E¥°E NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

A

5

Hawkeye: Towards a Desired
Directed Grey-box Fuzzing

Hongxu Chen, Yinxing Xue, Yuekang Li,
Bihuan Chen, Xiaofei Xie, Xiuheng Wu, Yang Liu

October 18, 2018

Mutation Based Grey-box Fuzzing

Initial
Seeds

I

|

] "

Instrumented ' - Queue
| —
Program Binary ! . \

|

|

]

Fuzzing Loop

Program _,
Under Test

Instrumentation

—>(
Seed Selection
Power Scheduling
‘
=)
D
QS
<
Mutation
%)
o
2 =
— Seed Prioritization

e General-purpose Grey-box Fuzzing: Cover more
paths and induce more bugs (if any)

e Directed Grey-box Fuzzing (DGF): Given a target
site (e.g., file & line number), test this site
intensively, and induce more relevant bugs

Why Directed Grey-box Fuzzing ? (1)

diff --git a/bfd/dwarf2.c b/bfd/dwarf2.c
index 1566c¢cd8..8abb3f0 100644 '

--- a/bfd/dwarf2.c
+++ b/bfd/dwarf2.c

@@ -1933,6 +1933,13 @@ read formatted entries (struct comp unit *unit, bfd byte **bufp,

data_count = _bfd safe read lebl28 (abfd, buf, &bytes read, FALSE, buf _end);
buf += bytes read;
if (format count == 0 && data count != 0)
{
bfd error handler (("Dwarf Error: Zero format count."));
bfd set error (bfd error bad value);
return FALSE;

}

+ 4+ + + + + +

for (datai = 0; datai < data count; datai++)

{
bfd byte *format = format header data;

Patch Testing

Why Directed Grey-box Fuzzing ? (2)

Project Name CID Checker Category

wazuh/ossec-wazuh 117766 USE_AFTER_FREE Memory - illegal accesses

File: /wazuh_modules/wmodules.c
< 4. Condition "cur_module", taking true branch
57 for (cur_module = wmodules; cur_module; wmodules = next_module) {

<<< CID 117766: Memory - illegal accesses USE_AFTER_FREE
<<< 5. Dereferencing freed pointer "cur_module".

58 next_module = cur_module->next;
59 cur_module->context->destroy(cur_module->data);

<< 2. "free" frees "cur_module".
60 free(cur_module);

< 3. Jumping back to the beginning of the loop

Justify a suspicious vulnerability

Why Directed Grey-box Fuzzing ? (3)

JIXCVE-2016-1835 Detail
MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to
the information provided.

Current Description

Use-after-free vulnerability in the xmISAX2AttributeNs function in libxml[2 before 2.9.4, as used in Apple iOS before 9.3.2 and OS X before
10.11.5, allows remote attackers to cause a denial of service via a crafted XML document.

Source: MITRE
Description Last Modified: 07/27/2016
=View Analysis Description

Crash Reproduction based on
vulnerability description

Desired Properties for DGF (1)

P1: A distance metric
avoiding bias to certain
traces reachable to targets

> All traces reachable to the
target should be considered

> e.g., Given a patch for GNU
Binutils nm CVE-2017-15023,
there are >=2 traces
reachable to dwarf2.c:1601 in
concat_filename

Functions in a Crashing Trace File & Line Symbol
main nm.c :1794 M
_bfd_dwarf2_find_nearest_line dwarf2.c :4798 a
comp_unit_find_line dwarf2.c :3686 b
comp_unit_maybe_decode_line_info dwarf2.c :3651 c
decode_line_info dwarf2.c :2265 d
concat_filename dwarf2.c :1601 T

. Z
Functions in a Normal Trace File & Line Symbol
main nm.c :1794 M

_bfd_dwarf2_find_nearest_line
scan_unit_for_symbols
concat_filename

dwarf2.c :4798
dwarf2.c:3211
dwarf2.c :1601

NN® Q ¢

Desired Properties for DGF (2)

P2: Balance cost-effectiveness between static analysis and
dynamic analysis

1. static analysis has to be applied for DGF

2. Precise static analysis can be costly but may not be useful for
dynamic fuzzing

3. Coarse static analysis provides little directedness for fuzzing

Desired Properties for DGF (3)

P3: Prioritize proper seeds and schedule mutations

e Prioritization can boost DGF significantly
o variants of certain seeds have less chances to reach the

target sites
o some seeds contribute little in exploring new execution

traces

e Scheduling more mutations on “good” seeds are more
beneficial

Desired Properties for DGF (4)

P4: Adaptive mutation to increase mutators’ effectiveness

e Coarse-grained mutations typically change the execution

traces greatly

e Apply more fine-grained mutations when execution traces

are close to the target sites

Overall Workflow of Hawkeye

|
|
i c > Target Function
! 2 = Trace Closure
! 5 Call Graph ?) S
Program | 3 s S Function Level
Source Code / 1 | 8 S E Distance
i £ Control 53
1
! o Flow Graph g Basic Block
! L Level Distance
|
|
|

Static Analysis Fuzzing Loop

PART 1: Static Analysis

> Compute static distance utilities

a. Apply whole program analysis to construct Interprocedural
Control Flow Graph (ICFG)

b. Build static directedness utilities w.r.t. target site(s) based
on ICFG

c. Instrument directedness utilities into the program under test

Graph Construction

1. Call Graph (CG)
a. Andersen’s pointer analysis
b. Function pointers = Indirect calls
I. Much more precise than explicit-only Call Graph
ii. Less costly than context-/flow-sensitive analysis

2. Control Flow Graph (CFG)

3. CG+CFG=ICFG

Adjacent-Function Distance Augmentation (1)

void fa(int i) { void fa(int i) {
it (1 ='9) { ifr (i = @) 4
b (i); | fb(i); |
} else { (fb(i*Z};
[fb(i*Z}; ! else {
fc(); | fel); |
} }

} }

How to determine the distances of fa— fb and

Adjacent-Function Distance Augmentation (2)

f1: Caller f2: callee
CN: Call sites occurrences of f2 inside f1

C;: No. of basic blocks in f1 that contains >= 7 call site of f2

df(flaftz)=¢.CN+1'l//.CB+l

¢-CN ¥ - CB

Adjacent-Function Distance Augmentation (3)

void fa(int i) { void fa(int i) {
it (1 ='9) { if (i > 0) {
b (i); | fb(i);)
} else { [fb(i*Z);
b (i«2); } else {
[fC ();] [fC ()3]
} }

} }

Let ¢ = 2 and ¢ = 2,

2:24+1 2241
22 22

2:24+1 2141

22 2-1
2:-1+1 2.-1+41
2-1 2-1

df(f&)fb) - = 1.87

df(favfc) —

— 156 dj(fur fo) =

=225 di(fa, fo) =

2-1+1 2-141
2.1 2a1

= 2.25

Directedness Utility Computation

o d(f,f).distance between any two functions f_and f, in
the call graph

e d(n, T): function level distance to target(s), where nis a
function, T, is the set of target functions

e d,(m,T,): basic block distance to target(s)

o £(T):target function trace closure

PART 2: Fuzzing Loop

> Dynamic fuzzing based on static utilities and feedback

O

Track two separate execution metrics to measure
“distance” between current trace and “expected” traces
Calculate a power function based on the two metrics
Schedule mutation chances based on power function

Adaptively mutate based on reachability to target sites

Prioritize seeds based on power function and coverage

Two Metrics

Basic Block Trace Distance:

Zmefb(s)db(ma Tp)
1€5(s)]

ds(s, Tb) -

Covered Function Similarity:

S eers)ng (Tp)dr (f Tp) ™
(5) U & (Tp)]

¢S, Tf) =

Power Function

p(s,Tp) = cs(s, T¢) - (1 — ds(s, Tp))

e C_favorslonger traces that share more executed
functions with the “expected” traces

e d_favors shorter traces that reach the expected targets

e Used directly for scheduling mutation chances

Adaptive Mutation

When a seed has reached target functions, prefer
fine-grained mutations
o Fine-grained: bit/byte level flips, add/sub on
bytes/words, replace with interesting values
o Coarse-grained: random chunk modifications,
semantic mutations, crossover

Seed Prioritization

A three-tier queue to differentiate seed priorities and
favor seeds that:

a. cover new edges

b. are close to targets

c. reach target function(s)

Hawkeye's Solution to Desired Properties

P1: Combine basic block trace distance and covered
function similarity for power function to avoid bias

P2: Apply precise graph construction and argument
adjacent-function distance to generate cost-effective
directedness utilities for dynamic fuzzing

P3: Apply target-favored seed prioritization and mutation
power scheduling

P4: Apply based on reachability to targets

Evaluation Tools

e Hawkeye: Our proposed fuzzer that tries to satisfy the
proposed four desired properties

e Fidgety-AFL: State-of-the-art coverage-oriented Grey-box fuzzer

e AFLGo: DGF based on basic block distance instrumentation
and simulated annealing scheduling

e HE-Go: DGF whose basic block distance instrumentation

follows Hawkeye's, but uses AFLGo's scheduling

Crash Reproduction (cxxfi

)

CVE-ID Tool Runs | yTTE(s) | Factor
Hawkeye 20 177 =
A 527 | AEmGo 20 390 | 220
S AFL 20 630 | 3.56
Hawkeye 20 206 -
2016-4489 AFLGo 20 180 0.87
AFL 20 420 2.04
Hawkeye 20 103 -
2016-4490 AFLGo 20 293 0.90
AFL 20 39 0.57
Hawkeye 9 18733 -
2016-4491 AFLGo 5 23880 1.27
AFL 7 20760 1.11

_— Hawkeye 20 477 =
9016-4493 AFLGo 20 540 1.21
AFL 20 960 2.01

Hawkeye 9 17314 ~
2016-6131 AFLGo 6 21180 1.22

AFL

Crash Reproduction (MJS)

Bug ID Tool Runs | yTTE(s) | Factor | Ay,

Hawkeye 5 5469 - -
#1 AFLGo 2 12581 2.30 0.77
AFL 2 13084 2.39 0.77

Hawkeye 7 1880 - -
#2 AFLGo 2 12753 6.78 0.95
AFL 2 12294 6.54 0.95)

Hawkeye 8 178 - =
#3 AFLGo 8 819 4.60 0.91
AFL 8 1269 7.13 0.95

Hawkeye 8 5519 - -
#4 AFLGo 8 5878 1.07 0.57
AFL 8 5036 0.91 0.48

#1 Stack Overflow
#3 Heap buffer overflow

#2 Invalid read
#4 Use after free

Crash Reproduction (Oniguruma)

Bug ID Tool Runs | yTTE(s) | Factor | Ay
Hawkeye 8 139 - -
#1 HE-Go 8 149 1.07 0.58
AFL 8 135 0.97 0.54
Hawkeye 8 186 2 <
#2 HE-Go 8 228 1.23 0.88
AFL 8 372 2.00 1.0
Hawkeye 2 13768 - -
#3 HE-Go 1 14163 1.03 0.56
AFL 1 14341 1.04 0.57
Hawkeye 7 6969 - =
24 HE-Go 3 12547 1.80 0.82
AFL 1 14375 2.06

#1, #2, #3 are from Oniguruma 6.2.0
#4 is from Oniguruma 6.8.2

Target Site Covering (Google Fuzzer Test Suite)

ID Project Tool Runs | pyTTE(s) | Factor | Ay,
Hawkeye 8 1955 = -
#1 | jdmarker.c:659 HE-Go 8 2012 1.03 | 0.53
AFL 8 4339 2.48 0.95
Hawkeye 8 23 - -
#2 | pngread.c:738 HE-Go 8 16 | 0.70 | 0.43
AFL 8 130 5.65 1.00
Hawkeye 8 1 - ~
#3 | pngrutil.c:3182 HE-Go 8 66 | 66.00 | 0.56
AFL 8 3 3.00 0.51
Hawkeye 7 4283 = ~
#4 | ttgload.c:1710 HE-Go 7 4443 1.04 0.55
AFL 6 5980 1.40 0.60

Summary

1. Directed Grey-box Fuzzing (DGF) can be helpful
2. We analyzed the challenges in DGF and developed a fuzzer

Hawkeye aiming to satisfy the desired properties

3. Experimental results demonstrate Hawkeye's effectiveness in

both crash reproduction and target site covering

FOT: A Versatile, Configurable,
Extensible Fuzzing Framework
(Fuzzing Orchestration Toolkit)

e highly modularized
e supports different

[Program Binary] (Source Code]

B .o

| Static Analyzer |

v

(Program Information]

Y / \

Y

i | Binary Rewriter |] Compiler | E

Program

[Instrumented J [—]

featu res i —>| Overall Manager |<—
| v it
Framework) i —>[Seed Queue)
AFL | libFuzzer | honggfuzz | FOT | | Il
Features |
Binary-Fuzzing Support o O o [] i SoediScolr |< ______________
Multi-threading Mode O ® . ® m m
In-memory Fuzzing ® o ® ® i
Advanced Configuration O © O & | Mutat.on Manager |.
Modularized Functionality O ') O &® | e i
Structure-aware Mutation O O O O ! [New Seed J<-—-{ Mutated Input } ———————————— Loy
Interoperability O O O O ‘ g
Toolchain Support ® O (® | EXscdlof I‘T"”:
Precise Crash Analysis O @) ® @ e
Runtime Visualization (D) @) O e . L 'i??dbfiik_?i“e?tir_ _|-_-___-_-_ ______________
See our upcoming ESEC/FSE18 (L mmoare | | empomn)2
. . 2 |
Demo: hitps://bit.ly/2yzl Fla ; [Montor | [CrashAmiyzer |
i | Other Tools | B

29

https://bit.ly/2yzLFla

Thank you !

Y

Two Relevant CVEs in Binutils nm (NULL pointer Read)

$ nm -A -a -l -S -s —-special-syms --synthetic —-with-symbol-versions -D SPOC1
==3765==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000
==3765==The signal is caused by a READ memory access.
==3765==Hint: address points to the zero page.

#0 0x6a7375 in concat_filename
/home/hawkeye/binutils/bfd/dwarf2.c:1601:8

#1 0x696e83 in decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:2258:44

#2 0x6a2ab8 in comp_unit_maybe_decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:3642:26

#3 0x6a2ab8 in comp_unit_find_line
/home/hawkeye/binutils/bfd/dwarf2.c:3677

#4 0x6a0104 in _bfd_dwarf2_find_nearest_line
/home/hawkeye/binutils/bfd/dwarf2.c:4789:11

#5 0x5f330e in _bfd_elf_find_line /home/hawkeye/binutils/bfd/elf.c:8695:10

#6 0x5176a3 in print_symbol /home/hawkeye/binutils/binutils/nm.c:1003:9

#7 0x514e4d in print_symbols /home/hawkeye/binutils/binutils/nm.c:1084:7

#8 0x514e4d in display_rel_file /home/hawkeye/binutils/binutils/nm.c:1200

#9 0x510976 in display_file /home/hawkeye/binutils/binutils/nm.c:1318:7

#10 0x50f4ce in main /home/hawkeye/binutils/binutils/nm.c:1792:12

CVE-201/-15023

S nm -A -a -1 -S -s —-special-syms --synthetic —-with-symbol-versions -D $POC2
==19042==ERROR: AddressSanitizer: SEGV on unknown address
0x000000000000
==19042==The signal is caused by a READ memory access.
==19042==Hint: address points to the zero page.
#0 Ox6a76a5 in concat_filename
/home/hawkeye/binutils/bfd/dwarf2.c:1601:8
#1 0x696ff3 in decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:2265:44
#2 0x6a2d36 in comp_unit_maybe_decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:3651:26
#3 0x6a2d36 in comp_unit_find_line
/home/hawkeye/binutils/bfd/dwarf2.c:3686
#4 0x6a0369 in _bfd_dwarf2_find_nearest_line
/home/hawkeye/binutils/bfd/dwarf2.c:4798:11
#5 0x5f332e in _bfd_elf_find_line /home/hawkeye/binutils/bfd/elf.c:8695:10
#6 0x5176a3 in print_symbol /home/hawkeye/binutils/binutils/nm.c:1003:9
#7 0x514e4d in print_symbols /home/hawkeye/binutils/binutils/nm.c:1084:7
#8 0x514e4d in display_rel_file /home/hawkeye/binutils/binutils/nm.c:1200
#9 0x510976 in display_file /home/hawkeye/binutils/binutils/nm.c:1318:7
#10 0x50f4ce in main /home/hawkeye/binutils/binutils/nm.c:1792:12

CVE-2017-15939

https://nvd.nist.gov/vuln/detail/CVE-2017-15939
https://nvd.nist.gov/vuln/detail/CVE-2017-15023

Statistics of Tested Programs

Project Program | Size ics cs | ics/cs | # of Cp>1 | # of Cn>1 ts
Binutils cxxfilt 2.8M | 3232 | 12117 | 26.67% 33813 8879 | 735s
Oniguruma testcu 1.3M 556 2065 | 26.93% 3037 3101 5s
mjs mjs 277K 130 3277 3.97% 309 334 3s
libjpeg libjpeg | 810K | 749 | 1827 | 41.00% 144 152 | 2s
libpng libpng 228K | 449 | 1018 | 44.11% 61 61 2s
freetype2 freetype | 1.6M | 627 | 5681 | 11.30% 6784 7117 4s

Selected Trophies

oinaryen: 17 bugs
Clma: 2 bugs
cspruino: 9 CVEs
FEmpeqg: 3 CVEs
FLIF: 2 bugs

GNU bce: 18 bugs
GNU Binutils: 1 CVE
GNU diffutils: 2 bugs
GPAC: 15 bugs
imagemagick: 2 CVEs

Intel XED: 2 bugs
libjpeg-turbo: 1 CVE
liblouis: 1 CVE
lepton: 4 bugs
libsass: 10 bugs
libvips: 11 bugs
Oniguruma: 6 CVEs
radare2: 40+ bugs
MJS: 33 bugs

Swift: 7 bugs

33

https://github.com/intelxed/xed
https://libjpeg-turbo.org/
https://github.com/liblouis
https://github.com/dropbox/lepton
https://github.com/sass/libsass/issues
https://github.com/jcupitt/libvips
https://github.com/kkos/oniguruma
https://github.com/radare/radare2
https://github.com/cesanta/mjs
https://github.com/apple/swift
https://github.com/WebAssembly/binaryen
https://github.com/dtschump/CImg
https://github.com/espruino/Espruino
https://www.ffmpeg.org/
https://github.com/FLIF-hub/FLIF
https://www.gnu.org/software/bc/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/diffutils/
https://github.com/gpac/gpac
https://github.com/gpac/gpac/issues?q=is:issue+author:HongxuChen
https://www.imagemagick.org/

