O AlloyDB for PostgreSQL - Analytical (OLAP)
Benchmarking Guide

Disclaimer
Overview
Infrastructure Setup
Setting-up AlloyDB Cluster and Instance
Provision Client Machine
Setup of Benchmark Driver Machine (Client)
Benchmark Cleanup: An important Prerequisite
TPC-H Benchmark
Prerequisites
Initial Benchmarking Setup
Script to load TPC-H data
Columnar Engine (CE) Flags
Running the TPC-H benchmark
Expected TPC-H Results
OLAP Atomics Benchmarking
Setup, Configuration and Tuning
Queries in OLAP Atomics
Execute OLAP Atomics
Expected Results

May 2023

O VvV 0 Ny U Ul W =

W W WNDNNN= A A=
A W NOWOWNWPIMDNOO

Disclaimer

This AlloyDB for PostgreSQL benchmark guide provides best practices for running an Online Analytical (OLAP)
benchmark. Your results may vary depending on several factors including, but not limited to the type of
AlloyDB instance, type of client machine driving the benchmark, region, zone, and network bandwidth at
the time of tests. Nothing in this user guide should be construed as a promise or guarantee about the results
you’ll derive from measuring the OLAP performance of AlloyDB.

AlloyDB OLAP Benchmarking Guide 2

https://www.lawinsider.com/clause/promise
https://www.lawinsider.com/clause/guarantee

Overview

AlloyDB for PostgreSQL on Google Cloud is a relational database built to give you enterprise grade reliability,
scalability, and performance suitable for critical, enterprise-level workloads. AlloyDB has state-of-the-art
log and transaction management, dynamic memory management, artificial intelligence and machine
learning integration, a built-in columnar engine, and a multi-tiered cache, and is based on distributed,
scalable storage. As a whole, these features enable high performance for your transactional (OLTP) ,
analytical (OLAP), and hybrid (HTAP) workloads.

The focus of this guide is to provide a step-by-step procedure to evaluate the analytical performance of
AlloyDB which is powered by the Columnar Engine feature that stores and manages data in the columnar
format. The Columnar Engine is designed and optimized for the efficient storage and retrieval of column
data for analytical workloads where the emphasis is on efficiently processing large volumes of data
compared to row-based data storage and to generate insights, analysis and reporting. The analytical queries
execute substantially faster because the Columnar Engine selectively accesses and processes only the
columns of data that are pertinent to the query, resulting in significant query performance improvements.
Users of AlloyDB have a choice of running only transactional workloads (disable Columnar Engine), run
analytical queries along with transactional workloads (enable Columnar Engine and allocate appropriate
memory), or run purely analytical workloads on read pools.

Relational database systems typically require database administrators (DBAs) to optimize them for
benchmarking, which includes configuring the transaction log settings, establishing the right buffer pool
sizes, and tweaking other important database parameters (flags) and characteristics. These settings would
also vary depending on the size and type of the instance. AlloyDB comes pre-configured with optimal
Columnar Engine settings for each machine type and requires very minimal tuning to achieve an optimal
OLAP performance.

This document describes a step-by-step procedure to deploy and configure the AlloyDB cluster, a benchmark
driving (client) machine, and provides best practices to measure the performance of AlloyDB using a variety
of OLAP benchmarks, like HammerDB TPROC-H (derived from TPC-H) with different scale factors and OLAP
atomic queries developed internally at Google.

Since HammerDB’s TPROC-H implementation is a close variant of the official TPC-H benchmark, we will use
the terms TPC-H and TPROC-H interchangeably throughout this user guide.

Unless otherwise specified, we used following setup for performance benchmarking:

Component Value
AlloyDB Cluster Type Highly Available
AlloyDB Machine Type 16vCPU / 128GB / Storage auto-allocated.
Intel® Xeon® Platinum 8373C Processor (Ice Lake) 3rd Generation*®

https://www.hammerdb.com/index.html
https://www.hammerdb.com/docs/ch11s01.html

Component Value

Database Version PostgreSQL 14 compatible (14.4)
Region us-central1 (lowa)
AlloyDB Primary zone us-central1-c (Auto-selected)

AlloyDB Secondary zone Us-central1-f (Auto-selected)

Client VM - Machine Type | E2-standard-32 (Intel-Broadwell) / 128GB / 128 GB persistent disk as
boot disk

NOTE: A large client machine can help you with faster load of TPC-H
database. For power run of TPC-H, you don’t need a large machine.

Operating System: Debian 5.10.162-1, x86_64 GNU/Linux

Zone of Client VM us-central1-c [same as AlloyDB primary instance]

Connectivity Private IP over VPC

Test tools HammerDB-4.6
Psql

Workloads TPdC-1HOgenchmark on a 16 vCPU machine with scale-factor of 10, 30
an .

A collection of 11 primitive OLAP queries to measure the decision
support capability of the AlloyDB columnar engine.

When you deploy AlloyDB, it will be provisioned on either Intel Cascade Lake or the newer Intel Ice Lake
platform depending on the availability in that region.

https://cloud.google.com/compute/docs/cpu-platforms#intel_processors

Us-central1 (lowa)

VPC

Client VM

E2-standard-32/128GB
Storage: 128GB

us-centrall1-c

TPC-H

Private |IP

AlloyDB Cluster
16 vCPU / 128GB

AlloyDB (P)
Instance

us-central-f

AlloyDB (S)
Instance

Infrastructure Setup

Setting-up AlloyDB Cluster and Instance

1. Create or select your GCP project: Go to https://console.cloud.google.com and select your project
from the drop down menu or create a new one.

2. Follow these links on the portal: “Products and Solutions” — “All Products” — “Databases” —

“AlloyDB for PostgreSQL”.

3. Click on the following button to create an AlloyDB cluster.

Clusters

4+ CREATE CLUSTER

= MIGRATE DATA

4. Choose "Highly Available" for the cluster type and "PostgreSQL14" for the database.
For illustration, consider the image below.

AlloyDB OLAP Benchmarking Guide

https://console.cloud.google.com/

& Create an AlloyDB cluster

@ Choose a cluster type to start with

This choice isn't permanent - you can add read pool instances to your cluster any
time.

© Configure your cluster

Provide some basic information about your cluster

Basic info

Cluster ID *

Use lowercase letters, numbers, and hyphens. Start with a letter.

Password *
‘ I & GENERATE

Set a password for the default "postgres” user. A password is required for the user
tologin

Database version
PostgreSQL 14 compatible

Storage
Cluster storage scales automatically, so you only pay for what you use

Location

For better performance, keep your data close to the services that need it. Choice is
permanent.

Region *
‘ us-centrall (lowa) -

Networking

Clusters can only be configured with a private IP network path. Learn more

Network *

[default v

® Private services access connection for network default has been
successfully created. You will now be able to use the same network
across all your project's managed services. If you would like to
change this connection, please visit the Networking page.

Vv ADVANCED ENCRYPTION OPTIONS

CONTINUE

© Configure your primary instance

A primary instance determines a cluster's compute capacity and supports read
and write operations.

CREATE CLUSTER CANCEL

AlloyDB OLAP Benchmarking Guide

5. Unless otherwise specified, in this guide, we used a 16 vCPU with 128 GB RAM as a primary AlloyDB
instance deployed in a highly available mode without a readpool. Note the location of the primary
zone and private IP. These will be used when configuring the client machine. Use the illustration
below as a guide.

Instances in your cluster ADD READ POOL | &——— Don'tadd read pool

Primary instance @@
Eil gEL &)
El B S
Status ® Ready m m m
High availability ~ Highly available (multi-zone)
Location €———— PRIMARY ZONE
READ POOL

(secondary zone: us-centrall1-f)

Machine type 16 vCPU, 128 GB Read pool instances increase your cluster's read

Private IP 172.20.0.209 1§ capacity by aggregating nodes, which you can scale,
enabling highly available reads. Learn more

ADD READ POOL INSTANCE

Flags No flags set

EDIT PRIMARY

6. Configuring and tuning AlloyDB columnar-engine settings varies depending on the benchmark type
and scenario. Those instructions will be covered in a later section.

Provision Client Machine

Unless otherwise specified, we used an E2-standard-32 VM with 128 GB disk as a client for the TPC-H
benchmarking. The client VM is created in the same zone as AlloyDB’s primary instance.

For this analytical benchmarking guide, we will be primarily using TPC-H and OLAP atomic queries, and we
do not need a large client VM to execute the benchmarks (i.e. queries). However, loading a large TPC-H
database (especially, scale factor of size 30 or 100) will be faster with a large client machine.

Important: For this exercise, the Debian linux client must be provisioned in the same region, zone, and VPC
as AlloyDB’s primary instance. Benchmarking tools directly access the AlloyDB instance over private IP.

Below is a sample client machine we provisioned to execute the TPC-H benchmark on an AlloyDB primary
instance with 16 virtual CPUs.

DETAILS OBSERVABILITY OS INFO SCREENSHOT

Basic information

Name
Instance Id

Description None

Type Instance

Status @ Running

Creation time Feb 22,2023, 4:18:26 AM UTC-08:00

Zone €———— SAMEASPRIMARY INSTANCE

Instance template None

In use by None

Reservations Automatically choose

Labels None

Tags @ |, ise-api-enabler-access : true 1, strategy-0aa8714a-wave : wave-2 1, strategy-34650193-wave : wave-2

41, strategy-67cdedae-wave : wave-1 - strategy-762a8ab3-wave : wave-2 41, strategy-8bf36cf7-wave : wave-2

41, strategy-9b21db73-wave : wave-1 41, zonal-dns-rollout-wave-teams : wave-2
/
Deletion protection Disabled
Confidential VM service @ Disabled
Preserved state size 0GB

Machine configuration

Machine type e2-standard-32

CPU platform Intel Broadwell
Architecture x86/64

vCPUs to core ratio @ -

Custom visible cores @

Display device Disabled
Enable to use screen capturing and recording tools
GPUs None
Networking
Public DNS PTR Record None

Total egress bandwidth tier -
NIC type -

= VIEW IN NETWORK TOPOLOGY

Setup of Benchmark Driver Machine (Client)

This section will guide you through the steps of configuring the client machine running on Google Cloud,
where we will install important tools such as HammerDB and PSQL.

AlloyDB OLAP Benchmarking Guide 8

Connect to the client machine using the “gcloud compute ssh” command. Refer to this documentation for
details “https://cloud.google.com/sdk/gcloud/reference/compute/ssh”.

Sample gcloud command to connect with the client machine:

gcloud compute ssh --zone "<primary zone>" "<client machine name>" --project "<google-project>"

Install PostgreSQL client

You will need a psql client application to connect to AlloyDB PostgreSQL. Use the following command to
install a postgresql client that includes a psql application and then ensure you are able to connect.

sudo apt-get update
sudo apt install postgresql-client

Now ensure that it works and you are able to connect to the AlloyDB PostgreSQL. Use the “Private IP”
address of your primary AlloyDB instance.

export PGPASSWORD=<password of postgres user set during AlloyDB instance creation>
export PGHOST=<Private IP of your AlloyDB Primary Instance>
psql -U postgres

Install HammerDB-4.6 Driver for TPC-H benchmark

For this benchmarking guide, we utilized the HammerDB-4.6 driver. Execute the following commands to
install HammerDB driver:

mkdir hammerdb

pushd hammerdb

curl -OL
https://github.com/TPC-Council/HammerDB/releases/download/v4.6/HammerDB-4.6-Linux.tar.gz

Benchmark Cleanup: An important Prerequisite

This step is important if you are planning to execute multiple benchmarks in succession. Performing a proper
cleanup between each benchmark is a critical prerequisite for accurate and reliable benchmarking results.
This includes deleting previous benchmark data (i.e. benchmark database), and rebooting the AlloyDB
instance (that clears caches at database and operating systems level) before running another benchmark. A
proper benchmark cleanup ensures that residual effects from previous benchmarks do not affect the
performance measurements of the new benchmark. It also helps to ensure consistency and repeatability of

https://cloud.google.com/sdk/gcloud/reference/compute/ssh

the benchmark results, which is essential for making meaningful comparisons between different systems or
identifying areas for optimization in hardware, software, or configuration.

Follow the URL https://cloud.google.com/alloydb/docs/instance-restart to learn more about how to reboot
an AlloyDB instance.

To drop the previous benchmark database, you can use the following psql command from the client
machine.

psql -h <Private IP> -U postgres -c "DROP DATABASE [IF EXISTS] <database name>;"

TPC-H Benchmark

HammerDB is a popular benchmarking tool that includes TPC-H (A standard decision support benchmarking
tool) implementation for evaluating performance of OLAP support in AlloyDB PostgreSQL. HammerDB TPC-H
measures the performance of a database system by executing a set of 22 standard queries. The TPC-H
benchmark is a widely accepted industry standard benchmark for decision support systems that involves
complex queries and large data sets.

This section provides a comprehensive guide on how users can customize HammerDB to execute the TPC-H
benchmark to gauge the performance of the AlloyDB PostgreSQL database system.

Prerequisites

A. You need to run the following steps from a client (driver) machine. Ensure that you have completed
the setup steps listed in the “Setup of Benchmark Driver Machine (Client)” section (especially
installation of the HammerDB utility).

B. Cleanup: If you are running multiple benchmarks in succession, ensure you follow the “Cleanup: An
important Prerequisite” section before doing your subsequent run.

Initial Benchmarking Setup

Connect to the client machine and execute all the following commands from the hammerdb/HammerDB-4.6
directory.

cd hammerdb/HammerDB-4.6

Then create setup.env file as follows:

https://cloud.google.com/alloydb/docs/instance-restart
https://www.tpc.org/tpch/default5.asp

cat << EOF > setup.env

Private IP of the AlloyDB primary instance
export PGHOST=111.222.333.444

Postgres default port address. You do not need to change it unless you use non-default port
address.
export PGPORT=5432 # default port to connect with postgres

Set the password that you used during AlloyDB instance creation.
export PGPASSWORD='<postgres user_password>'

TPC-H Scale Factor (determines the size of the database that we want to build).
export TPCH_SCALE=10

EOF

Edit the generated setup.env file and change the above parameter values to those that are suitable to your
environment setup.

For the purpose of this benchmarking guide, we evaluate the performance using three important scale
factor (TPCH_SCALE) sizes (i.e. 10, 30 and 100) of the TPC-H benchmark.

In the context of TPC-H benchmark, scale factor refers to the size of the data set used in the benchmarking
process. The scale factor is determined by the number of rows in the TPC-H database tables and it
represents the volume of data to be processed by TPC-H queries.

The scale factors 10, 30, and 100 represent data sets of approximate sizes 20GB, 60GB and 200GB,
respectively. The significance of trying these different scale factors is to evaluate the performance of the
database system under varying data volumes and workloads.

When a database system is tested with a smaller scale factor, such as 10, it may perform well as the data set
size is relatively small. However, as the data set size increases, the performance of the database system
may decrease due to increased resource consumption, buffer cache hit misses, and other processing
overheads. Testing the database system with larger scale factors, such as 30 or 100, can help identify
potential performance bottlenecks and scalability issues in the database system that may arise under heavy
workloads and larger data sets.

Furthermore, testing with different scale factors helps to evaluate a database system’s ability to scale with
increasing data sizes. This information can be useful for organizations that need to handle large amounts of
data and require a database system that can scale efficiently to meet their needs.

NOTE: The number of users (or clients) is set to 1, since this user guide is only running TPC-H in power
mode and not the throughput mode.

Script to load TPC-H data

For the TPC-H benchmark, a "load step” refers to the process of populating the benchmark database with
initial data before running the actual performance test.

During this step, the benchmarking tool inserts data into the tpch database tables according to the
specified scale factor. The purpose of the load step is to create a realistic workload for the performance test
and to ensure that the test results are comparable across different systems.

After the load step is completed, the database is in a consistent state with a defined set of initial data,
ready to be used for the TPC-H benchmark test.

Follow the steps below to load the TPC-H database:

1. Switch to the benchmark home directory.

cd hammerdb/HammerDB-4.6
source ./setup.env

2. Create build-tpch.sh file as follows:

#!/bin/bash -x
source ./setup.env

./hammerdbcli << EOF
CONFIGURE PARAMETERS FOR TPC-H BENCHMARK

dbset db pg
dbset bm tpc-h

CONFIGURE POSTGRES HOST AND PORT

diset connection pg _host $PGHOST
diset connection pg_port $PGPORT

CONFIGURE TPC-H

diset tpch pg_tpch_superuser postgres

diset tpch pg_tpch_superuserpass $PGPASSWORD
diset tpch pg_tpch_user postgres

diset tpch pg_tpch_pass $PGPASSWORD

diset tpch pg_tpch_dbase tpch

diset tpch pg_scale fact $TPCH_SCALE
diset tpch pg_num_tpch_threads 32
diset tpch pg_refresh_on false

diset tpch pg_refresh_verbose false
diset tpch pg_degree_of_parallel 8

logging

vuset logtotemp 1
vuset timestamps ©
vuset unique @

load and run benchmarking script
loadscript
buildschema

terminate when completed
waittocomplete

vudestroy

quit

EOF

3. Execute the load command as shown below and wait for the command to finish.

chmod +x ./build-tpch.sh
mkdir results
sudo nohup ./build-tpch.sh > results/build-tpch.out 2>&1

4. Validate Load: The load step is an important aspect of the TPC-H benchmark because it affects the
benchmark's accuracy and repeatability. The quality and consistency of the data that is loaded into
the database can have a significant impact on the performance measurements, and therefore, it is
important to validate that the load step is executed properly.

Use the following commands to validate the load quickly:

$. ./setup.env
$ psql -h $PGHOST -U postgres
postgres=> \1+ tpch
List of
databases
Name Owner | Encoding | Collate | Ctype | Access
privileges | Size | Tablespace | Description

tpch | postgres | UTF8 | C.UTF-8 | C.UTF-8 |
| --- GB | pg_default |

The scale factors 10, 30, and 100 represent data sets of approximate sizes 20GB, 60GB and 200GB,
respectively. Ensure that the size of the tpch database matches the scale factor of your choice.

Columnar Engine (CE) Flags

AlloyDB’s Columnar engine related parameters (flags) come with optimal settings and no tuning is generally
required except that the columnar engine is to be enabled. However, for this user guide, updating them with
proper values allows for efficient processing of analytical queries, reduces query response times and
improves resource utilization, which are critical factors for organizations that need to handle large volumes
of data and require fast and accurate analysis of that data.

Important Flags to Tune

The following are the database flags that we tune to enhance the efficacy of OLAP workloads:

Increasing the work_mem value can improve the performance

of queries that perform a lot of temporary work (like sorting,

hashing, bitmap, etc.). If your AlloyDB instance does not have

adequate memory, a very high value of work_mem may cause
work_mem No performance issues. 16MB

Increasing the default_statistics value can improve the

accuracy of the query planner's estimates, which can lead to

better performance for queries that access the column.

However, significantly high values can also increase the time it
default_statistics_target No takes to analyze the table. 100

This configuration flag in AlloyDB for PostgreSQL specifies
whether the Columnar Engine is enabled or not. The Columnar

google_columnar_engine Engine is a new feature in AlloyDB that can significantly

.enabled Yes improve the performance of analytical queries. OFF
This flag in AlloyDB for PostgreSQL specifies the amount of ~30% of
memory that is allocated to the columnar engine. The default the

google_columnar_engine value is ~30% of the RAM on the VM, but it can be increased or RAM

.memory_size_in_mb Yes decreased depending on the needs of your database. size

AlloyDB OLAP Benchmarking Guide 14

This configuration flag in AlloyDB for PostgreSQL specifies a set

of tables and their columns that need to be stored in the

columnar format. The columnar format is a more efficient way
google_columnar_engine to store data for analytical queries, so using this flag can Empty
.relations Yes improve the performance of those queries. string.

Tuning for Scale Factors 10 and 30

Since the database sizes for scale factors 10 and 30 are significantly smaller than available RAM (128GB) on
the 16 vCPU machine type, we can simply allow all the entire tpch database (i.e. all the columns of all tpch
relations) to be populated in the columnar engine.

Below are the simple tuning steps:

1. Open https://console.cloud.google.com and go to the AlloyDB Primary Cluster — AlloyDB Primary
Instance page.

2. Edit the AlloyDB primary instance and add or update the following Flags from the UI:

work_mem = 65536

default_statistics_target = 200

google_columnar_engine.enabled = ON

google_columnar_engine.memory_size_in_mb = 30720

google_columnar_engine.relations =
tpch.public.customer,tpch.public.lineitem,tpch.public.nation,tpch.public.orders, tpch.public.
part,tpch.public.partsupp,tpch.public.region,tpch.public.supplier

Below is a screenshot for your reference:

https://console.cloud.google.com/

Edit primary instance

® 16vCPU, 128 GB
(O 32vCPU, 256 GB
O 64vCPU, 512 6B

Flags
Use flags to customize your instance, if needed. Learn more

Enable the columnar engine flag to improve performance and query speed of HTAP and OLAP
workloads. Learn more

work_mem (65536) (Not saved) W
default_statistics_target (200) (Not saved) W
google_columnar_engine.enabled (on) (Not saved) W
google_columnar_engine.memory_size_in_mb (30720) (Not saved) W

google_columnar_engine.relations
(Not saved) Vv
(tpch.ublic.customertpch.public.lineitem tpch.public.nation tp

ADD FLAG

UPDATE INSTANCE CANCEL

3. Click on the UPDATE INSTANCE button and then you should see the following screen. Since a few
settings would require the instance to restart, you must allow it to restart by clicking the CONFIRM
AND RESTART button (as shown in the image below).

Changes require restart
0 Restarting an instance will momentarily shut it down, along with its connections, open files, and running operations

Other instances in this cluster will not be affected. The following change requires this
instance to restart:

Flags:
- google_columnar_engine.enabled
- google_columnar_engine.memory_size_in_mb

\

CANCEL CONFIRM AND RESTART

AlloyDB OLAP Benchmarking Guide 16

4. Wait for the restart operation to finish. It will take a few minutes to complete since the AlloyDB
instance needs to be restarted.

5. Monitor the population of columnar-engine as follows:

a. Confirm that google columnar_engine.enabled is set to on. Use the command psgl -h
$PGHOST -U postgres -c "SHOW google_columnar_engine.enabled" for this purpose.

b. Check the status of columnar engine population within the tpch database by using the
following command.

psql -U postgres -d tpch

tpch=> select * from g_columnar_relations; \watch 10

Note \watch 10 at the end of the SQL command which executes the command every 10
seconds. You should observe the output of this command until it no longer changes. Once the
output stops changing, specifically, check block_count_in_cc=total_block_count for every
relation, go to the next step for validation of the output. Also as a general rule of thumb,
ensure that the total block count matches block count_in_cc for all the relations.

c. Validate the status of columnar engine population as follows:

Validation State for Scale Factor = 10

Below is the final state of the columnar engine after population was done for scale factor 10:

psql -U postgres -d tpch
tpch=> select * from g_columnar_relations

database name | schema_name | relation_name | status | size |
uncompressed_size | columnar_unit_count | invalid_block_count | block_count_in_cc
total_block_count | auto_refresh_trigger count | auto_refresh _failure_count |
auto_refresh_recent_status

——————————————— B e e e
e e Fom e - Fom e Fom e
————— B e e S
tpch | public | supplier | usable | 17275132 |

17275132 | 1 | 0 | 2268 |

2268 | 0 | © | NONE YET

tpch | public | part | Usable | 140325324 |

140325324 | 11 | 0 | 41942 |

41942 |

tpch | public
3642 |

1]

tpch | public
6048 |

1|

tpch | public
1509117771 |
278710 |
tpch
4831946995 |
1330899 |
tpch
276859377 |
36658 |

tpch
1258041408 |
183648 |

(8 rows)

| public

| public

| public

0 |
| region

| lineitem

325 |
0 |

| customer

9 |

0 |

| partsupp

45 |

o |

Validation state for Scale Factor = 30

@ | NONE YET
Usable | 3642 |
0 | 1|
© | NONE YET
Usable | 6048 |
o | 1|
© | NONE YET
Usable | 1509117771 |
0 | 278710 |
@ | NONE YET
Usable | 4831946995 |
0 | 1330899 |
@ | NONE YET
Usable | 276859377 |
o | 36658 |

© | NONE YET
Usable | 1258041408 |
0 | 183648 |
@ | NONE YET

Execute the command psql -U postgres -d tpch -c "select * from g _columnar_relations"
and verify that the output is columnar-engine population is close to the following numbers:

tpch=> database_name | schema_name | relation_name | status | size |
uncompressed_size | columnar_unit_count | invalid_block_count | block_count_in cc
| total block count | auto_refresh_trigger count | auto_refresh failure_count |
auto_refresh_recent_status

——————————————— e D D R e
—————— e e e e e e L
———————— e T e e e L L
tpch | public | orders Usable | 4721850499 |

4721850499 | 206 | o | 840965 |
840965 | o | © | NONE YET

tpch | public | partsupp Usable | 3802494436 |

3802494436 | 135 | o | 551724 |
551724 | o | © | NONE YET

tpch | public | customer Usable | 830579812 |

830579812 | 27 | 0 | 109974 |

109974 | 0 | © | NONE YET

tpch | public | part Usable | 423694950 |
423694950 | 31 | 0 | 125855 |

AlloyDB OLAP Benchmarking Guide

18

125855 | 0 | © | NONE YET

tpch | public | supplier | Usable | 52037086 |
52037086 | 2 | 0 | 6807 |
6807 | o | 0 | NONE YET
tpch | public | nation | Usable | 6062 |

6062 | 1 | o | 1 |

1 | 0 | @ | NONE YET

tpch | public | region | Usable | 3551 |

3551 | 1 | 0 | 1 |

1 | 0 | @ | NONE YET

tpch | public | lineitem | Usable | 15045734637 |
15045734637 | 983 | 0 | 4025408 |
4025408 | o | © | NONE YET
(8 rows)

Tuning for Scale Factor 100

The size of the tpch database that we load with TPCH SCALE=100 is approximately 205GB. This database
size is substantially larger than the size of available RAM on the machine (128 GB) of type 16 virtual CPUs.
We cannot therefore populate the columnar engine for the entire database. This is where AlloyDB Columnar
Engine’s auto columnarization comes into action. Now that we must let CE observe the workload first,
the tuning steps here differ slightly. After we enable the Columnar Engine, we need to execute the entire
set of TPC-H queries once. That enables the recommendation engine to make suggestions on the optimal
values to set for google columnar_engine.relations and google columnar_engine.
memory size in_mb database flags.

Below are the simple tuning steps:

1. Open https://console.cloud.google.com and go to the AlloyDB Primary Cluster -> AlloyDB Primary
Instance page.

2. Edit the AlloyDB primary instance and add or update the following Flags (refer Important Flags to
Tune to learn more about these flags):

work_mem = 65536

default_statistics_target = 200
google_columnar_engine.enabled = ON
google_columnar_engine.memory_size_in_mb = 40960

3. Click on the UPDATE INSTANCE button and allow the AlloyDB instance to restart by clicking the
CONFIRM AND RESTART button.

4. Wait for the AlloyDB instance to finish the update and restart operation. It will take a few minutes to
complete since the AlloyDB instance needs to be restarted.

https://console.cloud.google.com/

5. Confirm that google columnar_engine.enabled is set to on. Use following command to confirm
this:

psql -h $PGHOST -U postgres
postgres=> SHOW google columnar_engine.enabled;

6. Reset the columnar engine recommendation by using the following command:

psql -h $PGHOST -U postgres -d tpch -c "SELECT
google columnar_engine_reset recommendation('true')";

7. Observe workload: In this step, you simply execute all of the 22 TPC-H queries (just once) that will
let Columnar Engine observe the workload to make optimal tuning suggestions. You can create and
execute the following script to train the engine (execute it from hammerdb/HammerDB-4.6
directory):

Create and execute train-recommendation-engine.sh script

#!/bin/bash -x

source ./setup.env

./hammerdbcli << EOF

CONFIGURE PARAMETERS FOR TPC-H BENCHMARK

dbset db pg
dbset bm tpc-h

CONFIGURE POSTGRES HOST AND PORT

diset connection pg_host $PGHOST
diset connection pg_port $PGPORT

CONFIGURE TPC-H

diset tpch pg tpch_superuser postgres

diset tpch pg_tpch_superuserpass $PGPASSWORD
diset tpch pg_tpch_user postgres

diset tpch pg_tpch_pass $PGPASSWORD

diset tpch pg_tpch_dbase tpch

diset tpch pg_scale fact $TPCH_SCALE

diset tpch pg_num_tpch_threads 1

diset tpch pg _degree_of_parallel 8

http://train-recommendation-engine.sh/

vuset vu 1

logging

vuset logtotemp 1
vuset timestamps ©
vuset unique ©

load tpc-h script and run benchmark
loadscript
vurun

terminate when completed
waittocomplete

vudestroy

quit

EOF

8. Optimal tuning suggestion: Once all the queries from previous step finish to execute, run the
following command to find the optimal columnar engine tuning for tpch database:

psql -h $PGHOST -U postgres -d tpch -c "SELECT
google columnar_engine_recommend('RECOMMEND SIZE')"

a. This command uses the recommendation engine to recommend the performance optimal
memory size and recommended column.

b. Output looks like following:

(39454, "tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c _mktsegment,c
_name, c_nationkey,c_phone),tpch.public.lineitem(1l_commitdate,l discount,l extendedp
rice,1l linestatus,l orderkey,l partkey,l quantity,l receiptdate,l returnflag,l ship
date,1l shipinstruct,l shipmode,l suppkey,l tax),tpch.public.orders(o_custkey,o orde
rdate,o_orderkey,o orderpriority),tpch.public.part(p_brand,p container,p name,p_ par
tkey,p_size,p_type),tpch.public.partsupp(ps_partkey,ps_suppkey,ps_supplycost),tpch.
public.supplier(s_address,s_comment,s name,s_nationkey,s_suppkey)")

c. Note the 2 parts of the above output:
i. First Part: It is an integer (in this case, 39454). This is the recommended value for the
google columnar_engine.memory size in_mb parameter. However, we can safely
disregard this parameter since it requires a restart of AlloyDB and the difference

AlloyDB OLAP Benchmarking Guide 21

between the new suggested value and the original value we specified (49960) is not
significant.

i. Second Part: A string containing a list of recommended relations and their important
columns
"tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c_mktsegment,c_n
ame, c_nationkey,c_phone),tpch.public.lineitem(1l_commitdate,l discount,l extend
edprice,l linestatus,l orderkey,l partkey,l quantity,l receiptdate,l_returnfla
g,1 shipdate,l shipinstruct,l_shipmode,l suppkey,l tax),tpch.public.orders(o_c
ustkey,o_orderdate,o_orderkey,o_orderpriority),tpch.public.part(p_brand,p_cont
ainer,p_name,p_partkey,p_size,p_type),tpch.public.partsupp(ps_partkey,ps_suppk
ey, ps_supplycost),tpch.public.supplier(s_address,s_comment,s_name,s_nationkey,

s_suppkey)".

9. Now go back to the AlloyDB Primary Instance page URL on https://console.cloud.google.com, edit
the instance and add the following Flag:

a. Set google columnar_engine.relations = "<Second Part>". For example, with the
above output, you would set google columnar_engine.relations =
"tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c_mktsegment,c_name,c_n
ationkey, c_phone),tpch.public.lineitem(1l_commitdate,l_discount,l_extendedprice,l_line
status,l_orderkey,l partkey,l quantity,l receiptdate,l_returnflag,l shipdate,l shipin
struct,l_shipmode,l suppkey,l tax),tpch.public.orders(o_custkey,o_orderdate,o_orderke
y,0_orderpriority),tpch.public.part(p_brand,p_container,p_name,p_partkey,p_size,p_typ
e),tpch.public.partsupp(ps_partkey,ps_suppkey,ps_supplycost),tpch.public.supplier(s_a
ddress,s_comment,s _name,s_nationkey,s_ suppkey)"

10. Click on the UPDATE INSTANCE button and allow the AlloyDB instance to restart (if needed) by
clicking the CONFIRM AND RESTART button. The AlloyDB database will restart to pick up the new flag
settings.

11. Run the query SELECT * from g_columnar_relations regularly, and wait until values do not
change any further. Use the following SQL command with \watch 10 switch to allow the query to
execute in every 10 seconds.

psql -h 172.20.0.209 -U postgres -d tpch

tpch=> SELECT * FROM g_columnar_relations; \watch 10

Observe the output of this command until it no longer changes. Once the output stops changing,
ensure that the total block count matches block count_in_cc for all the relations. The final
state of g_columnar_relations should be close to the following:

AlloyDB OLAP Benchmarking Guide 22

https://console.cloud.google.com/

database name | schema _name | relation_name | status | size | uncompressed size
columnar_unit_count | invalid_block_count | block_count_in_cc | total_block_count |
auto_refresh_trigger_count | auto_refresh_failure_count | auto_refresh_recent_status

——————————————— S L E t:
————————————————————— SOOCIEICICCICECICIUISISCCICIEICEE ;OCCCISCICSCICC OIS ICITICICCE iOUISCCICIEIOIOCICCCICICIT T CIE S
_______________________ e e

tpch | public | orders | Usable | 4064416519 | 4064416519 |
688 | 0 | 2816904 | 2816904 |

0 | © | NONE YET

tpch | public | part | Usable | 1140509489 | 1140509489 |
103 | 0 | 419463 | 419463 |

0 | © | NONE YET

tpch | public | partsupp | Usable | 1651209445 | 1651209445 |
450 | 0 | 1839485 | 1839485 |

o | © | NONE YET

tpch | public | supplier | Usable | 144812152 | 144812152 |
6 | 0 | 22687 | 22687 |

0 | © | NONE YET

tpch | public | customer | Usable | 2753610591 | 2753610591 |
90 | 0 | 366510 | 366510 |

o | © | NONE YET

tpch | public | lineitem | Usable | 31066817949 | 31066817949 |
3296 | 0 | 13496579 | 13496579 |

o | © | NONE YET

(6 rows)

Running the TPC-H benchmark

In this stage, we perform the TPC-H benchmark’'s "Power Test" with one client running 22 TPC-H queries,
monitoring each query's response time, and calculating a final "Geometric mean of query times returning
rows."

What is Power Test in TPROC-H?

The TPROC-H “Power Test” in HammerDB is a performance test that measures the ability of a database
system to handle large-scale data warehousing workloads. HammerDB utilizes a modified version of TPC-H
“power test” that does not have refresh functions. In this test, a single client generates a series of 22
queries that simulate typical data warehousing operations, such as generating reports, analyzing data, and
performing complex joins. The test is based on the TPC-H benchmark, which is a standard benchmark used
to evaluate the performance of database systems for data warehousing applications. The goal of the
TPROC-H Power test is to measure the minimum query latency (or response time) that can be achieved by a
single client, which provides an indication of the overall performance and scalability of the database system
under test.

What is “Geometric Mean” Metric?

The geometric mean is a measure of central tendency that is used in the TPROC-H benchmark. It is
calculated by taking the product of all of the query times and then taking the n-th root of the product,
where n is the number of queries. The geometric mean is used in the TPROC-H benchmark because it is less
sensitive to outliers than the arithmetic mean. The arithmetic mean is the average of all of the query times.
However, if there is one query that takes a very long time, the arithmetic mean will be skewed by that
query. The geometric mean, on the other hand, is not as sensitive to such outliers. Even if one query takes a
very long time, the product of all of the query times will not be as affected by that query. Refer to TPC-H
official documentation to learn more about this metric.

A lower geometric mean of query times returning rows is desirable, as it indicates that the database system
can process queries more quickly and efficiently and can handle larger data volumes more effectively.

Use the following script to execute the "Power Test" benchmark for TPROC-H. This script repeats the series
of 22 queries. The first set of the query executions is intended to warm up the database caches, while the
second set is used for actual performance measurement.

1. Switch to benchmark home directory:

cd hammerdb/HammerDB-4.6

source ./setup.env

2. Create run-tpch.sh script as follows:

#!/bin/bash -x

source ./setup.env

./hammerdbcli << EOF

CONFIGURE PARAMETERS FOR TPC-H BENCHMARK

dbset db pg
dbset bm tpc-h

CONFIGURE POSTGRES HOST AND PORT

diset connection pg_host $PGHOST
diset connection pg port $PGPORT

CONFIGURE TPC-H

https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

diset tpch pg_tpch_superuser postgres
diset tpch pg_tpch_superuserpass $PGPASSWORD
diset tpch pg_tpch_user postgres
diset tpch pg_tpch_pass $PGPASSWORD
diset tpch pg_tpch_dbase tpch

diset tpch pg _scale fact $TPCH_SCALE
diset tpch pg_num_tpch_threads 1
diset tpch pg_refresh_on false

diset tpch pg_refresh_verbose false
diset tpch pg_degree_of_parallel 8
diset tpch pg_trickle_refresh 1000
diset tpch pg_tpch_tspace pg default
diset tpch pg_tpch_gpcompat false
diset tpch pg_tpch_gpcompress false
diset tpch pg_cloud_query false

diset tpch pg_rs_compat false

diset tpch pg_update_sets 1

diset tpch pg_total querysets 1

vuset vu 1

logging

vuset logtotemp 1
vuset timestamps ©
vuset unique ©

load tpc-h script and run benchmark
loadscript

Warmup run

vurun

Measurement run
vurun

terminate when completed
waittocomplete
vudestroy

quit

EOF

3. Run the script as follows:

chmod +x run-tpch.sh
mkdir results

sudo nohup ./run-tpch.sh > results/run-tpch.out 2>&1

4. Below is a sample output of run-tpch.sh script obtained for scenario where Columnar-Engine (CE) is
enabled and TPC-H scale factor is set to 30:

TPROC-H Driver Script
Script loaded, Type "print script” to view

Vuser 1 created - WAIT IDLE

Failed to create virtual users: Could not open tempfile /tmp/hammerdb.log
Vuser 1:RUNNING

Vuser 1:Executing Query 14 (1 of 22)

Vuser 1:query 14 completed in 9.569 seconds

Vuser 1l:Executing Query 2 (2 of 22)

Vuser 1:query 2 completed in 18.363 seconds

Vuser 1:Executing Query 9 (3 of 22)

Vuser 1:query 12 completed in 4.194 seconds

Vuser 1:Completed 1 query set(s) in 314 seconds

Vuser 1:Geometric mean of query times returning rows (22) is 7.37605
Vuser 1:FINISHED SUCCESS

ALL VIRTUAL USERS COMPLETE

TPROC-H Driver Script

jobid=642777185F8303E203936333

Vuser 1:RUNNING

Vuser 1:Executing Query 14 (1 of 22)

Vuser 1:query 14 completed in 3.086 seconds
Vuser 1:Executing Query 2 (2 of 22)

Vuser 1:query 2 completed in 14.241 seconds
Vuser 1:Executing Query 9 (3 of 22)

Vuser 1:query 12 completed in 4.271 seconds

1
Vuser 1:Completed 1 query set(s) in 264 seconds
Vuser 1:Geometric mean of query times returning rows (22) is 6.05468
Vuser 1:FINISHED SUCCESS
ALL VIRTUAL USERS COMPLETE
TPROC-H Driver Script
jobid=642778545F8303E273233383

NOTE: As stated previously, we only evaluate the second round of query execution when measuring
performance. The initial round serves as a warm-up.

AlloyDB OLAP Benchmarking Guide 26

http://run-tpch.sh/

Expected TPC-H Results

The table below summarizes the execution time (in seconds) for each of the 22 TPC-H queries. As stated
previously, three distinct scenarios with scale factors of 10, 30, and 100 have been explored. In each
scenario, the query execution durations and geometric mean for all queries with Columnar-Engine (CE)
population are presented. You should anticipate TPC-H (power test) performance results similar to the
following:

Query Execution Time (in seconds)

TPCH_SCALE =10 TPCH_SCALE = 30 TPCH_SCALE =100
1 4.00 12.36 55.68
2 4.78 12.84 68.01
3 1.91 5.15 92.17
4 0.44 1.24 47.88
5 0.86 3.68 8.11
6 0.05 0.12 0.44
7 0.87 2.75 30.45
8 0.59 1.92 237.98
9 4.45 15.67 733.11
10 1.81 5.41 22.21
11 0.83 2.46 75.19
12 0.55 1.64 6.09
13 4.59 12.75 78.18
14 0.38 0.98 3.19
15 2.71 5.52 26.14
16 1.41 3.63 15.36
17 5.96 21.42 140.02
18 18.84 56.27 389.47
19 0.08 0.23 0.80
20 3.76 12.66 3,273.24
21 1.64 6.25 494 .35
22 0.24 0.31 1.08

Geometric mean
(seconds) 1.23 3.56 38.00

OLAP Atomics Benchmarking

To evaluate and improve the OLAP capabilities of AlloyDB's Columnar-Engine, the engineering at Google has
developed a custom benchmark known as OLAP atomics, which consists of a collection of 11 primitive
queries executed over a large volume of data and covering the fundamental operations of an OLAP system.
This set of primitive OLAP queries can perform the fundamental data manipulation and analysis of any
typical OLAP system, including selection, slice-and-dice, joins, roll-up (also known as aggregation or
consolidation), drill-down, etc.

Measuring OLAP atomics on a database system is important because it can reveal performance bottlenecks
at the primitive level. These primitive queries are a valuable tool for ensuring that the OLAP system fulfills

the requirements for your large-scale data analysis and decision support.

For the purposes of this user guide, a TPC-H database with a scale factor of 30 was utilized.

Setup, Configuration and Tuning

Before you can execute the OLAP atomic queries, you must perform the database configuration and tuning
described in this section.

Prerequisites

A. You need to run the following steps from a client (driver) machine. Ensure that you have completed
the setup steps listed in the “Setup of Benchmark Driver Machine (Client)” section (especially
installation of the HammerDB utility).

B. Cleanup: If you are running multiple benchmarks in succession, ensure you follow the “Cleanup: An
important Prerequisite” section before doing your subsequent run.

Initial Setup on Client Machine

Connect to the client machine and execute the following commands:

cd hammerdb/HammerDB-4.6

Then create setup.env file as follows:

cat << EOF > setup.env

Private IP of the AlloyDB primary instance
export PGHOST=111.222.333.444

Postgres default port address. You do not need to change it unless you use non-default port
address.

export PGPORT=5432 # default port to connect with postgres

Set the password that you used during AlloyDB instance creation.
export PGPASSWORD='<postgres user_password>'

TPC-H Scale Factor (determines the size of the database that we want to build).
export TPCH_SCALE=30

EOF

Edit the above file and all the settings (excluding TPCH_SCALE, that should remain as 30) to suit your
environment.

Now, to load the TPC-H database, follow the exact steps outlined in the “Script to load TPC-H data” section.
The load steps are identical to the TPC-H benchmarking.

Altering the TPC-H schema

For the purpose of OLAP atomics, we only need the 1ineitem and supplier tables from tpch database (i.e.
without any constraints or indices). In this section, we provide minimal instructions to prepare the database
for query execution.

1. Connect to the client machine.
2. Connect to the tpch database by using psql -h $PGHOST -U postgres -d tpch command.

3. Now run the following commands to drop all the constraints and indices from lineitem and
supplier tables:

--- Drop constraints from lineitem table:

ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_pk CASCADE;

ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_partsupp_fk CASCADE;
ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_order_fk CASCADE;

--- Drop all indexes of lineitem table:

DROP INDEX IF EXISTS lineitem_part_supp_fkidx CASCADE;
DROP INDEX IF EXISTS idx_lineitem_orderkey_fkidx CASCADE;
DROP INDEX IF EXISTS lineitem_pk CASCADE;

--- Drop constraints from supplier table:

ALTER TABLE supplier DROP CONSTRAINT IF EXISTS supplier pk CASCADE;
ALTER TABLE supplier DROP CONSTRAINT IF EXISTS supplier_nation_fk CASCADE;
ALTER TABLE supplier DROP CONSTRAINT IF EXISTS "2200_ 127555 1 _not_null" CASCADE;

--- Drop all indexes of supplier table:
DROP INDEX IF EXISTS supplier_nation_fkidx CASCADE;

--- Drop all the tables that are not needed:
DROP TABLE customer CASCADE;

DROP TABLE nation CASCADE;

DROP TABLE orders CASCADE;

DROP TABLE part CASCADE;

DROP TABLE partsupp CASCADE;

DROP TABLE region CASCADE;

4. Verify that you only see the following objects in the tpch database after executing the preceding
commands:

tpch=> \dti+
List of relations

Schema | Name | Type | Owner | Table | Persistence | Size | Description
———————— e e e T B e
public | lineitem | table | postgres | | permanent | 31 GB |

public | supplier | table | postgres | | permanent | 53 MB |

(2 rows)

Tuning Columnar Engine

Here are the recommended procedures for tuning the AlloyDB columnar engine:

1. Open https://console.cloud.google.com and go to the AlloyDB Primary Cluster -> AlloyDB Primary
Instance page.

2. Edit the AlloyDB primary instance and add the following flags (remove any other flags if you see
them):

google_columnar_engine.enabled = ON
google_columnar_engine.memory_size_in_mb = 39322
max_parallel_workers_per_gather = 2
max_parallel_workers = 16

https://console.cloud.google.com/

Below is a screenshot for your reference:

Edit primary instance
Flags
Use flags to customize your instance, if needed. Learn more

Enable the columnar engine flag to improve performance and query speed of HTAP and OLAP
workloads. Learn more

Edit database flag ~
Choose aflag*

{ google_columnar_engine.enabled A]
Value *

& -]

DONE

Edit database flag A
Choose aflag*

{ google_columnar_engine.memory_size_in_mb - l
Value *

{ 39322 l

google_columnar_engine.memory_size_in_mb must be an integer between 128 and
2147483647,

DONE
Edit database flag A~
Choose a flag *
{ max_parallel_workers - l
Value *
16 l
max_paralle_workers must be an integer between 0 and 1024.
DONE
Edit database flag ~
Choose a flag *
{ max_parallel_workers_per_gather -]

Value *
: l

max_parallel_workers_per_gather must be an integer between 0 and 1024,

DONE

UPDATE INSTANCE CANCEL

3. Click on the UPDATE INSTANCE button and allow the AlloyDB instance to restart by clicking the
CONFIRM AND RESTART button.

4. Wait for the AlloyDB instance to finish the update and restart operation. It will take a few minutes to
complete since the AlloyDB instance needs to be restarted.

5. Connect to the client machine and confirm that google columnar_engine.enabled is set to on. Use
following command to confirm this:

AlloyDB OLAP Benchmarking Guide 31

psql -h $PGHOST -U postgres
postgres=> SHOW google_columnar_engine.enabled;

6. Connect to the tpch database by using psql -h $PGHOST -U postgres -d tpch command and
then run the following commands to add 1ineitem and supplier tables to the columnar-engine.

SELECT google_columnar_engine_add('lineitem');
SELECT google_columnar_engine_add('supplier"');

7. Validation of columnar-engine population: Use the command psql -h $PGHOST -U postgres -d tpch
-c "select * from g_columnar_relations" and ensure that the output is similar to following:

database_name | schema_name | relation_name | status | size | uncompressed size |
columnar_unit_count | invalid_block_count | block count_in cc | total block count |
auto_refresh_trigger count | auto_refresh failure_count | auto_refresh_recent status

——————————————— e e e T L
———————————————————— e e L Y e L L L L L Lt E
_____________________ o o e e e e e e e e e e

tpch | public | supplier | Usable | 52051365 | 52051365 |
2 | o | 6807 | 6807 |

o | @ | NONE YET

tpch | public | lineitem | Usable | 15042480452 | 15042480452 |
983 | 0 | 4025186 | 4025186 |
0 | @ | NONE YET

Now we are ready to execute the OLAP atomics benchmark.

Queries in OLAP Atomics

The following table summarizes the customized OLAP queries that are executed on the tpch database that
we just loaded. The engineering team at Google AlloyDB develops these queries.

Query
Query Id
Aggregation (count operation) with a filter covering select count(l_orderkey) from lineitem where
approximately 10% of the large lineitem table. 1 discount = ©; Q1

Scenario Description

Aggregation (SUM) on an integer column with a filter select sum(1_linenumber) from lineitem where

covering approximately 10% of the lineitem table. 1 discount = 0; Q2
Aggregation (SUM) on numeric column with a filter select sum(l_quantity) from lineitem where
covering approximately 10% of the lineitem table. 1 discount = 0; Q3
Summarization using GROUP BY and select count(1l_shipmode), 1 shipmode from
AGGREGATION on the entire lineitem table. lineitem group by 1 shipmode; Q4
Full table scan without any filters select count(l_comment) from lineitem; Q5
select count(*) from lineitem where
Full table scan with equality predicate (filter) 1 quantity=25.99; Q6
Sorting of the entire table and presenting the top select 1 _orderkey, 1 commitdate, 1_shipmode
values from lineitem order by 1,2,3 limit 10; Q7

select count(*) from lineitem where
Full table scan with LIKE predicate 1 shipinstruct like '%DE%'; Q8

select count(*) from lineitem where 1 tax in
LIST based selection on the entire table (0.01, 0.02, 0.05); Q9

select min(1_quantity), max(l_discount) from
MIX and MAX aggregation on the entire table lineitem; Q10

select count(*) from supplier, lineitem where
Join with a predicate s_acctbal = 1 extendedprice; QN

Execute OLAP Atomics

The execution of OLAP atomic queries is as simple as connecting to the tpch database and executing the
queries introduced in section Queries in OLAP Atomics.

It is recommended to execute the queries using “EXPLAIN ANALYZE <query> ..” prefix clause, which will
display the query plan and execution time.

Below is an example of executing Q1 from tpch database:

tpch=> explain analyze select count(l_orderkey) from lineitem where 1 _discount = 0;

QUERY PLAN

Finalize Aggregate (cost=137113.77..137113.78 rows=1 width=8) (actual time=151.708..153.953
rows=1 loops=1)
-> Gather (cost=137113.56..137113.77 rows=2 width=8) (actual time=151.693..153.944 rows=3
loops=1)
Workers Planned: 2
Workers Launched: 2
-> Partial Aggregate (cost=136113.56..136113.57 rows=1 width=8) (actual

AlloyDB OLAP Benchmarking Guide 33

time=145.574..145.576 rows=1 loops=3)
-> Parallel Append (cost=20.00..119102.90 rows=6804263 width=7) (actual
time=0.063..145.569 rows=5454623 loops=3)
-> Parallel Custom Scan (columnar scan) on lineitem
(cost=20.00..119098.89 rows=6804262 width=7) (actual time=0.062..145.565 rows=5454623 loops=3)
Filter: (1_discount = '@'::numeric)
Rows Removed by Columnar Filter: 54546385
Rows Aggregated by Columnar Scan: 1904168
Columnar cache search mode: native
-> Parallel Seq Scan on lineitem (cost=0.00..4.01 rows=1 width=7) (never
executed)
Filter: (1_discount = '@'::numeric)

Planning Time: 2.283 ms

Execution Time: 154.008 ms
(15 rows)

You should note the Execution Time in the above output, which is significantly faster for A11oyDB
columnar-engine.

Expected Results

The following table gives a summary of the queries to execute and their expected execution and planning
time.

Query Query To Execute Execution Time Planning
Id (milliseconds) Time (ms)

EXPLAIN ANALYZE SELECT COUNT(1l orderkey) FROM lineitem WHERE

Q1 1 _discount = 0; 154.00 2.28
EXPLAIN ANALYZE SELECT SUM(1_linenumber) FROM lineitem WHERE

Q2 1 discount = 0; 278.00 2.25
EXPLAIN ANALYZE SELECT SUM(1_quantity) FROM lineitem WHERE

Q3 1 discount = 0; 278.00 2.29
EXPLAIN ANALYZE SELECT COUNT(1l_shipmode), 1 shipmode FROM

Q4 lineitem GROUP BY 1_shipmode; 997.00 2.20

Q5 EXPLAIN ANALYZE SELECT COUNT(1 comment) FROM lineitem; 206.00 1.90

EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE
Q6 1_quantity=25.99; 1.53 2.24

EXPLAIN ANALYZE SELECT 1 _orderkey, 1 commitdate, 1_shipmode
Q7 FROM lineitem ORDER BY 1,2,3 LIMIT 10; 1,909.00 1.80

EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE
Q8 1 shipinstruct like '%DE%'; 276.00 2.33

AlloyDB OLAP Benchmarking Guide 34

EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE 1_tax in

Q9 (0.01, 0.02, 0.05); 352.00 2.30
EXPLAIN ANALYZE SELECT MIN(1_quantity), MAX(1_disCOUNT) FROM
Q10 | lineitem; 364.00 4.40

EXPLAIN ANALYZE SELECT COUNT(*) FROM supplier, lineitem
Q11 WHERE s_acctbal = 1 extendedprice; 5,734.00 2.09

AlloyDB OLAP Benchmarking Guide 35

