
Hawkeye: Towards a Desired
Directed Grey-box Fuzzing

Hongxu Chen, Yinxing Xue, Yuekang Li,
Bihuan Chen, Xiaofei Xie, Xiuheng Wu, Yang Liu

October 18, 2018

1

Mutation Based Grey-box Fuzzing

2

● General-purpose Grey-box Fuzzing: Cover more
paths and induce more bugs (if any)

● Directed Grey-box Fuzzing (DGF): Given a target
site (e.g., file & line number), test this site
intensively, and induce more relevant bugs

Why Directed Grey-box Fuzzing ? (1)

Patch Testing

3

Why Directed Grey-box Fuzzing ? (2)

Justify a suspicious vulnerability

4

Why Directed Grey-box Fuzzing ? (3)

Crash Reproduction based on
vulnerability description

5

Desired Properties for DGF (1)
P1: A distance metric
avoiding bias to certain
traces reachable to targets

➢ All traces reachable to the
target should be considered

➢ e.g., Given a patch for GNU
Binutils nm CVE-2017-15023,
there are >=2 traces
reachable to dwarf2.c:1601 in
concat_filename

6

Desired Properties for DGF (2)

P2: Balance cost-effectiveness between static analysis and
dynamic analysis

1. static analysis has to be applied for DGF

2. Precise static analysis can be costly but may not be useful for
dynamic fuzzing

3. Coarse static analysis provides little directedness for fuzzing

7

Desired Properties for DGF (3)

P3: Prioritize proper seeds and schedule mutations

● Prioritization can boost DGF significantly
○ variants of certain seeds have less chances to reach the

target sites
○ some seeds contribute little in exploring new execution

traces

● Scheduling more mutations on “good” seeds are more
beneficial

8

Desired Properties for DGF (4)

P4: Adaptive mutation to increase mutators’ effectiveness

● Coarse-grained mutations typically change the execution

traces greatly

● Apply more fine-grained mutations when execution traces

are close to the target sites

9

Overall Workflow of Hawkeye

10

PART 1: Static Analysis

➢ Compute static distance utilities
a. Apply whole program analysis to construct Interprocedural

Control Flow Graph (ICFG)
b. Build static directedness utilities w.r.t. target site(s) based

on ICFG
c. Instrument directedness utilities into the program under test

11

Graph Construction

1. Call Graph (CG)
a. Andersen’s pointer analysis
b. Function pointers ⇒ Indirect calls

i. Much more precise than explicit-only Call Graph
ii. Less costly than context-/flow-sensitive analysis

2. Control Flow Graph (CFG)

3. CG + CFG ⇒ ICFG

12

Adjacent-Function Distance Augmentation (1)

How to determine the distances of fa→ fb and fa → fc ?

13

Adjacent-Function Distance Augmentation (2)

f1: Caller f2: callee

CN: Call sites occurrences of f2 inside f1

CB: No. of basic blocks in f1 that contains >= 1 call site of f2

14

Adjacent-Function Distance Augmentation (3)

15

Directedness Utility Computation

● df(fs, ft): distance between any two functions fs and ft in

the call graph

● df(n, Tf): function level distance to target(s), where n is a

function, Tf is the set of target functions

● db(m, Tb): basic block distance to target(s)

● 𝜉f(Tf): target function trace closure

16

PART 2: Fuzzing Loop

➢ Dynamic fuzzing based on static utilities and feedback

○ Track two separate execution metrics to measure

“distance” between current trace and “expected” traces

○ Calculate a power function based on the two metrics

○ Schedule mutation chances based on power function

○ Adaptively mutate based on reachability to target sites

○ Prioritize seeds based on power function and coverage

17

Two Metrics

Basic Block Trace Distance:

Covered Function Similarity:

18

Power Function

● Cs favors longer traces that share more executed
functions with the “expected” traces

● ds favors shorter traces that reach the expected targets
● Used directly for scheduling mutation chances

19

Adaptive Mutation

When a seed has reached target functions, prefer
fine-grained mutations

○ Fine-grained: bit/byte level flips, add/sub on
bytes/words, replace with interesting values

○ Coarse-grained: random chunk modifications,
semantic mutations, crossover

20

Seed Prioritization

A three-tier queue to differentiate seed priorities and
favor seeds that:

a. cover new edges
b. are close to targets
c. reach target function(s)

21

Hawkeye’s Solution to Desired Properties

P1: Combine basic block trace distance and covered
function similarity for power function to avoid bias

P2: Apply precise graph construction and argument
adjacent-function distance to generate cost-effective
directedness utilities for dynamic fuzzing

P3: Apply target-favored seed prioritization and mutation
power scheduling

P4: Apply adaptive mutation based on reachability to targets

22

Evaluation Tools

● Hawkeye: Our proposed fuzzer that tries to satisfy the

proposed four desired properties

● Fidgety-AFL: State-of-the-art coverage-oriented Grey-box fuzzer

● AFLGo: DGF based on basic block distance instrumentation

and simulated annealing scheduling

● HE-Go: DGF whose basic block distance instrumentation

follows Hawkeye’s, but uses AFLGo’s scheduling

23

Crash Reproduction (cxxfilt)

24

Crash Reproduction (MJS)

#1 Stack Overflow #2 Invalid read
#3 Heap buffer overflow #4 Use after free

25

Crash Reproduction (Oniguruma)

26

#1, #2, #3 are from Oniguruma 6.2.0
#4 is from Oniguruma 6.8.2

Target Site Covering (Google Fuzzer Test Suite)

27

Summary

1. Directed Grey-box Fuzzing (DGF) can be helpful

2. We analyzed the challenges in DGF and developed a fuzzer

Hawkeye aiming to satisfy the desired properties

3. Experimental results demonstrate Hawkeye’s effectiveness in

both crash reproduction and target site covering

28

FOT: A Versatile, Configurable,
Extensible Fuzzing Framework
(Fuzzing Orchestration Toolkit)

See our upcoming ESEC/FSE18
Demo: https://bit.ly/2yzLFla

29

● highly modularized
● supports different

features

https://bit.ly/2yzLFla

Thank you !

30

Two Relevant CVEs in Binutils nm (NULL pointer Read)

$ nm -A -a -l -S -s --special-syms --synthetic --with-symbol-versions -D $POC1
==3765==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000
==3765==The signal is caused by a READ memory access.
==3765==Hint: address points to the zero page.
 #0 0x6a7375 in concat_filename
/home/hawkeye/binutils/bfd/dwarf2.c:1601:8
 #1 0x696e83 in decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:2258:44
 #2 0x6a2ab8 in comp_unit_maybe_decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:3642:26
 #3 0x6a2ab8 in comp_unit_find_line
/home/hawkeye/binutils/bfd/dwarf2.c:3677
 #4 0x6a0104 in _bfd_dwarf2_find_nearest_line
/home/hawkeye/binutils/bfd/dwarf2.c:4789:11
 #5 0x5f330e in _bfd_elf_find_line /home/hawkeye/binutils/bfd/elf.c:8695:10
 #6 0x5176a3 in print_symbol /home/hawkeye/binutils/binutils/nm.c:1003:9
 #7 0x514e4d in print_symbols /home/hawkeye/binutils/binutils/nm.c:1084:7
 #8 0x514e4d in display_rel_file /home/hawkeye/binutils/binutils/nm.c:1200
 #9 0x510976 in display_file /home/hawkeye/binutils/binutils/nm.c:1318:7
 #10 0x50f4ce in main /home/hawkeye/binutils/binutils/nm.c:1792:12

$ nm -A -a -l -S -s --special-syms --synthetic --with-symbol-versions -D $POC2
==19042==ERROR: AddressSanitizer: SEGV on unknown address
0x000000000000
==19042==The signal is caused by a READ memory access.
==19042==Hint: address points to the zero page.
 #0 0x6a76a5 in concat_filename
/home/hawkeye/binutils/bfd/dwarf2.c:1601:8
 #1 0x696ff3 in decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:2265:44
 #2 0x6a2d36 in comp_unit_maybe_decode_line_info
/home/hawkeye/binutils/bfd/dwarf2.c:3651:26
 #3 0x6a2d36 in comp_unit_find_line
/home/hawkeye/binutils/bfd/dwarf2.c:3686
 #4 0x6a0369 in _bfd_dwarf2_find_nearest_line
/home/hawkeye/binutils/bfd/dwarf2.c:4798:11
 #5 0x5f332e in _bfd_elf_find_line /home/hawkeye/binutils/bfd/elf.c:8695:10
 #6 0x5176a3 in print_symbol /home/hawkeye/binutils/binutils/nm.c:1003:9
 #7 0x514e4d in print_symbols /home/hawkeye/binutils/binutils/nm.c:1084:7
 #8 0x514e4d in display_rel_file /home/hawkeye/binutils/binutils/nm.c:1200
 #9 0x510976 in display_file /home/hawkeye/binutils/binutils/nm.c:1318:7
 #10 0x50f4ce in main /home/hawkeye/binutils/binutils/nm.c:1792:12

31

CVE-2017-15939CVE-2017-15023

https://nvd.nist.gov/vuln/detail/CVE-2017-15939
https://nvd.nist.gov/vuln/detail/CVE-2017-15023

Statistics of Tested Programs

32

33

Selected Trophies

Intel XED: 2 bugs
libjpeg-turbo: 1 CVE
liblouis: 1 CVE
lepton: 4 bugs
libsass: 10 bugs
libvips: 11 bugs
Oniguruma: 6 CVEs
radare2: 40+ bugs
MJS: 33 bugs
Swift: 7 bugs

binaryen: 17 bugs
CImg: 2 bugs
Espruino: 9 CVEs
FFmpeg: 3 CVEs
FLIF: 2 bugs
GNU bc: 18 bugs
GNU Binutils: 1 CVE
GNU diffutils: 2 bugs
GPAC: 15 bugs
imagemagick: 2 CVEs

https://github.com/intelxed/xed
https://libjpeg-turbo.org/
https://github.com/liblouis
https://github.com/dropbox/lepton
https://github.com/sass/libsass/issues
https://github.com/jcupitt/libvips
https://github.com/kkos/oniguruma
https://github.com/radare/radare2
https://github.com/cesanta/mjs
https://github.com/apple/swift
https://github.com/WebAssembly/binaryen
https://github.com/dtschump/CImg
https://github.com/espruino/Espruino
https://www.ffmpeg.org/
https://github.com/FLIF-hub/FLIF
https://www.gnu.org/software/bc/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/diffutils/
https://github.com/gpac/gpac
https://github.com/gpac/gpac/issues?q=is:issue+author:HongxuChen
https://www.imagemagick.org/

