Here are
15 public repositories
matching this topic...
Updated
Jun 7, 2022
Python
Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Updated
Jul 9, 2022
Python
NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
Support Yolov5(4.0)/Yolov5(5.0)/YoloR/YoloX/Yolov4/Yolov3/CenterNet/CenterFace/RetinaFace/Classify/Unet. use darknet/libtorch/pytorch/mxnet to onnx to tensorrt
Updated
Aug 29, 2021
Python
使用ONNXRuntime部署anchor-free系列的YOLOR,包含C++和Python两种版本的程序
🚀 ⭐ The list of the most popular YOLO algorithms - awesome YOLO
Real Time Lane Detection + Lane Line Generation + Object Detection + Object Counting (DeepSort, YoloR)
Updated
Jul 6, 2022
Python
Experimental implementation of real-time object detection algorithm YOLOR on embedded systems (edge computing devices)
Updated
Feb 9, 2022
Python
Final project of VRDL course in 2021 fall semester at NYCU.
Updated
Mar 2, 2022
Python
FSOD stands for Firearms and Sharp Object Detector. In conclusion, this dashboard is a web application made with streamlit that can detect several kind of firearms and sharp object threat. Object detection algorithm used to make the model are YOLO-R and also used Deepsort for tracking purpose.
Updated
Jun 16, 2022
Jupyter Notebook
🤖 Trained YOLOR model to detect texts on manga pages.
Updated
Apr 28, 2022
Jupyter Notebook
fire detection with yoloR
Improve this page
Add a description, image, and links to the
yolor
topic page so that developers can more easily learn about it.
Curate this topic
Add this topic to your repo
To associate your repository with the
yolor
topic, visit your repo's landing page and select "manage topics."
Learn more
You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session.
You signed out in another tab or window. Reload to refresh your session.
这个issue主要讲一下,如何把你自己的模型添加到lite.ai.toolkit。lite.ai.toolkit集成了一些比较新的基础模型,比如人脸检测、人脸识别、抠图、人脸属性分析、图像分类、人脸关键点识别、图像着色、目标检测等等,可以直接用到具体的场景中。但是,毕竟lite.ai.toolkit的模型还是有限的,具体的场景下,可能有你经过优化的模型,比如你自己训了一个目标检测器,可能效果更好。那么,如何把你的模型加入到lite.ai.toolkit中呢?这样既能用到lite.ai.toolkit一些已有的算法能力,也能兼容您的具体场景。这个issue主要是讲这个问题。大家有疑惑的可以提在这个issue,我会尽可能回答~