Skip to content

RunxinXu/GIT

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
dee
 
 
 
 
 
 
 
 
 
 
 
 

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker

Source code for ACL-IJCNLP 2021 Long paper: Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker.

Our code is based on Doc2EDAG.

0. Introduction

Document-level event extraction aims to extract events within a document. Different from sentence-level event extraction, the arguments of an event record may scatter across sentences, which requires a comprehensive understanding of the cross-sentence context. Besides, a document may express several correlated events simultaneously, and recognizing the interdependency among them is fundamental to successful extraction. To tackle the aforementioned two challenges, We propose a novel heterogeneous Graph-based Interaction Model with a Tracker (GIT). A graph-based interaction network is introduced to capture the global context for the scattered event arguments across sentences with different heterogeneous edges. We also decode event records with a Tracker module, which tracks the extracted event records, so that the interdependency among events is taken into consideration. Our approach delivers better results over the state-of-the-art methods, especially in cross-sentence events and multiple events scenarios.

  • Architecture model overview

  • Overall Results

1. Package Description

GIT/
├─ dee/
    ├── __init__.py
    ├── base_task.py
    ├── dee_task.py
    ├── ner_task.py
    ├── dee_helper.py: data features constrcution and evaluation utils
    ├── dee_metric.py: data evaluation utils
    ├── config.py: process command arguments
    ├── dee_model.py: GIT model
    ├── ner_model.py
    ├── transformer.py: transformer module
    ├── utils.py: utils
├─ run_dee_task.py: the main entry
├─ train_multi.sh
├─ run_train.sh: script for training (including evaluation)
├─ run_eval.sh: script for evaluation
├─ Exps/: experiment outputs
├─ Data.zip
├─ Data: unzip Data.zip
├─ LICENSE
├─ README.md

2. Environments

  • python (3.6.9)
  • cuda (11.1)
  • Ubuntu-18.0.4 (5.4.0-73-generic)

3. Dependencies

  • numpy (1.19.5)
  • torch (1.8.1+cu111)
  • pytorch-pretrained-bert (0.4.0)
  • dgl-cu111 (0.6.1)
  • tensorboardX (2.2)

PS: The environments and dependencies listed here is different from what we use in our paper, so the results may be a bit different.

4. Preparation

  • Unzip Data.zip and you can get an Data folder, where the training/dev/test data locate.

5. Training

>> bash run_train.sh

6. Evaluation

>> bash run_eval.sh

(The evaluation is also conducted after the training)

7. License

This project is licensed under the MIT License - see the LICENSE file for details.

8. Citation

If you use this work or code, please kindly cite the following paper:

@inproceedings{xu-etal-2021-git,
    title = "Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker",
    author = "Runxin Xu  and
      Tianyu Liu  and
      Lei Li and
      Baobao Chang",
    booktitle = "The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)",
    year = "2021",
    publisher = "Association for Computational Linguistics",
}

About

Source code for ACL-IJCNLP 2021 Long paper: Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published