may be
found by varying (3.25) with respect to X. We have

δS = − 1

2π

ˆ
d2σ

(
∂τ∂σXAηAB − ∂σ∂σXAHAB

)
δXB , (3.42)

which gives
∂σ ((η∂τ −H∂σ)X) = 0 =⇒ ∂σS = 0. (3.43)

Hence S depends only on τ . The Lorentz condition S · S = 0 means that S (τ) is in a null subspace
of the P-metric η and thus in a Lagrangian subspace L̃ of P . Finally, let us consider the worldsheet
time translation

δX (τ, σ) ≡ F (τ) , (3.44)

where F is any phase-space vector such that ∂σF = 0. Applying this to the action (3.25), we obtain
the boundary term

δS =
1

4π

ˆ
d2σ ∂σXA (η − ω)AB ∂τF

B =
1

4π

ˆ
dτ ∆A (η − ω)AB ∂τF

B , (3.45)

where ∆ (τ) ≡ X (2π, τ)− X (0, τ) is the monodromy. The variation vanishes if ∂τF is in the kernel
of η − ω, which implies that ∂τF is null with respect to η, i.e. ∂τF · ∂τF = 0. Now, under time
translation we have

δS (τ) = δ (∂τX− J∂σX) = ∂τF. (3.46)

By fixing ∂τF ≡ −S, which is possible since S is also a null vector with respect to η, we are able to
choose a gauge where S = 0. For the rest of this work we shall work in this gauge.
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3.1.5 Implications of Gauge-Fixing S = 0

Now that we have chosen a gauge where S = 0, the Lorentz constraints are satisfied provided that
J2 = 1. Thus the action is invariant under worldsheet Lorentz transformations. We have previously
found that the energy-momentum tensor is

T00 = −1

2
∂1X · J∂1X, T01 = −1

2
∂1X · ∂1X, (3.47)

T10 = −1

2
(2∂0X · J∂1X− ∂0X · ∂0X) , T11 = −1

2
∂1X · J∂1X. (3.48)

The gauge S = 0 means that
S = ∂0X− J∂1X = 0. (3.49)

Therefore in this gauge we may replace (on-shell) ∂0X with J∂1X and vice versa. Note also that
JTηJ = η, so JX · JX = X · X. This allows us to write the energy-momentum tensor in a more
symmetric form:

T00 = −1

4
(∂0X · J∂0X + ∂1X · J∂1X) , T01 = −1

2
∂0X · J∂1X, (3.50)

T10 = −1

2
∂0X · J∂1X, T11 = −1

4
(∂0X · J∂0X + ∂1X · J∂1X) . (3.51)

Observe that we may write this simply as

Tab = −1

2
∂aX · J∂bX +

1

4
γab∂cX · J∂cX

= −1

2
HAB

(
∂aXA∂bXB −

1

2
γab∂cXA∂cXB

)
,

where γab is the worldsheet Minkowski metric. This is, of course, analogous to the energy-momentum
tensor (2.20) for the Polyakov string, with HAB in place of the spacetime metric hµν .

3.2 Chirality In Metastring Theory

3.2.1 Complex (Chiral) Coordinates

In order to calculate OPEs on the metastring worldsheet, we should write everything down in complex
coordinates. Recall that the relations between the Lorentzian coordinates and the (Wick-rotated,
Euclidean) complex coordinates are

∂σ 7→ ∂ + ∂̄, ∂τ 7→ ∂ − ∂̄. (3.52)

Recall also that, by convention, the complex action should have a minus sign relative to the
Lorentzian action (3.25), as a Wick rotation is involved, and also that d2σ = d2z

√
γ = 1

2d2z.
Putting everything together, we discover that the metastring action in complex coordinates is

S =
1

4π

ˆ
d2z

(
∂XA (H − ω)AB ∂̄X

B +
1

2
∂XA (H − η)AB ∂X

B +
1

2
∂̄XA (H + η)AB ∂̄X

B

)
,

(3.53)
where we used the fact that the metrics H and η are symmetric while the symplectic form ω is
antisymmetric. We call these coordinates chiral since they make manifest the distinction between
the holomorphic (left-moving) ∂X (z) and antiholomorphic (right-moving) ∂̄X (z̄) in metastring
theory, which is not present in the standard Polyakov action. The importance of chirality in
metastring theory will be further clarified shortly.

A standard calculation gives the energy-momentum tensor in these coordinates:

Txy =

(
− 1

2∂X · J∂X 0
0 − 1

2 ∂̄X · J∂̄X

)
. (3.54)
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As a consistency check, recall that the Minkowski metric in complex coordinates is

γxy =
∂σa

∂zx
∂σb

∂zy
γab =

1

2

(
0 1
1 0

)
. (3.55)

Thus
T xx ≡ γxyTxy = 2 (Tzz̄ + Tzz̄) = 0, (3.56)

and the energy-momentum tensor is traceless as required. We define a holomorphic (left-moving)
component T (z) and an antiholomorphic (right-moving) component T̄ (z̄):

T (z) ≡ Tzz = −1

2
∂X · J∂X, T̄ (z̄) ≡ Tz̄z̄ = −1

2
∂̄X · J∂̄X. (3.57)

The chiral action (3.53) has the appealing property that it is symmetric in the worldsheet coordinates,
unlike (3.25). The second (holomorphic, left-moving) term differs from the third (antiholomorphic,
right-moving) term by the sign of the P-metric η.

3.2.2 The Chiral Structure J and Chiral Projectors

Explicitly, the chiral structure J ≡ η−1H is9

J = η−1H =

(
0 1
1 0

)(
h 0
0 h−1

)
=

(
0 h−1

h 0

)
. (3.58)

It’s compatible with η and H:

JTη = H = ηJ =⇒ JTηJ = η, (3.59)

JTH = Hη−1H = HJ =⇒ JTHJ = H. (3.60)

We use the chiral structure to define

P± ≡
1

2
(1± J) =

1

2
η−1 (η ±H) , (3.61)

such that

P± =
1

2
(1± J) =

1

2

(
1 ±h−1

±h 1

)
. (3.62)

Acting on a phase-space vector X = (X,Y ), we get

P±X =
1

2

(
1 ±h−1

±h 1

)(
X
Y

)
=

1

2

(
X ± Y
Y ±X

)
. (3.63)

We interpret P±X as the chiral components of X and P± as chiral projectors; they satisfy

X = P+X + P−X, P+P−X = P−P+X = 0, P 2
± = P±. (3.64)

Observe that, since J2 = 1, we have
JP±X = ±P±X, (3.65)

so the P± project on the eigenspaces ±1 of J . This provides us with a notion of target space (i.e.
phase space) chirality, determined by the J eigenvalue.

Let us find a relation between worldsheet chirality, as determined by ∂ and ∂̄, and target space
chirality, as determined by the J = ±1 eigenspaces. In complex coordinates we have

S ≡ ∂τX− J∂σX = (1− J) ∂X− (1 + J) ∂̄X = 2P−∂X− 2P+∂̄X. (3.66)

Then setting S = 0 means that
P−∂X = P+∂̄X. (3.67)

9Recall that we are assuming a background with vanishing B-field.
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Now, we have
∂σX = ∂X + ∂̄X, ∂τX = ∂X− ∂̄X. (3.68)

Taking the projections of these equations and using P−∂X = P+∂̄X gives

∂X = P+∂σX = P+J∂τX, ∂̄X = P−∂σX = P−J∂τX. (3.69)

This tells us that the holomorphic (left-moving) fields ∂X and antiholomorphic (right-moving)
fields ∂̄X on the worldsheet are also the projections of ∂σX (or J∂τX) on the J = +1 and J = −1
eigenspaces, respectively.

3.2.3 Chiral Notation

Given an arbitrary phase-space vector V, we can separate it into J = ±1 components:

V = P+V + P−V, (3.70)

or in index notation
VA = (P+)

A
B VB + (P−)

A
B VB . (3.71)

We therefore adopt the notation

V± ≡ P±V, V ≡ V+ + V−. (3.72)

With this notation, we have

(∂σX)+ = ∂X, (∂σX)− = ∂̄X. (3.73)

Therefore we adopt the suggestive notation

∂+X ≡ ∂X, ∂−X ≡ ∂̄X, (3.74)

such that
P+∂+X = ∂+X, P−∂−X = ∂−X, P+∂−X = P−∂+X = 0. (3.75)

Similarly, given an arbitrary rank-2 tensor V , we can separate it into four J = ±1 components:

V = V++ + V+− + V−+ + V−−, (3.76)

where, for X,Y ∈ {+,−},

(VXY )AB ≡ (PX)
C
A VCD (PY )

D
B =⇒ VXY ≡ PT

XV PY . (3.77)

If the tensor has upper indices, then this would be instead

(VXY )
AB ≡ (PX)

A
C V

CD (PY )
B
D =⇒ VXY ≡ PXV PT

Y . (3.78)

Similarly, if the tensor has one upper and one lower index, the we would have

(VXY )
A
B ≡ (PX)

A
C V

C
D (PY )

D
B =⇒ VXY ≡ PXV PY . (3.79)

For brevity we will sometimes not write the transpose symbol explicitly; it should then be understood
from context.
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3.2.4 Symmetry Properties of Projections

Any rank-2 tensor may be separated into symmetric and antisymmetric components:

VAB =

(
VAB + VBA

2

)
+

(
VAB − VBA

2

)
≡ V(AB) + V[AB] ≡ SAB +AAB . (3.80)

Let us project the symmetric and antisymmetric parts individually:

(SXY )AB = (PX)
C
A SCD (PY )

D
B , (AXY )AB = (PX)

C
AACD (PY )

D
B . (3.81)

It’s easy to see that

(SXY )AB = (SY X)BA , (AXY )AB = − (AY X)BA . (3.82)

In particular, if X = Y then the symmetric (antisymmetric) part of the projection is the projection
of the symmetric (antisymmetric) part:

(VXX)(AB) = (SXX)AB , (VXX)[AB] = (AXX)AB . (3.83)

In other words, a diagonal (±±) projection preserves the symmetry or antisymmetry of the projected
tensor. For X 6= Y we have

(VXY )AB = (SXY )AB + (AXY )AB , (VY X)BA = (SXY )AB − (AXY )AB . (3.84)

This means that for any given tensor V , we don’t need to consider both off-diagonal projections
V+− and V−+ individually; it is sufficient to consider only the +− projection, while projecting the
symmetric and antisymmetric parts of V individually.

3.2.5 Important Projections

Let us find the projections of various tensors of interest. For the projectors P± themselves we have
the obvious result

(P±)±± = P±, (P±)∓∓ = (P±)±∓ = (P±)∓± = 0. (3.85)

For the chiral structure J we have, using J2 = 1,

JXY =
1

4
((X + Y ) + (1 +XY ) J) . (3.86)

Thus
J±± = ±P±, J±∓ = 0. (3.87)

For the metrics H and η we shall use the compatibility relations

JTη = H = ηJ =⇒ JTηJ = η, (3.88)

JTH = η = HJ =⇒ JTHJ = H. (3.89)

We see that

HXY =
1

4

(
1 +XJT

)
H (1 + Y J)

=
1

4
((1 +XY )H + (X + Y ) η) ,

ηXY =
1

4

(
1 +XJT

)
η (1 + Y J)

=
1

4
((1 +XY ) η + (X + Y )H) .
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Therefore

H±± = ±η±± =
1

2
(H ± η) , H±∓ = η±∓ = 0. (3.90)

J is also compatible with the inverse metrics:

JH−1 = η−1 = H−1JT =⇒ JH−1JT = H−1, (3.91)

Jη−1 = H−1 = η−1JT =⇒ Jη−1JT = η−1. (3.92)

Hence we have the corresponding relations

H−1
±± = ±η−1

±± =
1

2

(
H−1 ± η−1

)
, H−1

±∓ = η−1
±∓ = 0. (3.93)

Here we are abusing notation slightly. It must be stressed that, for example, H−1
++ means

(
H−1

)
++

,

the ++ projection of H−1, and not the inverse of H++; projected matrices are not invertible.

We conclude that the metrics H and η are, in some way, “equivalent” up to a sign when projected
on the chiral spaces. Thus, when dealing with projections, it will usually not matter much whether
we use H or η. For example, the components of the energy-momentum tensor may be written in
various equivalent ways:

T (z) = −1

2
∂X · J∂X = −1

2
∂XH∂X = −1

2
∂Xη∂X = −1

4
∂σX (H + η) ∂σX, (3.94)

T̄ (z̄) = −1

2
∂̄X · J∂̄X = −1

2
∂̄XH∂̄X = +

1

2
∂̄Xη∂̄X = −1

4
∂σX (H − η) ∂σX. (3.95)

3.3 Calculating OPEs

3.3.1 The Propagator

We now repeat the calculation done in section (2.4) for the chiral metastring action (3.53):

S =
1

4π

ˆ
d2z

(
∂XA (H − ω)AB ∂̄X

B +
1

2
∂XA (H − η)AB ∂X

B +
1

2
∂̄XA (H + η)AB ∂̄X

B

)
.

(3.96)
As before, we use the fact that the path integral of a total functional derivative vanishes:

0 =

ˆ
DX δ

δXA (z, z̄)

(
e−S XB (w, w̄)

)
=

ˆ
DX e−S

(
δBAδ (z − w, z̄ − w̄) +

+
1

4π

(
2HAC∂∂̄ + (H − η)AC ∂∂ + (H + η)AC ∂̄∂̄

)
XC (z, z̄)XB (w, w̄)

)
= δBA 〈δ (z − w, z̄ − w̄)〉+

1

4π

〈(
2HAC∂∂̄ + (H − η)AC ∂∂ + (H + η)AC ∂̄∂̄

)
XC (z, z̄)XB (w, w̄)

〉
.

Hence the following operator equation holds:(
HAC∂∂̄ +

1

2
(H − η)AC ∂∂ +

1

2
(H + η)AC ∂̄∂̄

)
XC (z, z̄)XB (w, w̄) = −2πδBAδ (z − w, z̄ − w̄) .

(3.97)
To solve this equation, first recall the definition of the chiral structure and projectors:

J ≡ η−1H, P± ≡
1

2
(1± J) =

1

2
η−1 (η ±H) . (3.98)

Multiplying equation (3.97) by ηDA, we thus get:(
J∂∂̄ − P−∂∂ + P+∂̄∂̄

)D
C
XC (z, z̄)XB (w, w̄) = −2πηBDδ (z − w, z̄ − w̄) . (3.99)
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Next, in section 2.4 we found that for z → w:

∂∂̄ ln |z − w|2 = ∂
1

z̄ − w̄
= ∂̄

1

z − w
= 2πδ (z − w, z̄ − w̄) . (3.100)

Finally, recall the result of section 3.2.5:

H−1
±± = ±η−1

±± =
1

2

(
H−1 ± η−1

)
. (3.101)

Using these results, let us now define

G (z − w, z̄ − w̄) ≡ −H−1
++ ln (z − w)−H−1

−− ln (z̄ − w̄) . (3.102)

Then we have:

J∂∂̄G (z − w, z̄ − w̄) = −J
(
H−1

++∂̄∂ ln (z − w) +H−1
−−∂∂̄ ln (z̄ − w̄)

)
= −J

(
H−1

++ +H−1
−−
)

2πδ (z − w, z̄ − w̄)

= −
(
H−1

++ −H−1
−−
)

2πδ (z − w, z̄ − w̄)

= −2πη−1δ (z − w, z̄ − w̄) ,

where we used JH−1
±± = ±H−1

±± and H−1
++ −H−1

−− = η−1. We also have:

P−∂∂G (z − w, z̄ − w̄) = −P−
(
H−1

++∂∂ ln (z − w) +H−1
−−∂∂ ln (z̄ − w̄)

)
= P−H

−1
++

1

(z − w)
2 = 0,

P+∂̄∂̄G (z − w, z̄ − w̄) = −P+

(
H−1

++∂̄∂̄ ln (z − w) +H−1
−−∂̄∂̄ ln (z̄ − w̄)

)
= P+H

−1
−−

1

(z̄ − w̄)
2 = 0.

Therefore, G is a solution to equation (3.97), and thus the propagator for the worldsheet fields in
metastring theory is10:

XA (z, z̄)XB (w, w̄) = −HAB
++ ln (z − w)−HAB

−− ln (z̄ − w̄) . (3.103)

To see the relation to the usual string theory propagator (2.31), let us write the projected metrics
explicitly:

XA (z, z̄)XB (w, w̄) = −1

2

(
HAB + ηAB

)
ln (z − w)− 1

2

(
HAB − ηAB

)
ln (z̄ − w̄)

= −1

2
HAB (ln (z − w) + ln (z̄ − w̄))− 1

2
ηAB (ln (z − w)− ln (z̄ − w̄))

= −1

2
HAB ln |z − w|2 − 1

2
ηAB ln

z − w
z̄ − w̄

.

The first term, proportional to H, is equivalent to the usual propagator (2.31). However, the second
term, proportional to η, is a new feature of metastring theory.

3.3.2 Wick’s Theorem and Contractions

We shall take w → 0 in the OPEs for brevity. Recall that the OPE of two normal-ordered operators
A and B is given by

: A :: B :=: AB : +
∑

contractions, (3.104)

10As we have stressed previously, the notation HAB
±± should be understood as the the ±± projection of HAB , that

is, of H−1.
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where now the sum is over contractions of pairs of fields X, one from A and one from B, replacing
each pair with the propagator (3.103):

〈XA (z, z̄)XB (0, 0)〉 = −HAB
++ ln z −HAB

−− ln z̄. (3.105)

By taking derivatives of this expression we may derive additional contractions11:

〈∂XA (z) ∂XB (0)〉 = −HAB
++

1

z2
, (3.106)

〈∂̄XA (z̄) ∂̄XB (0)〉 = −HAB
−−

1

z̄2
, (3.107)

〈∂XA (z) ∂̄XB (0)〉 = 0. (3.108)

We would also like to be able to contract ∂X or ∂̄X with an exponential of the form ei P·X, where P
is a phase-space covector. We have:

〈∂XA (z)XB (0, 0)〉 = −HAB
++

1

z
, (3.109)

〈∂̄XA (z̄)XB (0, 0)〉 = −HAB
−−

1

z̄
. (3.110)

The calculation is completely analogous to the one performed in section 2.5:

〈∂XA (z) ei P·X(0,0)〉 = − iHAB
++PB

1

z
ei P·X(0,0), (3.111)

〈∂̄XA (z̄) ei P·X(0,0)〉 = − iHAB
−−PB

1

z̄
ei P·X(0,0) . (3.112)

To make the calculations more efficient, we employ a chiral notation where X,Y ∈ {+,−} and for
any operator O we have

O (X) ≡

{
O (z) X = +,

O (z̄) X = −.
(3.113)

Using H+− = H−+ = 0, we can now summarize all the different contractions neatly as follows:

〈∂XXA (X) ∂Y XB (0)〉 = −HAB
XY

1

X2
, (3.114)

〈∂XXA (X) ei P·X(0,0)〉 = − iHAB
XXPB

1

X
ei P·X(0,0) . (3.115)

3.3.3 The TT OPE

With the tools of section 3.3.2, we now proceed to calculate the OPE of the holomorphic and
antiholomorphic components of the energy-momentum tensor for the metastring with themselves.
In chiral notation the energy-momentum tensor is expressed as12

TX (X) ≡ −1

2
: ∂XXAHXX

AB ∂XXB : . (3.116)

We would like to calculate the OPE of

TX (X)TY (0) =
1

4
HXX
AB HY Y

CD : ∂XXA (X) ∂XXB (X) :: ∂Y XC (0) ∂XD (0) : . (3.117)

11Note that in these expressions the first derivative is with respect to z or z̄, but the second is with respect to w
or w̄, which contributes an extra minus sign.

12This notation is not strictly necessary for this relatively simple calculation. However, we introduce it here in
order to familiarize the reader with it. It will be indispensable in Appendix B.
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To form contractions we may contract a single pair, which is possible in 4 ways: 〈AC〉 , 〈AD〉 , 〈BC〉 , 〈BD〉,
or two pairs, which is possible in 2 ways: 〈AC〉 〈BD〉 and 〈AD〉 〈BC〉. Thus we get

TX (X)TY (0) ∼ 2 · 1

4
HXX
AB HY Y

CD

〈
∂XXA (X) ∂Y XC (0)

〉 〈
∂XXB (X) ∂Y XD (0)

〉
+

+ 4 · 1

4
HXX
AB HY Y

CD

〈
∂XXA (X) ∂Y XC (0)

〉
: ∂XXB (X) ∂Y XD (0) :

=
1/2

X4
HXX
AB HY Y

CDH
AC
XYH

BD
XY −

1

X2
HXX
AB HY Y

CDH
AC
XY : ∂XXB (X) ∂Y XD (0) : .

To simplify, we note that

HABHBC =
(
H−1H

)A
C

= δAC . (3.118)

If we project both sides onto ±± we get the corresponding projector in the right-hand side:

HAB
±±H

±±
BC = (P±)

A
C . (3.119)

All other possible combinations of projections of the H’s are easily seen to vanish. In chiral notation,
this may be written as

HAB
WXH

Y Z
BC = (PW )

A
C δWXδXY δY Z =

{
(PW )

A
C W = X = Y = Z,

0 otherwise.
(3.120)

Observe also that
HXX
AB HAB

XX = trPX = D. (3.121)

The products involving projections of H in our OPE may now be calculated:

TX (X)TY (0) ∼ δXY
(
D/2

X4
− 1

X2
HXX
AB : ∂XXA (X) ∂XXB (0) :

)
. (3.122)

Finally, we expand ∂XX (X) ≈ ∂XX (0) + X∂X∂XX (0), discard terms regular as X → 0, and
substitute

TX = −1

2
: ∂XXAHXX

AB ∂XXB :, ∂XTX = − : ∂X∂XXAHXX
AB ∂XXB :, (3.123)

obtaining

TX (X)TY (0) ∼ δXY
(
D/2

X4
+

2TX (0)

X2
+
∂XTX
X

)
. (3.124)

Note that the central charge is c = D, just as it was in the original string theory. This was to
be expected, seeing that we have not actually introduced any new degrees of freedom. In normal
notation, this equation is expressed as follows:

T (z)T (0) ∼ c/2

z4
+

2T (0)

z2
+
∂T (0)

z
, (3.125)

T̄ (z̄) T̄ (0) ∼ c̄/2

z̄4
+

2T̄ (0)

z̄2
+
∂̄T̄ (0)

z̄
,

T (z) T̄ (0) ∼ 0,

where c = c̄ = D. This entire calculation may be seen as a consistency check; that is, it merely
shows that our choices of various factors and signs were consistent.

3.4 Perturbations of the Metageometry

3.4.1 Projections of the Perturbations

We would like to perturb the metrics H 7→ H+δH and η 7→ η+δη and find the equations of motion
for the perturbations. First, let us derive an important relation between the chiral projections of
the metrics.
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From the relation H = ηJ we have
δH = δηJ + ηδJ. (3.126)

Multiplying this equation by J from the right, we get

δHJ = δη + ηδJJ. (3.127)

Note that from J2 = 1 we have
0 = δ

(
J2
)

= δJJ + JδJ, (3.128)

so we can write this using ηJ = H as

δHJ = δη −HδJ. (3.129)

Alternatively, multiplying equation (3.126) by JT from the left and using JTη = H we get

JTδH = JTδηJ +HδJ. (3.130)

Adding both equations, we obtain

JTδH + δHJ = JTδηJ + δη. (3.131)

In this way, we have gotten rid of δJ . Now we can project this equation on XY :13

(X + Y ) δHXY = (1 +XY ) δηXY . (3.132)

From this we get the relation
δH±± = ±δη±±. (3.133)

This relation is rather remarkable, as it tells us that δH and δη are not independent. Their diagonal
projections are in fact the same, up to a sign. Only the off-diagonal projections, δH±∓ and δη±∓,
may in general be independent of one another.

Moreover, recall from section 3.2.4 that, since δH and δη are symmetric, their −+ projections are
simply the transpose of the +− projections. Hence, although it may seem that there are 8 different
projections δHXY and δηXY for X,Y ∈ {+,−}, there are really only 4 independent ones. We will
take these to be δH++, δH−−, δH+− and δη+−.

3.4.2 The Perturbation of the Energy-Momentum Tensor

The Lorentzian metastring action (3.25) is of the form

S ∼
ˆ

d2σ
(
∂τXA (η + ω)AB ∂σX

B − ∂σXAHAB∂σXB
)
. (3.134)

Thus the conjugate momentum to X is

PA ≡
δS

δ (∂τXA)
= ηAB∂σXB . (3.135)

The symplectic form does not contribute here, since it is a boundary term:

−2ωAB∂τXA∂σXB d2σ = ωAB
(
∂τXA∂σXB − ∂σXA∂τXB

)
dτ ∧ dσ

= ωAB dXA ∧ dXB

= d
(
ωABXA dXB

)
.

Of course, this is merely a heuristic treatment; a more rigorous one may be found in [2], chapter 4.

13For brevity we write δHXY ≡ (δH)XY and so on. δHXY is the projection of the perturbation δH, not the
perturbation of the projection of H.
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To avoid writing everything twice, we again employ chiral notation: ∂+ ≡ ∂, ∂− ≡ ∂̄ and T+ ≡ T ,
T− ≡ T̄ . The components of the energy-momentum tensor may be expressed as:

T± = −1

4
∂σXA (HAB ± ηAB) ∂σXB . (3.136)

The holomorphic and antiholomorphic derivatives are given in terms of P by

∂±XA =
1

2

(
∂σXA ± ∂τXA

)
=

1

2

(
ηABPB ± ∂τXA

)
, (3.137)

which may be inverted to find

PA = ηAB
(
∂+XB + ∂−XB

)
, ∂τXA = ∂+XA − ∂−XA. (3.138)

Thus we have

δ
(
∂σXB

)
= δ

(
ηBCPC

)
= δηBCPC
= δηBCηCD

(
∂+XD + ∂−XD

)
= −ηBCδηCD

(
∂+XD + ∂−XD

)
.

Now, the perturbation of the energy-momentum tensor is given by

δT± = −1

4
∂σXA (δHAB ± δηAB) ∂σXB −

1

2
∂σXA (HAB ± ηAB) δ

(
∂σXB

)
. (3.139)

For the first term we use the fact that δH±± = ±δη±±, so

∂±X (δH ∓ δη) ∂±X = 0, ∂±X (δH ± δη) ∂±X = 2∂±XδH∂±X, (3.140)

which gives

−1

4
∂σXA (δHAB ± δηAB) ∂σXB = −1

4

(
∂+XA + ∂−XA

)
(δHAB ± δηAB)

(
∂+XB + ∂−XB

)
= −1

2
∂±XAδHAB∂±XB −

1

2
∂+XA (δHAB ± δηAB) ∂−XB .

For the second term we have

−1

2
∂σXA (HAB ± ηAB) δ

(
∂σXB

)
=

1

2
∂σXA (HAB ± ηAB) ηBCδηCD

(
∂+XD + ∂−XD

)
= ±∂±XAδηAB

(
∂+XB + ∂−XB

)
.

Adding the terms, we get the full perturbation of the energy-momentum tensor:

δT± = −1

2
∂±XAδHAB∂±XB −

1

2
∂+XA (δHAB ± δηAB) ∂−XB ± ∂±XAδηAB

(
∂+XB + ∂−XB

)
.

(3.141)
In terms of the holomorphic and antiholomorphic components, we have:

δT = −1

2
∂XAδHAB∂XB −

1

2
∂XA (δHAB + δηAB) ∂̄XB + ∂XAδηAB

(
∂XB + ∂̄XB

)
= −1

2
∂XA (δHAB − 2δηAB) ∂XB − 1

2
∂XA (δHAB − δηAB) ∂̄XB

=
1

2
∂XAδH++

AB∂X
B − 1

2
∂XA

(
δH+−

AB − δη
+−
AB

)
∂̄XB ,

δT̄ = −1

2
∂̄XAδHAB ∂̄XB −

1

2
∂XA (δHAB − δηAB) ∂̄XB − ∂̄XAδηAB

(
∂XB + ∂̄XB

)
= −1

2
∂̄XA (δHAB + 2δηAB) ∂̄XB − 1

2
∂XA (δHAB + δηAB) ∂̄XB

=
1

2
∂̄XAδH−−AB ∂̄X

B − 1

2
∂XA

(
δH+−

AB + δη+−
AB

)
∂̄XB .
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The deformation of the worldsheet CFT obtained by perturbing the metrics is, according to our
definitions in section 2.1, a chiral canonical deformation provided that both δT and δT̄ are (1, 1)
primary fields. In contrast with the achiral canonical deformation obtained for the usual string
theory in section 2.6, here we have obtained a chiral one, with δT 6= δT̄ in general, due to the chiral
nature of metastring theory.

Observe that if we perturb only H and leave η unchanged then, in light of the relation δH±± =
±δη±±, this chiral deformation automatically reduces to an achiral one where δT = δT̄ =
− 1

2∂XH∂̄X, analogous to the case of standard string theory. This is further evidence that the
P-metric η is a new feature of metastring theory.

Moreover, as we shall see later, if we perturb only the spacetime metric (and not the momentum-space
metric), we completely reduce to the usual string theory case.

3.5 Derivation of the Linearized Metagravity Equations

3.5.1 A General Conformal Deformation

Let us deform the holomorphic and antiholomorphic components of the metastring energy-
momentum tensor by arbitrary rank-2 tensors V and V̄ , respectively:

δT ≡ ∂σXV ∂σX = ∂XV++∂X + 2∂XV+−∂̄X + ∂̄XV−−∂̄X, (3.142)

δT̄ ≡ ∂σXV̄ ∂σX = ∂XV̄++∂X + 2∂XV̄+−∂̄X + ∂̄XV̄−−∂̄X. (3.143)

Target space indices have been suppressed here. We do not assume a priori any symmetry properties
of V and V̄ . We require that the deformation is a chiral conformal deformation, so that conformal
symmetry is preserved. For this, it is enough to demand that each of the six individual terms
in the expressions above is a (1, 1) primary field, by calculating their OPEs with T and T̄ . This
calculation has been delegated to Appendix B.

As explained in the Appendix, it is enough to consider just δT and V , with the results applying
equally to δT̄ and V̄ . Let us convert the results, which are written in the Appendix in dense chiral
notation, into a more readable form. We have three distinct cases:

• From T±δT±± we get:

�±V
±±
AB = 2V ±±AB , HAC

±±∂CV
±±
(AB) = 0, HAB

±±V
±±
AB = 0. (3.144)

• From T+δT+− and T−δT+− we get:

�+V
+−
AB = �−V

+−
AB = 0, HAC

++∂CV
+−
AB = HBC

−−∂CV
+−
AB = 0. (3.145)

• From T∓δT±± we get:
�∓V

±±
AB = −2V ±±AB . (3.146)

Using

H±± =
1

2
(H ± η) , (3.147)

the chiral d’Alembertian becomes

�± =
1

2

(
HAB ± ηAB

)
∂A∂B ≡

1

2
(�H ±�η) , (3.148)

where we defined
�H ≡ HAB∂A∂B , �η ≡ ηAB∂A∂B . (3.149)

Therefore the various wave equations may be written as

(�H + �η)V ++
AB = +4V ++

AB , (�H −�η)V −−AB = +4V −−AB , (3.150)
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(�H + �η)V +−
AB = (�H −�η)V +−

AB = 0, (3.151)

(�H −�η)V ++
AB = −4V ++

AB , (�H + �η)V −−AB = −4V −−AB . (3.152)

By taking linear combinations of these equations we get

�HV
++
AB = �HV

−−
AB = �HV

+−
AB = 0, (3.153)

�ηV
++
AB = +4V ++

AB , �ηV
−−
AB = −4V −−AB , �ηV

+−
AB = 0. (3.154)

These six equations may be neatly summarized as follows:

�HV
XY
AB = 0, �ηV

XY
AB = 2

{
J, V XYAB

}
= 2 (X + Y )V XYAB , X, Y ∈ {+,−} . (3.155)

The gauge conditions may be written using either H, η, or both, due to their projection properties.
We will choose to write them using H:

HAC∂CV
++
(AB) = HAC∂CV

−−
(AB) = 0, (3.156)

HAC∂CV
+−
AB = HBC∂CV

+−
AB = 0. (3.157)

Note that for V ±± the conditions only apply to the symmetric part. Lastly, we have the tracelessness
conditions, which we again choose to write in terms of H:

HABV ++
AB = HABV −−AB = HABV +−

AB = 0. (3.158)

For V +− we get this condition “for free”, due to the off-diagonal projections of H and η vanishing.

3.5.2 The Linearized Metagravity Equations

Finally we are able to write down our main result, the linearized metagravity equations, using the
results of the previous sections. In section 3.4.2 we found that the perturbations of T and T̄ are:

δT =
1

2
∂XδH++∂X− 1

2
∂X
(
δH+− − δη+−) ∂̄X, (3.159)

δT̄ =
1

2
∂̄XδH−−∂̄X− 1

2
∂X
(
δH+− + δη+−) ∂̄X. (3.160)

We thus have four independent deformations δT++, δT+−, δT̄−−, δT̄+− and four independent
perturbations δH++, δH−−, δH+−, δη+−. The equations of motion and gauge conditions for the
perturbations are given using the results of section 3.5.1 by defining

δT ≡ ∂XV ++∂X + ∂XV +−∂̄X, (3.161)

δT̄ ≡ ∂̄XV̄ −−∂̄X + ∂XV̄ +−∂̄X. (3.162)

We identify
V ++ ∼ δH++, V̄ −− ∼ δH−−, (3.163)

V +− ∼ δH+− − δη+−, V̄ +− ∼ δH+− + δη+−, (3.164)

so that14

δH+− ∼ V̄ +− + V +−

2
, δη+− ∼ V̄ +− − V +−

2
. (3.165)

Recalling the relation δH±± = ±δη±±, we find the following equations of motion:

�HδH
++
AB = �HδH

−−
AB = �HδH

+−
AB = 0, (3.166)

�ηδH
++
AB = +4δH++

AB , �ηδH
−−
AB = −4δH−−AB , �ηδH

+−
AB = 0, (3.167)

14In fact, the exact form of the linear combination doesn’t matter, since all equations involving V +− and V̄ +−

have zero on the right-hand side anyway. It only matters that they are linearly independent.
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�Hδη
++
AB = �Hδη

−−
AB = �Hδη

+−
AB = 0, (3.168)

�ηδη
++
AB = +4δη++

AB , �ηδη
−−
AB = −4δη−−AB , �ηδη

+−
AB = 0. (3.169)

Using the relation (valid for any symmetric V )

VAB = V ++
AB + V −−AB + 2V +−

(AB), (3.170)

we may sum the equations above to obtain equations for the unprojected perturbations:

�HδHAB = �HδηAB = 0, (3.171)

�ηδHAB = 4
(
δH++

AB − δH
−−
AB

)
, �ηδηAB = 4

(
δη++
AB − δη

−−
AB

)
. (3.172)

The gauge conditions and tracelessness conditions are

HAC∂CδH
++
AB = HAC∂CδH

−−
AB = HAC∂CδH

+−
AB = 0, (3.173)

HAC∂Cδη
++
AB = HAC∂Cδη

−−
AB = HAC∂Cδη

+−
AB = 0, (3.174)

HABδH++
AB = HABδH−−AB = HABδH+−

AB = 0, (3.175)

HABδη++
AB = HABδη−−AB = HABδη+−

AB = 0. (3.176)

These readily translate into conditions for the unprojected perturbations.

Let us summarize the complete set of equations for the unprojected perturbations of the two metrics
H and η:

�HδHAB = �HδηAB = 0, (3.177)

�ηδHAB = 4
(
δH++

AB − δH
−−
AB

)
, �ηδηAB = 4

(
δη++
AB − δη

−−
AB

)
, (3.178)

HAC∂CδHAB = HAC∂CδηAB = HABδHAB = HABδηAB = 0. (3.179)

The equations of motion with respect to �H , together with the gauge conditions and tracelessness
conditions (which are also gauge conditions, of course), are similar to the linearized Einstein
equations in the transverse traceless gauge, with the Q-metric H in place of the spacetime metric,
and both δH and δη in place of the perturbations of the metric. However, �H also encodes
possible dependence of the perturbations on momentum-space coordinates in addition to spacetime
coordinates. The equations of motion with respect to �η are completely new, and some of their
implications will be analyzed promptly.

We call this set of equations The Linearized Metagravity Equations. Note that they are only given
here in a particular gauge; the gauge-invariant linearized equations, as well as the full nonlinear
equations, will be derived in future work.

3.6 Preliminary Analysis of the Metagravity Equations

3.6.1 Explicit Momentum Dependence of the Metageometry

It is instructive to write down explicitly the momentum dependence encoded in the linearized
metagravity equations, that is, dependence on the momentum-space coordinates Y . We define the
spacetime and momentum-space derivatives

∂Xµ ≡
∂

∂Xµ
, ∂µY ≡

∂

∂Yµ
. (3.180)

The explicit expressions for the d’Alembertians are then

�H = HCD∂C∂D =
(
∂Xµ ∂µY

)( hµν 0
0 hµν

)(
∂Xν
∂νY

)
= hµν∂Xµ ∂

X
ν + hµν∂

µ
Y ∂

ν
Y , (3.181)
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�η = ηCD∂C∂D =
(
∂Xµ ∂µY

)( 0 δµν
δνµ 0

)(
∂Xν
∂νY

)
= 2∂Xµ ∂

µ
Y . (3.182)

The linearized metagravity equations (in the given gauge) thus take the form(
hµν∂Xµ ∂

X
ν + hµν∂

µ
Y ∂

ν
Y

)
δHAB = 0,

(
hµν∂Xµ ∂

X
ν + hµν∂

µ
Y ∂

ν
Y

)
δηAB = 0, (3.183)

1

2
∂Xµ ∂

µ
Y δHAB = δH++

AB − δH
−−
AB ,

1

2
∂Xµ ∂

µ
Y δηAB = δη++

AB − δη
−−
AB . (3.184)

Schematically, we may write them as follows:(
∂2
X + ∂2

Y

)
δH = 0,

(
∂2
X + ∂2

Y

)
δη = 0, (3.185)

1

2
∂X∂Y δH = δH++ − δH−−, 1

2
∂X∂Y δη = δη++ − δη−−. (3.186)

Observe that, since in general ∂X∂Y δH 6= 0 and ∂X∂Y δη 6= 0, the perturbations δH and δη should
depend on both X and Y , that is, both spacetime and momentum-space coordinates. Only in
the special case where both right-hand sides vanish is it possible for the perturbations to depend
only on spacetime coordinates. Since δH±± = ±δη±±, both right-hand sides vanish if and only if
all diagonal projections vanish, that is, δH++ = δH−− = 0 and similarly for δη. In fact, this is
precisely the case of standard string theory, which we discuss next.

3.6.2 Reduction to Standard String Theory

As a consistency check, we should verify that the usual equations of motion are recovered when
metastring theory is reduced back to the usual string theory. Let us recall the Polyakov action in
the first-order formalism (3.13). With λ ≡ ε ≡ 1 for brevity, this action takes the form

S =
1

2π

ˆ
d2σ

(
∂τX

µ∂σYµ −
1

2
hµν∂σX

µ∂σX
ν − 1

2
hµν∂σYµ∂σYν

)
. (3.187)

We then noted that

1

2
hµν∂σYµ∂σYν +

1

2
hµν∂σX

µ∂σX
ν =

1

2
∂σXAHAB∂σXB , (3.188)

∂τX
µ∂σYµ =

1

2
∂τXA (η + ω)AB ∂σX

B , (3.189)

which allowed us to write the Lorentzian metastring action (3.25):

S =
1

4π

ˆ
d2σ

(
∂τXA (η + ω)AB ∂σX

B − ∂σXAHAB∂σXB
)
. (3.190)

Thus, if H, η and ω are all flat, this action readily reduces back to the flat spacetime Polyakov
action. We shall therefore leave the metageometry unperturbed, and only perturb the spacetime
metric hµν ; this is the only type of perturbation compatible with the usual Polyakov action. This
only changes H, while η and ω remain untouched. Explicitly, if we perturb h 7→ h+ δh then we get

H =

(
h 0
0 h−1

)
7→
(
h+ δh 0

0 h−1 − δh

)
≡ H + δH, (3.191)

where

δH ≡
(
δh 0
0 −δh

)
. (3.192)

Let us project this perturbation onto the chiral eigenspaces. The chiral structure J has the explicit
form

J =

(
0 h−1

h 0

)
, (3.193)
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so the projectors are

P± =
1

2
(1± J) =

1

2

(
1 ±h−1

±h 1

)
. (3.194)

An explicit calculation yields:

δHXY =
1

4

(
δβα Xhαβ

Xhαβ δαβ

)(
δhβγ 0

0 −δhβγ
)(

δγδ Y hγδ

Y hγδ δδγ

)
=

1

4

(
δhαγ −Xδhγα
Xδhαγ −δhαγ

)(
δγδ Y hγδ

Y hγδ δδγ

)
=

1

4

(
(1−XY ) δhαδ (Y −X) δhδα
(X − Y ) δhαδ (XY − 1) δhαδ

)
.

Hence we see that

δH±± = 0, δH±∓ =
1

2

(
δhαδ ∓δhδα
±δhαδ −δhαδ

)
. (3.195)

Observe that only the off-diagonal terms are nonzero. This is in accordance with the analysis of
the usual string case performed in section 2.6, where the deformation of the energy-momentum
tensor only had a ∂X∂̄X component. It is also compatible with the fact that δη = 0, and thus in
particular δη±± = 0, from which we immediately deduce that δH±± = ±δη±± = 0.

We now invoke the linearized metagravity equations for δH:(
hµν∂Xµ ∂

X
ν + hµν∂

µ
Y ∂

ν
Y

)
δHAB = 0, (3.196)

∂Xµ ∂
µ
Y δHAB = 0. (3.197)

Note that the right-hand side of the second equation vanishes since δH++ − δH−− = 0. Thus the
second equation tells us that if δH depends on the spacetime coordinates X, it cannot also depend
on momentum-space coordinates. The first equation then reduces to

�δhµν = 0. (3.198)

This is the same result we obtained before for the Polyakov string. Similarly, for the gauge conditions
we use

HAC∂C =

(
hαβ 0

0 hαβ

)(
∂Xβ
∂βY

)
=

(
hαβ∂Xβ
hαβ∂

β
Y

)
, (3.199)

ηAC∂C =

(
0 δαβ
δβα 0

)(
∂Xβ
∂βY

)
=

(
∂αY
∂Xα

)
, (3.200)

to get

0 = HAC∂CδHAB =
1

2

(
hαβ∂Xβ hαβ∂

β
Y

)( δhαδ −δhδα
δhαδ −δhαδ

)
=

1

2

(
∂Xα δh

α
δ −∂Xα δhαδ

)
,

which gives the familiar gauge condition

∂µδh
µν = 0. (3.201)

(If we had used ηAC in the gauge condition instead, we would have obtained the same result, as
indeed we must.) Finally, we have the tracelessness condition

0 = HABδHAB =

(
hαβ 0

0 hαβ

)(
δhαδ −δhδα
δhαδ −δhαδ

)
=

(
hαβδhαδ −hαβδhδα
hαβδh

α
δ −hαβδhαδ

) ∣∣∣∣
δ→β

,

which gives simply
hαβδhαβ = 0. (3.202)

We thus see that the linearized metagravity equations automatically reduce to the usual linearized
Einstein equations obtained for the Polyakov string if we perturb only the spacetime metric.
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4 Conclusions

4.1 Summary of Findings

In this work we took a particularly attractive path towards our destination: the path of mathematical
consistency. Inspired by the well-known result from string theory, where the theory is simply not
mathematically consistent unless the background fields obey Einstein’s equations, we set out to
apply the same treatment to metastring theory. We have found that in order to preserve the
conformal symmetry of the worldsheet, the metastring can’t help but impose consistency conditions
on the geometry of phase space.

The resulting equations, which we have optimistically dubbed the linearized metagravity equations,
govern the dynamics of small perturbations about a flat phase space metageometry. The equations
of motion for perturbations of the Q-metric δH and perturbations of the P-metric δη may be
written schematically as (

∂2
X + ∂2

Y

)
δH = 0,

(
∂2
X + ∂2

Y

)
δη = 0, (4.1)

1

2
∂X∂Y δH = δH++ − δH−−, 1

2
∂X∂Y δη = δη++ − δη−−. (4.2)

These equations are given to us in a particular gauge, and a generalization to gauge-invariant
equations is necessary. In addition they are, of course, merely linearized equations for perturbations
over a fixed background metageometry, and their full nonlinear form, governing the dynamics of
the background itself nonperturbatively, remains to be determined.

However, even in this preliminary form, they already show that both metrics, in general, should have
energy-momentum as well as spacetime dependence. They also show that η, which tells us what
spacetime is, can be dynamical. It thus seems reasonable to hope that the full nonlinear formulation
of metagravity, which should follow naturally from further investigations into metastring theory and
its metageometry, will provide a concrete realization of relative locality, where momentum space is
curved, and the geometry of spacetime – as well as spacetime itself – are energy and momentum
dependent.

4.2 The Road Ahead

The observant reader will note that the central chapter of this work is entitled “Conformal
Deformations in Metastring Theory: Part I”, yet Part II is nowhere to be found. This is just the
very beginning of the study of conformal deformations in metastring theory; the next parts have
not been written yet. In the future, unbounded by the time and size constraints of this essay, we
wish to proceed as follows:

1. Find the linearized equations of motion for perturbations of the symplectic form ω, if possible.

2. Find the full symmetries obeyed by the perturbations δH, δη and δω, using additional
conformal deformation techniques not covered in this work.

3. Find the gauge-invariant linearized equations of motion for H, η and ω; these are the analogues
of the linearized Einstein equations for metagravity.

4. Upgrade the linearized equations of motion to full, nonlinear equations of motion, analogous
to the Einstein equations Gµν = Tµν .

5. Find an appropriate low-energy effective action for the metastring background, analogous to
the Einstein-Hilbert action

´ √
−g R.

6. Generalize the analysis outlined above for general backgrounds, including the B-field and the
dilaton.
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Once the full nonlinear equations and action are found, metagravity is expected to be a generalization
of Einstein gravity, which reduces to it in the appropriate limit, and obeys the principle of relative
locality. This generalized theory may be studied in a variety of ways, both from the fundamental
(meta)stringy perspective and as an effective theory with no explicit mention of (meta)strings.

Along the way, we have also uncovered some interesting research avenues which might have been
overlooked when conformal deformations of string theory were first studied in the 1990s, and these
will also be addressed in potential future work.

5 Acknowledgments

First and foremost, I would like to thank my supervisor, Laurent Freidel, for introducing me to the
fascinating world of metastring theory, which I have only just began to understand. His insights
and unique way of thinking were a tremendous help in every stage of my work on this essay.

I would also like to thank Seyed Faroogh Moosavian, Yasha Neiman and Vasudev Shyam for
invaluable discussions.

This essay was written as part of the requirements of the PSI (Perimeter Scholars International)
program at Perimeter Institute. I would like to thank everyone involved in the PSI program, and
in particular the PSI fellows Tibra Ali, Aggie Branczyk, Denis Dalidovich, David Kubiznak, Dan
Wohns and Gang Xu and the academic program coordinator Debbie Guenther, for making PSI
such a wonderful, once-in-a-lifetime experience.

A Calculation of the Energy-Momentum Tensor in Stan-
dard String Theory

We calculate the energy-momentum tensor using

Tab ≡ −
4π
√
γ

δS

δγab
. (A.1)

When varying the determinant of the metric, we use

δγ ≡ δ (det γab) = δ (exp (tr log γab)) = γγabδγab, (A.2)

and
0 = δ

(
γabγab

)
= γabδγab + γabδγ

ab, (A.3)

to get
δγ = −γγabδγab. (A.4)

This then gives

δ
√
γ =

1

2
√
γ
δγ = −1

2

√
γγabδγ

ab. (A.5)

Thus, varying the Euclidean action

S =
1

8π

ˆ
d2σ
√
γ γab∂aX

µ∂bX
νhµν , (A.6)

we obtain

δS =
1

8π

ˆ
d2σ
√
γ hµν

(
∂aX

µ∂bX
ν − 1

2
γab∂cX

µ∂cXν

)
δγab, (A.7)

so

Tab = −1

2
hµν

(
∂aX

µ∂bX
ν − 1

2
γab∂cX

µ∂cXν

)
. (A.8)
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Note that this definition of Tab automatically produces a symmetric tensor, as γab is symmetric.
As will be seen later, in metastring theory we cannot generally assume that the energy-momentum
tensor is symmetric, so an alternative definition in terms of frame fields is in order. We note that
such a definition is also needed, for example, when defining spinor fields on curved manifolds [11,
App. 2.C]. We define the frame fields ∂l and co-frame fields el by

el ≡ ela dσa, ∂l ≡ e al ∂a, glme
l
ae
m
b = γab, γabe

a
l e

b
m = glm, ∂le

m = δml . (A.9)

Here a, b are Lorentzian worldsheet indices and γab is the Lorentzian worldsheet metric, while l,m
are internal indices (taking the values 0, 1) and glm is the internal Minkowski metric. Note that
in our notation the internal index is always to the left of the worldsheet index. We may contract
with the frame fields to convert indices on any tensor between worldsheet and internal indices, for
example:

Al ≡ elaAa, Aa ≡ e al Al. (A.10)

Since γab = glme
l
ae
m
b, the metric may be written as

ds2 ≡ γab dσa ⊗ dσb = glm
(
ela dσa

)
⊗
(
emb dσb

)
= −e0 ⊗ e0 + e1 ⊗ e1. (A.11)

The Lorentzian Polyakov action thus becomes

S [X] = − 1

8π

ˆ
d2σ det (e) glm∂lX

µ∂mX
νhµν , (A.12)

where we used

√
−γ ≡

√
−det γab =

√
−det (glmelae

m
b) = det ela ≡ det (e) , (A.13)

since det g = −1. We then define the energy-momentum tensor with one worldsheet index and one
internal index as:

T la ≡
2π

det (e)

δS

δe al
. (A.14)

Note the factor of +2π compared to −4π in the definition using variation of the metric. We may
further contract the internal index to obtain an expression with two worldsheet indices:

Tab = γace
c
l T

l
b =

2πγace
c
l

det (e)

δS

δe bl
. (A.15)

To calculate this, first we note that

δ det (e) = δ
(
exp

(
tr log ela

))
= det (e) e al δe

l
a (A.16)

and
0 = δ

(
e al e

l
a

)
= e al δe

l
a + elaδe

a
l , (A.17)

so
δ det (e) = −det (e) elaδe

a
l . (A.18)

Also
δ∂l = δe al ∂a = δe al e

m
a∂m. (A.19)

Thus we get

δS = − 1

8π

ˆ
d2σ det (e)hµνg

lm
(
−elb∂lXµ∂mX

ν + 2enb∂nX
µ∂mX

ν
)
δe bl , (A.20)

and so

Tab = −1

2
γace

c
l hµνg

lm

(
enb∂nX

µ∂mX
ν − 1

2
elb∂lX

µ∂mX
ν

)
= −1

2
hµν

(
∂aX

µ∂bX
ν − 1

2
γab∂cX

µ∂cXν

)
,

which is the same as the result obtained using variation of the metric. Therefore, our choice of
normalization was correct.
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B Calculation of the TXδTY Z OPE

First, note that the OPE calculation merely tells us what conditions must be satisfied in order
for the perturbation to be a (1, 1) primary field; it is blind to whether the perturbation being
considered is δT or δT̄ . Therefore we shall perform the calculation only for δT and V . The results
will equally apply to δT̄ and V̄ .

We calculate the OPEs with respect to each of the three projections VXY individually. To facilitate
this calculation, we first Fourier-transform VXY :

VXY (X) ≡
ˆ

d2DP
(2π)

2D
ΠXY (P) ei P·X, (B.1)

where P is a phase-space “momentum vector” and Π is a polarization tensor. Note that P and
ΠXY (P) are constant on the worldsheet, i.e., not functions of z, z̄. The notation P · X is shorthand
for PAXA. We deform our energy-momentum tensor by a single plane wave of momentum P:

δTXY ≡ ΠXY
AB ∂XXA∂Y XB ei P·X . (B.2)

Our chiral notation allows us to calculate all six OPEs of T+ ≡ T and T− ≡ T̄ with the projections
δTXY as a single, general OPE, and then plug in X,Y, Z ∈ {+,−}:

TX (X) δTY Z (0, 0) = −1

2
HXX
AB ΠY Z

CD : ∂XXA (X) ∂XXB (X) :: ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : .

(B.3)
First, we sum on all possible contractions. Note that we can contract with ei P·X twice. Since HAB

is symmetric, replacing A↔ B in a contraction will result in an equivalent contraction, but we’re
not assuming anything about the symmetry of ΠCD.

TX (X) δTY Z (0, 0) =

− 1

2
HXX
AB ΠY Z

CD : ∂XXB (X) ∂Y XC (0) ∂ZXD (0) :
〈
∂XXA (X) ei P·X(0,0)

〉
+ (A↔ B) +

− 1

2
HXX
AB ΠY Z

CD : ∂XXB (X) ∂ZXD (0) ei P·X(0,0) :
〈
∂XXA (X) ∂Y XC (0)

〉
+ (A↔ B) +

− 1

2
HXX
AB ΠY Z

CD : ∂XXB (X) ∂Y XC (0) ei P·X(0,0) :
〈
∂XXA (X) ∂ZXD (0)

〉
+ (A↔ B) +

− 1

2
HXX
AB ΠY Z

CD : ∂Y XC (0) ∂ZXD (0) :
〈
∂XXA (X) ei P·X(0,0)

〉〈
∂XXB (X) ei P·X(0,0)

〉
+

− 1

2
HXX
AB ΠY Z

CD : ∂ZXD (0) :
〈
∂XXA (X) ∂Y XC (0)

〉 〈
∂XXB (X) ei P·X(0,0)

〉
+ (A↔ B) +

− 1

2
HXX
AB ΠY Z

CD : ∂Y XC (0) :
〈
∂XXA (X) ∂ZXD (0)

〉 〈
∂XXB (X) ei P·X(0,0)

〉
+ (A↔ B) +

− 1

2
HXX
AB ΠY Z

CD : ei P·X(0,0) :
〈
∂XXA (X) ∂Y XC (0)

〉 〈
∂XXB (Y ) ∂ZXD (0)

〉
+ (A↔ B) .

Writing the contractions explicitly, we get

TX (X) δTY Z (0, 0) =
1

X
iPEHAE

XXH
XX
AB ΠY Z

CD : ∂XXB (X) ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

+
1

X2
HAC
XYH

XX
AB ΠY Z

CD : ∂XXB (X) ∂ZXD (0) ei P·X(0,0) : +

+
1

X2
HAD
XZH

XX
AB ΠY Z

CD : ∂XXB (X) ∂Y XC (0) ei P·X(0,0) : +

+
1

X2

1

2
PEPFHAE

XXH
BF
XXH

XX
AB ΠY Z

CD : ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

− 1

X3
iPEHBE

XXH
AC
XYH

XX
AB ΠY Z

CD : ∂ZXD (0) ei P·X(0,0) : +

− 1

X3
iPEHBE

XXH
AD
XZH

XX
AB ΠY Z

CD : ∂Y XC (0) ei P·X(0,0) : +

− 1

X4
HAC
XYH

BD
XZH

XX
AB ΠY Z

CD : ei P·X(0,0) : .
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Next, we simplify the H’s:

TX (X) δTY Z (0, 0) =
1

X
iPXBΠY Z

CD : ∂XXB (X) ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

+
1

X2
δXY ΠY Z

CD : ∂XXC (X) ∂ZXD (0) ei P·X(0,0) : +

+
1

X2
δXZΠY Z

CD : ∂XXD (X) ∂Y XC (0) ei P·X(0,0) : +

+
1

X2

1

2
|P|2X ΠY Z

CD : ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

− 1

X3
δXY iPXEHCE

XXΠY Z
CD : ∂ZXD (0) ei P·X(0,0) : +

− 1

X3
δXZ iPXEHDE

XXΠY Z
CD : ∂Y XC (0) ei P·X(0,0) : +

− 1

X4
δXY δY ZH

CD
XXΠY Z

CD : ei P·X(0,0) : .

Here we defined the projections of a phase-space covector:

PX ≡ PT
XP, (PX)A ≡ (PX)

B
A PB , (B.4)

as well as its projected norm-squared:

|P|2X ≡ PH−1
XXP = PXAHAB

XXPXB . (B.5)

Next, we expand ∂XX (X) around X = 0:

∂XX (X) ≈ ∂XX (0) +X∂X∂XX (0) . (B.6)

This gives, discarding terms regular as X → 0:

TX (X) δTY Z (0, 0) =
1

X
iPXBΠY Z

CD : ∂XXB (0) ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

+
1

X
δXY ΠY Z

CD : ∂X∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

+
1

X
δXZΠY Z

CD : ∂Y XC (0) ∂X∂ZXD (0) ei P·X(0,0) :

+
1

X2
δXY ΠY Z

CD : ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

+
1

X2
δXZΠY Z

CD : ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

+
1

X2

1

2
|P|2X ΠY Z

CD : ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

− 1

X3
δXY iPXEHCE

XXΠY Z
CD : ∂ZXD (0) ei P·X(0,0) : +

− 1

X3
δXZ iPXEHDE

XXΠY Z
CD : ∂Y XC (0) ei P·X(0,0) : +

− 1

X4
δXY δY ZH

CD
XXΠY Z

CD : ei P·X(0,0) : .

We identify the coefficient of 1/X as a derivative and consolidate the coefficients of 1/X2 and 1/X3:

TX (X) δTY Z (0, 0) =
1

X
∂X

(
ΠY Z
CD : ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) :

)
+

1

X2

(
δXY + δXZ +

1

2
|P|2X

)
ΠY Z
CD : ∂Y XC (0) ∂ZXD (0) ei P·X(0,0) : +

− 1

X3
iHDE

XXPXE :
(
ΠY Z
DCδXY ∂ZXC (0) + ΠY Z

CDδXZ∂Y XC (0)
)

ei P·X(0,0) : +

− 1

X4
δXY δY ZH

CD
XXΠY Z

CD : ei P·X(0,0) : .
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Inserting the definition of δTY Z , we finally obtain the OPE

TX (X) δTY Z (0, 0) ∼ − 1

X4
δXY δY ZH

AB
XXΠY Z

AB : ei P·X(0,0) : +

− 1

X3
iHAC

XXPXC :
(
ΠY Z
ABδXY ∂ZXB (0) + ΠY Z

BAδXZ∂Y XB (0)
)

ei P·X(0,0) : +

+
1

X2

(
δXY + δXZ +

1

2
|P|2X

)
δTY Z (0, 0) +

1

X
∂XδTY Z (0, 0) .

Demanding that each of the projections δTXY will be a (1, 1) primary field yields the following
conditions:

TX (X) δTY Z (0, 0) ∼ 1

X2
δTY Z (0, 0) +

1

X
∂XδTY Z (0, 0) , X, Y, Z ∈ {+,−} . (B.7)

These conditions are satisfied for all X,Y, Z if:

|P|2X = 2 (1− δXY − δXZ) , δXY δY ZH
AB
XXΠY Z

AB = 0, (B.8)

HAC
XXPXC :

(
ΠY Z
ABδXY ∂ZXB + ΠY Z

BAδXZ∂Y XB
)

ei P·X := 0. (B.9)

Alternatively, we may write them in terms of a single plane wave V Y ZAB = ΠY Z
AB ei P·X, using the

target space derivatives ∂A and chiral target space d’Alembertian �X :

∂A ≡
∂

∂XB
, �X ≡ HAB

XX∂A∂B , (B.10)

such that
∂CV

Y Z
AB = iPCV Y ZAB , �XV

Y Z
AB = − |P|2X V

Y Z
AB . (B.11)

We get
�XV

Y Z
AB = 2 (δXY + δXZ − 1)V Y ZAB , δXY δY ZH

AB
XXV

Y Z
AB = 0, (B.12)

HAC
XX

(
δXY ∂ZXB∂CV Y ZAB + δXZ∂Y XB∂CV Y ZBA

)
= 0. (B.13)

The meaning of these conditions is clarified in the main text.
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