Skip to content
#

xgboost-algorithm

Here are 286 public repositories matching this topic...

awesome-gradient-boosting-papers

Perform a survival analysis based on the time-to-event (death event) for the subjects. Compare machine learning models to assess the likelihood of a death by heart failure condition. This can be used to help hospitals in assessing the severity of patients with cardiovascular diseases and heart failure condition.

  • Updated Aug 26, 2022
  • Jupyter Notebook

A binary classification model is developed to predict the probability of paying back a loan by an applicant. Customer previous loan journey was used to extract useful features using different strategies such as manual and automated feature engineering, and deep learning (CNN, RNN). Various machine learning algorithms such as Boosted algorithms (XGBoost, LightGBM, CatBoost) and Deep Neural Network are used to develop a binary classifier and their performances were compared.

  • Updated Sep 13, 2022
  • Jupyter Notebook

Machine learning Based Minor Project, which uses various classification Algorithms to classify the news into FAKE/REAL, on the basis of their Title and Body-Content. Data has been collected from 3 different sources and uses algorithms like Random Forest, SVM, Wordtovec and Logistic Regression. It gave 94% accuracy.

  • Updated Jan 9, 2019
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the xgboost-algorithm topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the xgboost-algorithm topic, visit your repo's landing page and select "manage topics."

Learn more