Postgres Pro Standard
11.22.1 Documentation

Postgres Professional

https://postgrespro.com

https://postgrespro.com

Postgres Pro Standard 11.22.1 Documentation

Postgres Professional
Copyright © 2016-2023 The Postgres Professional company

Legal Notice

This documentation is intended solely for the use with the Postgres Pro DBMS and for users of this DBMS.

It is not allowed to use the documentation for third-party products or as part of documentation for other products.
Other terms of use of the documentation are given in the User Agreement.

Postgres Pro is Copyright © 2016-2023 by Postgres Professional.

IN NO EVENT SHALL THE POSTGRES PROFESSIONAL COMPANY BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF POSTGRES PRO
DBMS IN ALL VERSIONS AND ITS DOCUMENTATION, EVEN IF THE POSTGRES PROFESSIONAL COMPANY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

THE POSTGRES PROFESSIONAL COMPANY SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE POSTGRES PRO
DBMS IN ALL VERSIONS AND ITS DOCUMENTATION PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE POSTGRES
PROFESSIONAL COMPANY HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Distribution of this documentation or its parts that are not contained in the PostgreSQL documentation, in the original or modified
form, requires an explicit written permission from the Postgres Professional company.

Postgres Pro DBMS documentation is based on the PostgreSQL documentation, which is distributed under the following
license:

PostgreSQL is Copyright © 1996-2023 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a
written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs
appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

| 24 =Y = o <SP xxii

1. What is Postgres Pro Standard?cccoiiiiiiiiiiiiei et e et e e e et e e ae e e e sa e sanaaannas xxii
2. Difference between Postgres Pro Standard and PostgreSQLcooviiiiiiiiiiiiiiiiieceeceeees xxiii
3. A Brief History of PoStgreSQLcoon it et e e e et e et e et e et e e ae e e e eaaeanaas XXiv
3.1. The Berkeley POSTGRES PIOJECE ...ccuuiiiniiiiiiieiiie et ee ettt et e e et e et e e e e saeeann e XXiv

G I =011 e 1 4 =T 1 1 TP XXV

G T TR =0 1S3 o 1 4 = 1 O) N XXV

4. CONVEINETIONS ..euiiiiiiiiieiie ettt ettt et et e et e et e et e et etaaeetaeean s etaetaaettaetnsetuneenasernsesneenneenneren XXV
5. Bug Reporting GUIAELNESuiiiiiiiiieiiieii et e e et e et e et e e e et e et e e e e ea e et eaaeseneenns XXVi
5.1. TAentifyiNg BUGS ..oouniiiiiiiiiie ettt e et e e et e et e e et e et e et e et e e e et e et aanaaaannes XXVi
ST/ o B) A o T 2 U)o 10) o PN XXVi
5.3. Where t0 REPOTE BUGS ..uiiuiiiiiiieiiie ittt e e e e et e et e et e et e et e e e e et e saneeanaeaenesennns xXxVii

| B I 01 o) i T 1 RO OP PR PPRRPTRRRPR 1
I LY o o o S =Y =T 2
I T 5T =Y < L o) s OO TPPOTR PPN 2
1.2. Architectural FUNAamentalsccoouuiiiiiiiiiii ettt et e et e e e e 2
1.3. Creating @ Dat@basec..ciiuiiiiiiiieiiie e e et e et e et e et e e e et e et e e e e et aanaas 2
1.4. AccesSing @ Data@basecouiiiiiiiiiii i a e eaans 4

N N T 1@] I - oo 1D =Y [T S 6
P20 I § 01 0 1o L1 (o o) o KOOSR PPNt 6
W 00 1 1o1<] o] %SO 6
2.3. Creating @ NEW Tablecoouiiiiiiiiiiee et e et et e et e e e et e et e e s e st e st e eanaeannns 6
2.4. Populating a Table With ROWSciiuiiiiiiiiiie et e e e et e e e e e e e e e e e e eens 7
S T O 10 1=Y v o o = T K= 1 o) £ YN 7
2.6. JOINS BEtWEEN TaAbIES ..cuuiiiiiiiiiiiei et et e e e e et e e e et e et e et e s e et e et aaeeaanaees 9
2.7. Aggregate FUNCEIONS ...t et e et e e et et e e e e e e e e eans 10
PR & T U o Y b= 1 - SN 12
P8 B B 1= (<] 5 L) o T T OO OPPRUUPPRPRt 12

3. AdVANCEA FEATUTES ..ceuuniiiiiiiiii ettt ettt e et e et e e et e e et e e et s e e et s eenbseeenaeeeens 14
G 700 I § 0 1 0 1o 11 (o v o) + KPP PP 14
32, VB ittt ittt et ettt et et e et e e e et e et e et et e et e et e th e th et a et et e eha e et et e th e taeeanaaneanes 14

G TR TR 10} 4 =) o 1 s B =) £ TP 14
3.4, TTANSACEIONS ..eeniiiiiiiieiiie ittt ettt ettt e et e et e et eta e et e et s ean e etneeraeeeaneennaaneaarasesnaennnns 15
3.5. WINAOW FUNCEIONS ..itiniiiiiiiie ittt ettt e et e ettt e e et e e et s e et e eebaeeeannaes 16
3.6, INNETIEATICE ..euiiiiiiiie ettt e et e et e e et e e et e e et e e aba e e et s eeebaaees 19
I 00 s Tod 11 153 (o) s KSR PP 20

L TSR T I I o U 1 - Vo £SO 21
T 1 0) I 4 01 - - QPPN 22
7 R =) Lo 1 S w (o 1 o SRR 22
VA NV TSI b 4 0} =TT 0) o - 30
G T OF-Y 15 Vo B Vs Lod [0 F= SN 42

I D F L - B D c i U (o) s APPSR 44
5.1, TADLE BASICS teuuiiiiiiiiiietiiiie ettt e et e e et ettt e et e e et e et e et e et e e et e eab e 44
5.2, DEfaull VAIUESuuiiiiiiiie ettt e e e et e et e e et e e et e e eaa e eeaa e 45
5.3, COMSITAINES .eueiiiiiieii et ettt et et e et et e et e et e et e et e eaneeaneeneeanaaananas 46
5.4, SYSEEIM COIUITIIIS ...cvuniiiiiiiiiii it et e e et e et e et et e et e et e tt e st eetneatanesnnasenasanasanssnnessnsssnnssnneeen 53
T T\ (oo b7 b Vo B =Y o) (=SS 54
N T o 7 1 (=T £ 56
5.7. ROW SECUTILY POLICIES .uuiiuiiiiiiiiiii et e e et e e et e et e s e st e et e eaeaeseneeenneen 57
RS T o 1 1< o < 1< SO OTPTRTPTPPPR 63
5.9, INNETILATICE «.euiiiiii ettt e et e et e e et s e et s e et e e eba e e et s eeebaaaes 66
5.10. Table Partitioningcccuiiiiiiie e e e et et e e et e e ae e et e et e et e e e eannaannnns 70

o A O o) ' o R B L - PP 82
5.12. Other Database ODJECES ...ccuuiiiiii e e e et e e e e et e e e eaneeaans 82
ST G T D 1= oY= o [=3 0 Lo VA I = Yod L« 1 o o N 82

6. Data ManipuUlationcoiuiiiiiie e e et e et e et e et et e et e et e et e et e et et e e raaaas 84
6.1, INSETTING DAt cuuivniiniiiiii ettt et et et st te et e e s e et et seneeaaanaaneeaaenns 84
ST U o Yo k= h Vo B D 1<) - 85

iii

Postgres Pro Standard
11.22.1 Documentation

LS TC T B TCY =] o Yo D - 1 - Nt 85
6.4. Returning Data From Modified ROWSccouuiiiiiiiiiiiiei et et e e e e e e 86
0 1§ 1<) o 1Y SN 87
A T O)7/ 2 T RO 87
A - Vo) (ST b q o} =TS (o) o - 87
RS T 1= [=To) Al I £ U TPT 100
7.4. Combining QUETIESiiuniiiiiiiiie e et e e et e et e et e et e e e e et e st eanaeaenasenassnaarnnaeen 102
AR T o) v a Lo J 20) 2SN 102
7.6. LIMIT @ILA OF FSET ttutttuettuneeuneeuneernreunsesnsesnaesuessunsssnsesnsssnssssnsssnessnnssnssnssesnessnsesssrsneesnessnnses 103
7.7, VALUES LISES ittt ettt e et e et e et s et s et e et s eanseaaeeaneaaneannnas 104
7.8. WITH Queries (Common Table EXPreSSiOnS)civueeiiieiiiiiiiieiiieeieeie e e e e e a e 105
T D F 1 = T 4 01T SN 110
o T IR A A 01 s 0 =) o (o 7 o 1= T T 111
I LY o) aTc) =1 oy A 7 1= T N 116
LT T O o ¥ = Toa =Y i 4 1= PRSPt 116
8.4. BINATY Data T e coniiniiiiiiiiiiiie ettt et et e et et et e et et e e e et et e e e et e e aaaas 118
8.5. DAte/TIINE TYPES eueiuiiiiiieii ettt ettt et et et e et et e ea e et e etteeteeeta et etnneenneeeneeenns 120
I T S To o L= 1 B 74 o 1= TN 129
8.7. ENUMETAtEA TIPS .ueiniiiiiiiii et e et e et e et e et e e ae e st e st e eae e st e st estneasnesenasenesannees 130
8.8, GEOMEITIC T PES ciuiniiiiiiiii ittt ettt et et e et et et e et e it et e eae et aanaaneaansenaanasannnnns 131
8.9. NetWOTK AAATESS THPES ..iiuiiiiiiiiiiiieiiie ettt ee et e et e et e et e e et e et e et e st e st e eaneesnaaannasranns 134
o T O = L s w1 a Lo B I 01T S 136
8.11. TEXt SEATCR T PES .iiiiiiiiiie ittt e et e et e et e e e e et e et e et e et e st esaneeaneaenasrnasnanns 137
B.12. TUUID THPE tuuitiinttiiieeiineetie ettt ettt e ettt e eett s e ettaeetttnseetanaesaneatunersnnsersnnsessnnsersnnseesnnseenneees 139
TR T €1 I 74 oY TSRO 139
B.14. JSON TYPDES -ueeetuetiiinietiiiteetie ettt ettt e ettsettaeetta ettt eatsaseatanseatunseattnseaennsersnnsessnnsersnnsensnnees 141
T TR AN o = 7/~ SN 147
8.16. COMPOSITE TYPES «euniuniiniiiiiieiiieiie ettt ettt et e tete et et et et et et et eaneanasaaseneenesnesenssnsenesnns 155
T A S ¥ a o (= 74 0 1= TP 160
8.18. DOMAIN TYPES tuituiiiiiiiiiie ettt e et e e e et et e ete et et e e et etaetaaaanstnaaneetasansenaenaeenaanns 165
8.19. ODbject TAentifier TYPES ..ovuniiiiiiiie e et e e et e e e et e et e et e et e saneesnesennns 166
LT I o o J 13 N 4 o 1 T PO 167
oI I 7= o [l 7 o 1= TP 168
S R VE o Toa o) a FoR= NaTe M@ o1=Y = 1 o) =S 170
1S BRI o Yo Tot= Y B @ oY) i<} o) =S URRNt 170
9.2. Comparison Functions and OPeratorscccc.eeiieiiiiiiiieiiieeiie e ee et e e e e e e esaaaas 170
9.3. Mathematical Functions and OpPeratorsccc.ceiiiiiiieiiiiiiie et e e aeeeane e 173
9.4. String Functions and OPETatorsc.ciiieiiiiiiiieii e et e e et e e e e e eaeeaaeeaans 176
9.5. Binary String Functions and OPeratorsccccueiiiiiiiiiiiieiieeee e e e e e e aens 190
9.6. Bit String Functions and OPeratorscccuuieiiiiiiiiiiieiiie et e e e e e e et e e e eaanaes 192
1S I o< 1 =Y o Y =Y] 1 T RS 193
9.8. Data Type Formatting FUNCEIONScouiiiiiiiiii et e e e e e ees 207
9.9. Date/Time Functions and OPeTratorscccuueiiiiiiiiiiiiieiie et e e e e e et e e e e aanas 213
9.10. Enum SUuppOrt FUNCEIONS ..cvuiieiiiiiii et e e e e et e e e e e e e e eaneans 225
9.11. Geometric Functions and OPeratorsccccuiiiiiiiiiiiieiiieece e e e e er e e e e e eens 226
9.12. Network Address Functions and Operatorsccceiueeiiiiiiiiiiiieiiieeiie e ee e e e eaaes 230
9.13. Text Search Functions and OPeTatorsc...ceeieiiiiiiiiieiiieeiie e e e e e e ae e e e aeaaes 232
.14, XML FUINCEIONIS .uituiiiiiiiiiiieii ettt et et et e et e et e et e et e eaueettnetteeetasetanetuneenneeenseaneeenneennns 238
9.15. JSON Functions and OPETratorsScecuueiiiieiiieiiieeiieeiiee e ete et e et eeaeereertestneranaesnaasnnns 249
9.16. Sequence Manipulation FUNCLIONSoiiiiiiiiiiiiiie e 258
9.17. Conditional EXPIreSSIONS ..ccuuiiiuiiiiiiiiiiiiie et et e ee et e e e teete e e e st e st e eaneesaesaneeanaeanns 260
9.18. Array Functions and OPETatorsc..ciiuiiiiiiiiieiiee et e e eeree e e et e e ae e e eeresraaeees 262
9.19. Range Functions and OPETatorsSceiuueiiiiiiieiiieeiiieeieeteeie e et eeteeteeeaeestaesaeernaernnaees 265
9.20. Aggregate FUNCEIONSc.ciiiiiiiii ettt et et e et et e e e et et e e e et eanaenaaanns 267
9.21. WINAOW FUNCEIONS 1iuuiiiiiiiiiiiie ettt et e e et e e tbe et et e e e e s eeaan s eananseananseeens 274
9.22. SUDQUETY EXPIESSIONS . cvuiiiiiiiiiiieiieiiie et et e et eete et e et e ete et e st e st estaaaseaeatessnassnaesnnasens 276
9.23. RoW and Array COMPATISOIS ...uiiuuiiiiieiieeieeineeteetieetieetnestaettestaesrnesrnaernaessnessaesseesnnesens 278
9.24. Set Returning FUNCTIONScuiiiiiiii e et e e et et e e e e e e e aaeeanas 281

iv

Postgres Pro Standard
11.22.1 Documentation

9.25. System Information FUNCEIONSccuniiiiiiiiii e e eae e 284
9.26. System Administration FUNCLIONSccuniiiiiiiiii e e e 300

1 727NN b o [0 £ ol 21 0B o] 1 (o) o < SRS 316
9.28. Event Trigger FUNCEIONS ...c.iiiiiiii ettt et e e e e e e e e e e e e eans 317
O 74 o TR 0] 1177 /= 0) o PP 320
[T O 172 o V4 = T 320
IO @) 013 =1 Mo) o PP 321
IO NG TR 1 U o Vo (o) o - ST 324
O VY LD TR o) i< L £ RN 328
10.5. UNTON, CASE, and Related COnStIUCESccivviiiiiiiiiiiccie e e e e e e 328
10.6. SELECT OULPUL COIUIMINS ..ouiiiiiiiiiiici et e et e e e it e e e e et e s e eaeans 330
R s Lo 1= =1 T ORI 331
TR R B /o Yo 6 Lo T) APPSR OPR PP PRRTPRt 331
[e =5 G 7 o 1= T S PP PR ST PTPRN 332
11.3. MUltiCOlUIMN INAEXES ..cvuiiiiiiiiiiiiii et ettt e et et e et s et e et e et s etneeaaeaaaneannnas 333
11.4. INdeXES ANA ORDER BY .iittuurttuueetuueetiuneeeuneeeeunseesunseriunsestunsersnssessnssessneemmssrmmssersnsersnsees 334
11.5. Combining Multiple INAEXESccouiiiniiiiiiiei e e e e e et eea e e e e e eeans 335
L T U ok o O TR Y0 (o) (- U 336
11.7. IndeXeS ON EXPIESSIONS ..ccuuiiiniiiieiiieeiieeiieeeiie et et et e ete et e et estestnassnaesanessnessneesnaesenasnnnns 336
11.8. Parti@l INAEXES ...c.uuviiiiiiiiieeiiie ettt ettt e et e e et e e et e e et e e atan e eetanseetanseatnnseasnnsarsnneasnnneees 337
11.9. Index-Only Scans and Covering INAEXESc..ciiuiiiiiiiiieiiieiieeee e e e e v eaenas 339
11.10. Operator Classes and Operator Familiesc.ccceevuiiiiiiiiiiiiiiiiecce e 341
11.11. Indexes and COllatiONSccuuviiiiieiiiieiii ettt e e etis e eeieeeet e eeaanseananeeasnnss 343
11.12. Examining INAEX USAQE ...ccuuiiiniiiiiiiiiiiiieiiieete et et e e tee et e e et e et e et eetnesaneeaneeanaesenasannns 343
12, FUIl TEXE SEATCR ..utiiiiiiiiie ettt e et e et e e eae e e et s e eean s e et s eannnseaannns 345
D200 I a1 (o 1o 1 Toa v (o) s S PR 345
12.2. Tables @nd INAEXES ..uoiiiuiiiieiiiie ettt e e et et tae e eet s e eaan s eetaseaaanseeannaeaens 348
12.3. Controlling TeXt SEATCRciuiiii e e e e et e e eaeeaanas 350
12.4. AddItional FEALUTES ...cccuuiiiiiiiiiiiieii ettt et ettt e et e e et s e et s e et e e aaneeaeaeeanans 356
12,5, PATSETS ..ttt ettt et e ettt e et e et s et e ta e et e et et e et et et et e ea e aaneaannes 361
12.6. DICTIOTIATIES .ueruniiinieiieiiieeiie ettt et e e et e et e et e te e et e et etteeataeetasetaetnneesnesenseennetnnsasnsesnnenns 362
12.7. Configuration EXAIMPLEccouiiiiiiiiiiiie e e e e et e e e e et e e ae e st e et e e s e s esanaeaanas 371
12.8. Testing and Debugging Text SEarcChcccooiiiiiiiiiiii e e 372
12.9. Preferred Index Types for Text Searchcccouiiiiiiiiiiii e 375

1 O o T=To | U o] o Yo o ATt 376
12,17, LIMIEAETIONS .euniiiiiiiiiiiee ettt ettt e et et e et e et e et e eaa s eaneeat e et e et eaaeens 378
IRCTR 70} Toi ¥ by =Y o Loyt 00} 11 1 '] EEUUS N 380
R 00 I a1 oo 7o 10 Toa v (o) s S PR 380
13.2. Transaction ISOLATIONceiiiiiiiiiiiiii et et s et s e eee e e ee s eaaaneees 380
(RGO TN 55 ¢ o] § (o3 | A o Yo -« 1 o Vo [Nt 385
13.4. Data Consistency Checks at the Application Levelccoooiiiiiiiiiiiiiiiiiceeeee e, 391
13,0, CAVEALS ettt ettt ettt et et et et et ettt et e e et et e aaeeaaeen 392
13.6. LoCKING @Nd INAEXES ...uiiiniiiiiiiiiiieeie ettt et e e et e et e e et e et e e e e et e st esaneeseaesnnasenneen 393
I ey o) a =N o Lo T 5 o1 394
14.1. USING EXPLATN ituttuntunttnttneetetneeneeuaetstnseuattsenstnestasensenstsastnstnsssesessenstsestasensenmrnerensensrnerenns 394
14.2. Statistics Used Dy the PLannercccuiiiiiiiiiiii e et e e e e e ea e eanaas 404
14.3. Controlling the Planner with Explicit JOIN ClauSescc.ceeeiueiiiiiiiiiiiiiiiiciieeceieeeeeee 407
14.4. Populating @ Databasecccuiiiiiiiiiiiii it ea e 409
14.5. NON-DUTable SEeTTINQS ..ccuuiiiiiiiiiiiiiie et e e e et s et e e e e e s eaaeaeieeeans 411
15, PAralle]l QUETY .ouuiiiiiiiiii ittt et e et et e et e et e et e et e eaa e e et e et e et e atneata e e eaneanans 413
15.1. How Parallel QUETY WOTKSccuuiiiiiiiiiiiiiiie ettt et et e et e ete et e e e eaaeanaeesanaaanaas 413
15.2. When Can Parallel Query Be UsSed?cccuviiiiiiiiiiiieiiiieiiniee et ete et e e e ereeaeees 414
15.3. PAr@lle]l PLANS ..uuiiiiiiiiiiiiie e et e et e et et e et e et e e e et e et et e et e ea e e aaanas 415
15,4, Parallel Safety ..ouuviiniiiiiiiii ettt e e et e et e aaeean 416
ITI. Server AdmMINISTIAtIONciiuiiii ittt et e e e et e e tae e et s et e et aetneatnsatnsasnnaenneeanseen 418
16. Binary INSTAllationoiuiiiiiiiii ettt e et et e et e e e e e e et e et e e e aans 419
16.1. Installing Postgres Pro Standard on LiNUXccecveiiiiiiiiiiiniiineiine e eei e enieenanas 419

Postgres Pro Standard
11.22.1 Documentation

16.2. Installing Postgres Pro Standard on Windowsccceeuieiiiiiiiiiiii i e 425
16.3. Installing Additional Supplied MOAUIESeeiuniiiiiiieiiie e e e e e eaas 429
16.4. Migrating to POSTGTES PTOconiiiiiii et e e e e e eans 429
17. Server Setup and OPETAtionccciuiiiiiiiiiiiiii e e e et e et e et e e e et e eaae e s e st e saneesaaees 431
17.1. The Postgres Pro USEIr ACCOUNLccuuiiiuiiiiiiii et et et e e et e e et e e ae e s e eaesaneesaaeannns 431
17.2. Creating a Database ClUSLETiiiiiiiiii et e e e e e e e eaaaea 431
17.3. Starting the Database SEIVET ... et e e e eaa e 433
17.4. Managing Kernel RESOUTCESccuuiiiiiiiiiii et et e e e et e et e e e st e ea e e e e e aeans 436
17.5. Shutting DOWN the SETVETciniiiiii e e e e e e e et e e e e s e eanaas 444
17.6. Upgrading a Postgres Pro CIUSLETccuiiiiiiiieii et e e e e e eaaes 445
17.7. Preventing Server SPOOLINGoiiiiiiiiiii et e e e e e e e et e e e e e aaaa s 447
I T 25 s Lol oy 74 01w 10} A B @] o] 10} s 1~ SN 447
17.9. Secure TCP/IP Connections wWith SSL ..o e 448
17.10. Secure TCP/IP Connections with SSH Tunnelsccccooiiiiiiiiiiiiiiie e 451
17.11. Registering Event Log 0N WINAOWSccuiiiiiiiiiiecie e et e e e e e ea e eaaaas 452
18. Server Configurationcooui i e e e e e et e e ae e et e st e et e eanaeranaeanees 454
18.1. SettiNg ParamElerS ..ouuiiiiiiiiii it et et et e ee et et et e et e it e e et eaneaneaneeaneens 454
[T w1 T T I Yok= 1 (o) s 1= Nt 457
18.3. Connections and Authenticationoooiiiiiiiii i e 458
18.4. ResSoOUICe CONSUIMPEIOTL tuuivuiiniiiiiiitie ittt te e et et e te et et et et et eaneeneesnsaneeneenneenernesnneensens 463
[T T4 L AN Y=Y o B o Yo Tt 470
[T T A V=Y o) Tok=1 L) o P 475
R T @10 1Y oy v o F a1 o o PR 480
18.8. Error Reporting and LOGQingccuceiieiiiiiiiieiiie et e e et et e e e et e et e et e et e et e e s aannnas 486
18.9. RUN-TIME STATISTICS Luiniiiiiiiiie e et e et e e e e e e e ee et e e e eneenaanaens 496
18.10. AutomatiC VACUUIIIIQ t.uivuiiiiiiiiiiiie ettt e e et e ee et et e e e et et eanseaeaanaanaannns 497
18.11. Client Connection Defaultsccoouiiiiiiiiii e e e eeaas 498
ST D2 o o LY, K- N = Vo 1= 00 =Y o N 507
18.13. Version and Platform Compatibilitycocouiiiiiiiiii e 508
RS 700 7 S 5 v oo 3 ol = o 1 0 o P 510
RS T B TR o 4 T Y A) o] o) o - S PN 510
18.16. CUStOMIZEA OPLIONIS ..vvniiiiiiiiie et e et e et e et e e e e een e st e eaneeansennesanaennnns 512
18.17. DEVEIOPET OPEIONIS ..iiuniiiiiieiiie ittt et e et e et e et e e e e et e et e e s e st eeanasanaasnnssenassnaerneeen 512
TR R T o o) it A) o] T) o TSNt 515
19. Client AUthentiCationoouiiiiii e et e e e et e et e e e e et e ea e e e eaenaas 517
19.1. The pg_hba.cont Fill ..ttt enes 517
19.2. USET NAME MAPS itiiniinitiiiiiiiieiieieee et e e et e tee e st et etastetaetastesnstastesnstassernstastesnstastesnerassnsens 523
19.3. Authentication Methodsooiiiiiiiiii et 524
19.4. Trust AUthentiCationco.iiiiiiiii ettt e e e 525
19.5. Password AuthentiCation ... e 525
19.6. GSSAPI AUthentiCationc..coiiuiiiiiiiii et e 526
19.7. SSPI AUthentiCationc..oiiiuiiiiii et ettt ee e 527
19.8. Ident AULhentiCation ... oo ettt eaa e 528
19.9. Peer AUthentiCationc.. ittt e e e e 529
19.10. LDAP AUthentiCationcccuuiiiiiiiiiiieie ettt eeaas 529
19.11. RADIUS AUthentiCationoieuuiiiiiiiiie ettt e e e e 531
19.12. Certificate AuthentiCationoouiiiiiiiiiii e 532
19.13. PAM AUThentiCatION ..cc.uiiiiiiii et 533
19.14. BSD AULhentiCatiON ...c..uiiiiiiiii et 533
19.15. Authentication Problems ... 533
20. DAtabase ROLES ...ttt ettt ettt e e e e eaans 535
20.1. DAtabase ROLEScouuiiiiieii ettt ettt eeeas 535
20.2. ROLE ATITIDULES ..ot ettt e e e et e e e 536
20.3. ROIE MEMDETISIID «.oiiiiiii e e et e e et et e e st et e et st e e aeaneas 537
20.4. DIOPPING ROLES . .ouiiiiiiiiiiiii et e e e e et e e te e et e et e et et e ea e et e aaaaaanes 538
20.5. Default ROLES ... ettt et e e e et et e eea e 539
20.6. FUNCEION SECUTILY ..iutiiniiiiiiiiiiiii ettt et et e et et et et e it e e s et et eansaae et eaneannans 540
21. Managing DatabasEsccuiiiiiiiiiii et e et e e et aaa e raaaaas 541

vi

Postgres Pro Standard
11.22.1 Documentation

210, OVEIVIEW ettt ittt ettt et e e et et e et et e et s et s et eeaa e ebasean s eanneeraetaaeannaanaeananesnnennnns 541
21.2. Creating @ Databasecccuuiiiiiiiiiie e e e e e et e e e 541
21.3. Template Dat@abasEsccuiiiiiiiiiiie et e et e e e e e e e e 542
21.4. Database Configurationc.cooeiiiiiiiii e et eaa s 543
21.5. Destroying @ Databasecoouiiiiiiiiiieii e et e et aaaaas 543

B B ST -1 o] (=T o ¥ Vol Y 544
AV o Tot-1 kb 21 n o) o EE PR 546
P T o Yo 1 (I 10} o) 10) o PSRt 546
A OFo) 1 - 1w (o) T AU o] o Yo o AU 548
22.3. Character St SUPPOTT ... e et e e et e e e et e e e e e e e saeeaneeraaenes 553
23. Routine Database Maintenance TasSKScveiuuiiiiiiiiiiiieiiin ettt e e e 560
23.1. ROUTINE VACUUINIIIG tuuitniiniiiiiiiiie ettt et e et e et e i et e et et et eene et sansaneaanseneeneenasensensenneenns 560
23.2. RoOUtine ReEINAEXING ...oivniiiiiiiiiiicie et e et e e e e et e et e s e et e e e e eanasenns 567
23.3. Log File MaiNtENANCEccvuiiiniiiiiieeiie et et e et e e e et e et e et e st e et e e s e et esaneeanaeenneenns 568
24. BacKup and RESEOTEcuuiiiiiiiiiiii et e et e e e et e et e et e et e et e e s e aan e et e saneeannesnnasrnaannnns 570
Y 10) I D 11 0} o LR 570
24.2. File System Level BAaCKUDcivuiiiiiii ettt e e e e e et e e e aan s 572
24.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccceviiiiiiiiiiiiiniieeeeeee, 573
25. High Availability, Load Balancing, and Replicationcccccoovviiiiiiiiiiiiiie e 584
25.1. Comparison of Different SOIULIONSccouiiiiiiiiiiiiiii e e 584
25.2. Log-Shipping Standby SEIVETSc..ciiiiiiiiieiie e e et e et et e e e e e e aeeannas 587
25.3. FAIlOVET ..ottt ettt e e et e et e et et b e et e et e aba e 595
25.4. Alternative Method for Log Shippingcceeeiiiiiiiiiie e 596
A T T (o) = Lo I o7t 597
26. Recovery Configurationccoeiiiiiiiiiiiii et e e e e e e e e et e e r e e e e aans 605
26.1. Archive ReCOVETY SELLINQS .uuiiiniiiiiiiiieiiie et e et e e e et e e e et e e e e eaneaaenas 605
26.2. Recovery Target SEtLINQS ..ot e e e e et e e e e e e e e e eneeaneans 606
26.3. Standby Server SEettiNgScccoeiiiiiiiiiiie e et e e e e e e aans 607
27. Monitoring Database ACEIVILYcccuuiiiiiiiiiiii e e e e e e e et e e e eaans 609
27.1. Standard UnNix TOOLSiiiiiiiiiiiiiie e ettt e et e e e e s e et e e et e eana e 609
27.2. The StatistiCs COllECTOT ...iiiuiiiii e ettt e et e e e e eeeas 610
ARG T VA T=2 7 1 Vo B 0 Yo < S 640
27.4. ProgresS REPOTTIIIQ t.uiuniiiiiiiiiieii ettt et et e et et e e e et et e e e et eaneenseaaaanaansannns 641
28. Monitoring DiSK USAQGE ...cuuiiiuiiiiiiiiiiie ettt e et e e e te et e et e et e eaeaeaanesenesaneeanassnnesenaernnns 643
28.1. Determining DiSK USAQE c.uuiiuuiiiiiiiiiiiieiiie it et et e e et e et e et eeae et esanesaaeeeaesanasrnaannnns 643
28.2. DiSK FUIl FAIIUTE ..ceuuiiiiiiiiiiiiiie ettt e et e e et s e et e e et e eabeeeana e 644
29. Reliability and the Write-Ahead LGccouiiieiiiiiieie e e e et e e e e e e eaaes 645
20,1, REHADIIEY ceuuniiiiiiiiie ettt ettt e et e e et e et e et e e e e ea e eenaees 645
29.2. Write-Ahead Logging (WAL) ...couuiiiiiiieii et e e e e e et e e et e st e eaneeaasennesanaannnas 646
29.3. AsSynchronous COMIMILuiiiiiiiiiii e e e e e et e et e e e e et e san e et eseesnnesanaennnns 647
29.4. WAL Configurationcccueiiiiiiiiiii et e et e e e et e e ae e et e et e eaa e e eeanaeens 648
20.5. WAL INEEITIALS ...ttt ettt et e e e et e e et e e e et e e et s e et s e etaeeaanneeennn e 651
G0 I o To 1 (o1 B AU=] o) k=1 v o) o NN 652
G0 TR IO =4 1 o) ToF= 1 o) o E PPN 652
GO IOZ 11 o 1= 0l a1 o w10) o PSSt 653

T 018G T 070 o il (o] 1~ TP PRUPPRRRRt 654
30.4. RESETICEIONS ..eeiiiiiiiiiiiiie ittt ettt ettt e et et e et e et e et eea e eeaeeeneeeneeenaeesasennnaens 654
30.5. ATCRITECIUTE ...iiiniiiiee et e et e et e e e e e et e e et e eenanes 655
G0N G A% [o) s B o] a1 T PN 655
GO 1= To1 | 1 RPN 656
30.8. Configuration SEtEINgScuiiiiiiiii e e et e e e e a e aans 656
30.9. QUICK SBEUD ttuiiiiiiiiiiiie et e et e et e et e et e et e et e et e eaan e et e sanaeanaanneaenesrnaannnns 656
31. Just-in-Time Compilation (JIT)ceuiiiiiiiiiieii e e e e e et e e r e e e e ea e et e e s e eeesanaernnas 658
31.1. What is JIT compilation?cciuiiiiiiiiii et e et e e e e et e e e e s e saneeaaaeannas 658

G L 1= o B o T PP 658

G NG T 00 a ik o 1 0B 1 o) o U RNt 659
N 5 =Y o 153 1 o 1 1 659

IV, CLIENE INEETTACES ..uuieiiiiiiiei ettt e et e et e et s e e et e e eea s e et s eetnseaaaneaanannns 661

vii

Postgres Pro Standard
11.22.1 Documentation

32.

33.

34.

35.

o) o Yo IR O I 1) o= 1 oy 2PN

32.1. Database Connection CoONtrol FUNCEIONS ..o.iuivnininieiiieiiiie ettt e e e eeenenns

32.2. Connection Status FUNCEIONSouiiieiiiiii e eenens

32.3. Command Execution FUNCLIONSuoiiiniiiiiie e e e e e e e eaa e
32.4. Asynchronous Command PrOCESSINGccuuiiuniiinieiieeiiieiie et et e e e et e eteereeeeeraesaneeaneenns

32.5. Retrieving Query Results ROW-BY-ROWciiuiiiiiiiiiiiii et eaeas

32.6. Canceling QUETIES IN PrOQgTESS ..ciuuiiiiiiiiiiieeiieeii et et ee e et et e ete et e st e st eernaeaeaeeenasennees

32.7. The Fast-Path INLEITACEcuvuiinieiii et e e en e
32.8. Asynchronous NOtIfiCationcoouiiiiiiiii i e e e e
32.9. Functions Associated with the COPY Commandccovevieiiiiiiiiiiiiie e
32.10. Control FUNCEIONS ..ouiiniiiiiiie ettt e e e eneaeas
32.11. MiscellaneoUus FUNCLIONScuiiniiiii et e e eaeens

32.12. NOTICE PrOCESSINIQ ..euuiiniiiiiiiiii ittt et e e et et s e et et e et e et e e eansesneaneannenneens
32.13. EVENT SYSTEIN L.ttt et e e et et et et e e et et e e e e b e e eans

32.14. Environment Variables ...ttt e e
32.15. The PaSSWOTA File ..cuouiiiiniiiiiiie ettt ettt e e e et enenaaens
32.16. The Connection SeIVICE FIle ...t e e

32.17. LDAP Lookup of Connection Parametersccuoiiniiiiiiiiiiiieceeieee e e e e eaaes

G I/ I S TS T) I 1 o] o 1o) ot AP
32.19. Behavior in Threaded PrOgramscciiuiiiiiieiieeii e eeie et e eieete et e et e et e eeneeaneeanaees
32.20. Building libpg PTOQTAIMScuuiiiiiiiiiiiiii et e e et e e e e e e e e e e e e e e eaeesneeenanns
YRRV I =5 & V0] o) (ST o0 o Yo 1=V 4 - S PP
I o (ST @) o) =Y ol S PTN
G762 IR § a1 o o 16 Toa v o) o SO P
33.2. Implementation FEATUTESccoiiniii et e e eaaas
G 6 J0C T O 1= o L 511 =) o ir= o -1 S PR

G 10 T I SY=Y i V4 SY =y Te L3 b o Vot 1 [0) o 1= SR

TG T TN 5= 100} o] (T 26 o o 1 = 11 s KRR
ECPG - Embedded SQL QN € ..ottt ettt ettt et et et e e e et e eneanenenes
7 N O I s LI 00)1 1o <) o] AP
34.2. Managing Database CONNECLIONScocuiiiiiiiiiiii e e e e e e e eanes
34.3. Running SQL COMIMANAS ...cvuuiiuniiiieiieeiieeii et eeie et eete et eeteeettaseteetneetneesnneeeneenneesnesrnnees

34.4. Using HOSt Variablesoiuiiiiiiiiiiiie et e et e et e e e e e e et e e e e eans

34.5. DynamiC SQL ..ottt ettt et a e et e e et e e e aaaean
34.6. POEYPES LIDTATTY ..ovniiiiiiiiiiie et e e et e e et e et e et e e e ea e e e e e e e e e e e aanaas
34.7. USING DESCIIPTOT ATEAS .oeuiiuiiiiiniiiieiieeii ettt tie et et et e e e s ee et e ene et et eaneanseaneaneenanns
G2 < TR 5w /o) alll & 1o 1 2 o 1PNt
34.9. PreproCeSSOT DITECTIVES ...vuiiiiiiiiiiiiei et e e e e e e e et e e et e te s et et snaaeanens

34.10. Processing Embedded SQL PrOgramsceiiuiiineiiieeiieeeieeieeieeeieeieeieesneseneseneennaeens

34.11. Library FUNCEIONS ..ccuuiiiiiiiiiiie st e et e e et et e et e et e et e e eaeeaneeaneeennaeens
34.12. Large ODJECES ..ivuiiiiiiiiiiiiie ettt e e e et e et e e e et e e it et et et e e e e aaans
34.13. CH 4 APPLCALIONS ..eniiiiiiiiiiie e e e e et et e e et et e e et et e e e aaaas
34.14. Embedded SQL COMINATNIAS ..ouiuiiinininieeiiie ettt ettt et ae et ea et eneneaeteeneaeeaenens
34.15. Informix Compatibility MOAeccuiiiniiiiiiiei e e e e aaes
34.16. Oracle Compatibility MOGEoivuiiiiiiiiiiie e e e e et e et e e e ean s

G B 511 <) o 0 = 1 £
The INformation SCREINIA ...c.ouiriiii ettt ettt e et e e e e e e eneaens

1S T R I V=T Yo7 1<) 1 o = N
1o T B L= 1 = B 4 o 1= SOOI

35.3. information_schema_ Catalog TAME .iuieiieereenirnerernernerernernerernernerernerereenersererserereenerenns

35.4. administrable role_ aUthorizZations .iiviviiiieiiiiieiiiieeie et erererenenereenens
K1 s =Y o) N R ot=1 o KT ot o N == RO PPN
G 1o T O T N o o B o1 L ot = Y= SN

1 T) - E - Yo o= b =T S o= N

35.8. check _constraint _ rOULINE _TUSAGE tiiiiiriiiiiietetteieteeneteterteeeteetetnetaeternetaeresneraeresnesnesnees
R 1o S el s T=Yo) Sl ele) s Tk uhar= 1 5 o} o= S OTTTPR
G 1o T K O B To N BN o o) o = SN

viii

Postgres Pro Standard
11.22.1 Documentation

35.11. collation_character_set_appliCability tiviiiiiiiiiiiiiiiiiiiieiiiiieieieeeeeereeeeeneeeeenenes 844
35,12, COLUMN _ QOMAIN TSAGE tittiniinittineteterneteternereteenerererneresernererernernesernerereenereserserseresneres 844
G TS T B TN TR Rl i oW o) <X o e o 1= PR 844
G 1o T B TR T R AU F Y b ok A v B =Y 1= RO PO 845
1o T NS TR Rt oW Te Ll L E=T-Ye 1= O PR 845
3. 18, COLUMIMS tttiniiniieineeneteetetneteteeneteseenesesesnesnesesnesnesessesnesnssesnesnssesnesnssesnesnesessesnesessesnesneseses 846
35.17. CONSEraint_COLUMN_USEGE tuiirreruernernenernereterneresesnesaesesnesnssesnesnssassesessessesssessesesnssesnees 850
1T R ST CT oY oh =0 B ok ol o=) o 1 K= M L = 7- Yo {= S 851
T T NS G R o= w74 o 1= T o 3 o A U B =Y 1Y - R O U TN 851
GO I] (G Te) (SR s Wi oTo) o Y= Rult k=Y B o R ol = R TR 852
G 1o A G 1S (B B o U Te o T Yo = R PP PP 852
1 I G 1o - o T S U 853
G T T2 TR =S (1) oL ol w14 o 1= Y= S TP 855
R I Y ST R K=o I oo 2 K= Y= T TTUTPRPRPN 858
35.25. foreign_data. WrapPer 0Pt A0S tuiiriiiiiieeeneieeteeteteenteneeerernereerernerenernererernererernereneens 858
1IN B o3 =5 Ko o Mie =N =Nl 5 oY o) 1= of - NN U U OO 858
GO IV T =5 Ko b o MI=1=F o v4=$ ol o) o Yk e o 1= NN 859
ISR T e o=k Ko 1 s M 1= b an 14} o - R O PR 859
CTOIAS BB o3 =5 Ko s ol o1 ol K=Y o) o hull Ko} o 1= SN NN OO 859
TSGR oS o oh e b o W o1 o 1 K=Y U U 860
G J TR N R SN T TR U 1o WL S F=T=Ye =N 860
T IR Y o B o=t 1Y =S of = S U 861
35.33. referential COMSEIAiNES tiiiiiiiiiiiiiieittieieet et eieeteenetereeternerernernerarnernesersernesessesesnssesnens 863
35.34. 01 _COLUMN_GIANES ttttetutrnerernernerernerneseenernesassesnesssesnesssessesassessesssessesnssessesssnesesesnenns 864
KIS TC 1o IR R =Y YoYUl o [T e b o=V ok ot - RS P PPN 864
T IR | ST N oY =0 o B =Y e £ =% o} ot - EO U U OSSN 865
C TS WA T R RSN B L ol b =0 o} uf - RSP SUUUURROt 866
oG TS T Y R RN L E T Yo T M b ar= ¥ oL ot - RPN 866
T IRCTS IR Yo U Rul B s =Y o T ok v I N =Y 1= Y= R TR 867
K F I O I oy i I o 1=Y= U PR PPRN 867
1 T N Yot o 1= 11T X o= N PSSP 872
T T Ye L =) o Tor= - RN 873
1o I 3 =T o B =T} b B oy =T - R USSP 874
35.44. sql_implementation_dMFO wiiiiiiiieiiiieieieieetei et eieeteteteeteteteetea et aetetetaetetetaetereaaerarneas 874
1T 1 T T g N =Y oL 1S Yo 1= R PPN 875
T I ST N oF- Vo) =T 1= 1= R U U 875
G T I T B N o T= o o - R U TPt 876
T 3 T T =T -5 I o U A 876
TR 1S INCYC RNIR-E - B oo f <% ot ¥ 1 K == S 876
35,50, LAl e CONSEIAITIES ttittiiiiiteiniieiteetei et eet et eteenernereetereseesernerrsesneseserneraesernesaesesnesnesesnens 877
1o 8o I ot OB SN o h ok v I =Y oY SRR 877
1 TS Y =Y N Y= T OO PP 878
T TS JC T o =Y o= E o) = 11 Y= S U 879
35.54. triggered _UPdate_COLUMNS .iiiiiieeererernernereenerneseenerneressesnesssesnesassessesnssesnesnesessesnesesnns 880
G 1 T0 1o TR o o K fo 1= 5 of - RO PPN 880
T I SRt Ll o b o AT B =Y == PR 882
I N WA E-FYo T oF o A7 B K=Y 1= Y- RO U OO PR 882
T TS TR DE-ToV allie [=F ok o T=To ML w74 o 1= Y= RN 883
KIS 1S MRTE-TS ol (=Y o) B o Lo fille) o) ol Ko} o k= NN PP PP UPPRt 884
35,00, US O T MADDIIITS erntternerniterternereenerneternererernernesersesnerasteresaesernesesternesessernesaesernernerernernenesns 885
3.0], VieW _COLUMN_USEGE ttuttttntrnerernernerernernesernesnesesnesnesassesssessesnesessesnesessesneseesesnesessessesnssesnees 885
G N Y AT RN i oYY bl o LM U= Yo 1= RO 886
T I SIS R v K=y o= o B R = L E= Y=Y = SO 886
T I T T4 Y = U U PO UT 887
AV T=) 7= Y alll o oo 1= N a1 011 o Lo E PR 888
GO = ¢ =) o b o o 1 O IR 889

ix

Postgres Pro Standard
11.22.1 Documentation

37.

38.

39.

40.

41.

42.

36.1. How Extensibility WOTKScciuiiiiiiiiiiiie et e e e e et e e e e e et e e a e e e e aenas 889
36.2. The Postgres Pro TYPE SYSLEIMivniiiiii it e et e e e et e et e e ae e e eeens 889
36.3. User-defined FUNCEIONSciviiiiiiiii et et e et e e et e e e e e e et e eaaaeannas 891
36.4. User-defined PrOCEAUIESciiuiiiiiiieeiee e ee e e et e et e e s e et e et e eaeesaneeanaeanaesnaennnns 891
36.5. Query Language (SQL) FUNCLIONS ...cvuiiiiiiiiiiiiiiie et e e e e e e e e e eanes 891
36.6. FUNCtion OVETIOadingccuiiuniiiiiiiiiii e e e e et et e e e et e et e e et e st e st eaaesenesanaannnns 905
36.7. Function Volatility CategoTiesciiiuiiiiiiiiieiiieeie et e e et e e et e eae e s eaannas 906
36.8. Procedural Language FUNCLIONSciiiiiiiiiiii et e e aeas 907
ICTORNe T §a) =Y =1 B U o 0) o T 907
36.10. C-Language FUNCEIONSc.ciiiiiiiiiiii ittt e e e et e e e et et e e e eae st eaneaneaanaenns 908
36.11. User-defined AQQTegatesc.uoiiuniiiiiiiie e e e e e e e e et e et e e et e et e st e s eanns 926
36.12. USer-defiNed TYPES ..ceuiiiiiiiiiiee ettt e e e et e et e e e et e et e e s e sanaetnesanaesnasennns 933
36.13. User-defined OPETALOTSccuuiiiiiiiiiiiiie e et e e e et e e e et e st e e aeesaesaneeanaannnns 937
36.14. Operator Optimization INformationc.coeiiiiiiiiiiiii e 937
36.15. Interfacing Extensions TO INAEXESc.ueiiiiiiiiiiiiiiie e e e e e e e e e e e e eaaaas 941
36.16. Packaging Related Objects into an EXtensioncccccoeiiiiiiiiiiiiiiinicin e, 953
36.17. Extension Building INfrastruCtureooiiiiiiiiiiii e e 961
B L 10 =) oS TPPR 964
37.1. Overview of Trigger Behaviorcciiiiiiiiii e e e et e e e e e eens 964
37.2. Visibility of Data CRaANgeSsccccuiiiiiiiiiiiieiie et e et e et e et e e e e e e aaaeanaas 966
37.3. Writing Trigger FUNCHIONS 1N C ...ttt ete et e e e e a e e e eaaas 967
37.4. A Complete Trigger EXAMPLEcouniiiiiiiiiiiieii et e e e et e e e e e ea e e e eaens 969
| IRV L 5 0 o [0 [=) T PPN 973
38.1. Overview of Event Trigger BEhaviorc.ccviiiiiiiiiiiiiie e 973
38.2. Event Trigger FiliNg MatTiXcc.oiieiiiiiiiiie e e et e et ete e e e ee et eanseaeeaeeansaneeanaes 974
38.3. Writing Event Trigger FUNCtions in Cccooiiiiiiiiiiiiiie et e e 978
38.4. A Complete Event Trigger EXampleooouiiiiiiiiiiiiieiee et e e e e e eees 979
38.5. A Table Rewrite Event Trigger EXamplecccooiiiiiiiiiiiiiiieiieeee e e 980
B oI A oI 41 1= o o PNt 982
39.1. The QUETY TIE ..ouiiieiiiiiiieeiie ettt e et e e e e e te et e et e et e st e st stnaetnnesenasanaeanaasnnasennns 982
39.2. Views and the Rule SyYStEIMcouiiiniiiiiiii et e e e e e e aeees 983
39.3. MaAterialiZed VIEWS ...couiiiiiiiiiie ettt e e et e e e e et e et e et e et e et e e e esaneseneetneasnnaeen 990
39.4. Rules on INSERT, UPDATE, QN0 DELETE .eceuuttttuuttttuuteetunaeetunaeetuneeeuuneeeenneeeeneetmnneeeseeeennaees 992
39.5. Rules and PriVIIEgesccuuiiiiiiiiiie ettt e e e e et e et e e e et e e a e e e eaa s 1001
39.6. Rules and Command STAtUsccoeuuiiiiiiiiii ettt e e 1003
39.7. RULES VETSUS TTIGGETS euuiirniiiieiiieiiieeiieeei e et e eteeteeeteete et st eeaneatnaatnaeansennseaneeenaennesenns 1003
Procedural LanQUagESccuuiiuiiieiiieiiiee e eie et et e et e et e et e et e et et eeanseensasnsaeneennsesneeanaernnaes 1006
40.1. Installing Procedural LanguUagescccuueiiuiiiiieiieiieeiieeeieeeiieeie et eeteeaneeeneseesenaeennaeens 1006
PL/pgSQL - SQL Procedural LanguUagec..oeeeeuuiiiimiiiiieii ettt et e e e 1008
1.0 OVEIVIEW .ttt ettt ettt ettt ettt e e et e e et e e et e e eta e e taa e e taa e etaa e eeaa e eena s eeanaseetnaeeeenans 1008
41.2. Structure Of PL/PGSQL ...ttt e et e et e et e et e et e et e ean e et e e e aanaeen 1009
41.3. DECIATATIONS ...ueiniiiiie ittt et e e et e et e e et e et e e eaa e eaa e 1010
R ' 0} =113 10) o 1= S 1015
41.5. BaSIC STAt@mMEITS ..c.uiiiiiii ittt et e e e ena e 1016
41.6. CONLIOl SETUCTUTESciiiiiiieee ettt et e et e et e e e e eaaes 1022
1.7, CUTSOTS ..ttt ettt ettt et ettt e et e et e et s et e etn e taa e taa e eaneene e et eaa s aaneanseenaeeaneeneannennns 1035
41.8. Transaction ManNageIMENTccuuiiiiiriiii ettt e e e e e e e e ets et eeneaneanneenens 1040
41.9. ETT0TS @A MESSAGES ivuuiirniiiniiiieiiieetiaetteetneetneettetueeteetnestnsensasnsasnssenasesnsesnerrneesnnsenns 1041
41.10. Trigger FUNCEIONS ..ovuiiiiiiiiiiiiit ettt ettt et e e et et s et et e e s ane et et sanseaneansanaannns 1043
41.11. PL/pgSQL Under the HOOAcouiiiiiiiiiieiie et e et e e e e e e e e e ean s 1051
41.12. Tips for Developing in PL/PGSQL ...ouniiiiiiieiiieeie et e e et e e et e ea e e e eees 1055
41.13. Porting from Oracle PL/SQLcouiiiiiii et e e e e e e e e e e e eans 1057
PL/Tcl - Tcl Procedural LanQuUagecccuuieiuiiiiniiiie ettt ettt e e e et e e eeaeeeens 1066
2.1, OVETVIEW ..ttt ettt ettt ettt e e et e e et e e tta e e eaa e e taa e e taa e etba e etba e eena e eeana s eetnaeeennans 1066
42.2. PL/Tcl Functions and ATQUITIENITSoiiuuiiiiiieiiiee ittt ettt e e et e et e et eeee 1066
42.3. Data Values In PLITCL ...ttt et e e 1068
42.4. Global Data in PL/TCL ...ttt e e e e eeaane 1068
42.5. Database Access from PL/TCLcouuiiiiiiiiii et 1068

Postgres Pro Standard
11.22.1 Documentation

42.6. Trigger Functions in PL/TCLoiiniiiiii et e e e e e e aens 1071
42.7. Event Trigger Functions in PL/TCLcoouuiiiiiiiiie e 1072
42.8. Error Handling in PL/TClcouiiiiii et e et e e e e e et e e e e e e e eens 1073
42.9. Explicit Subtransactions in PL/TClcccouiiiiiiiiiie e e e 1073
42.10. Transaction Managementccoviieiiiiiiiiie et et e e e et ea e e eaeaneannees 1074
42.11. PL/Tcl Configurationccueiiiiiiiiiii et e e et e e e et e e ae e e e et e eaeaeanaaannas 1075
42.12. TCl ProCedUre NAINEScievuuiiiiiiiii ettt e et et e e et e e tie e et e e et s e et s e etteeaenneeeannaes 1075
43. PL/Perl - Perl Procedural LanQUagecccuueiiuiiiiiiieiie et e eeeete et et e saneeanesannesenasanaesnneees 1076
43.1. PL/Per]l Functions and ATQUIMENTESceeiuiiiiiiiiiiiieeiie et eie e e et e e e e e e ea e ea e e e eeens 1076
43.2. Data Values in PL/PETLcoouiiiiiiiiiii ettt e e et e e et e e e 1080
43.3. BUilt-In FUNCEIONS ..iiiiiiiiiiieiiii ettt s e et e e et e e eae e e eaneeaaeees 1080
43.4. Global Values i PL/PETLc..oiiiiiiiiiiieiiie ettt e e e e e e e e e 1084
43.5. Trusted and Untrusted PL/PeTLcoouuiiiiiiiiiii et 1085
G I T = IV == ol B o T o =3 = 1086
43.7. PL/Per] EVENt TTIGUETS ..uuiiuiiiiiiiiiiieeiie et et e et e ete et e et e eae e st e st e st e sansaenessnasanaaannasnnnes 1087
43.8. PL/Per]l Under the HOOQooiiiiiiiei ettt e e e e eeeas 1088
44, PL/Python - Python Procedural LanQUAagEceeeuniiuniiinieiieeiiieiieeie et eeieeteeaeereeseneeanaennns 1090
2 U v o o) B v T o 1) 4 G 1090
44.2. PL/PYthon FUNCLIONS ...ivvniiiiiiiie ettt e e e et e e e et e e ae e et e et e et e e s eeenaeen 1091
44.3. DAtA VAIUES ..uuiiiiiiiiieei et ettt ettt et e et e e e eaa e aaas 1092
L S ¥= Y oo o J D - - N 1097
44.5. AnNonymous Code BIOCKScuuiiiiiiiiiiiie et e et e e e e e et e et e e a e e e eaaaeas 1097
44.6. TTIgQET FUNCEIONS ...ttt et et et e e e et et e e e et et eaneeaaanaanaaanns 1097
4.7, DAtADASE ACCESS ..uuiiiuniiiiieeii ettt ettt et e et et et e et e et e et e e et e ta e et e eaaaees 1098

44 .8. EXplicit SUDLTANSACEIONS ...oiveiiiiiiii e e e e e e e a e e e e e e eraeeaanas 1101
44.9. Transaction ManageIMENTc.ciuiiieiiieiiiie et ete et e ee et et e e e et eanaaneeneennaeneens 1103

2 7 O TR v 1 7 V0 o o o) £ IS 1103
44.11. Environment Variablesoouiiiiiiiiiii e 1104
45. Server Programming INEETTACEccouniiiniiiiii e e e e e 1106
45.1. Interface FUNCEIONS ...cuuuiiiiiiiiiii ettt e e e et et s e et e e aaa e eeaens 1106
45.2. Interface SUPPOTt FUNCLIONScouiieiiie e e e e e 1139

S RCTLY (=Y 0 aTo) VN =N a o Yo o3 4 0 1<) o | AP 1148
45.4. Transaction ManageIMENTcc.iiiiiiiiiiiie et et et e ee et e e e e e et eaneeneeneennaenaens 1158
45.5. Visibility of Data Changesciuuiiiiiiiiiiieiie e e e e e et e e r e et e e e eanaeanns 1161
S T b ¢V 1]) [N 1161
46. Background WOTKET PTOCESSESccuuiiiniiiiiiieeiiieeiieeiie et et et eete e st e et e et eeaeeeanesanaesnesnnasennes 1165
22 /A o Yo s o= B D 1= ToTo Yo i hia Vo S 1168
47.1. Logical Decoding EXamPIEScccuiiiuiiiiiiiiiiiiiee et e et e e e et e et e e eaeeae e s e saaeannas 1168
47.2. Logical Decoding CONCEPESuiiuniiiieiiieiii et e e e et e et e e e et e et e e e e aaneeannees 1170
47.3. Streaming Replication Protocol Interfacec.cccoeviiiiiiiiiiiie e, 1171
47.4. Logical Decoding SQL INterfacecccuoiiiuiiiiiiiiiiii e e e 1171
47.5. System Catalogs Related to Logical Decodingcccoeveiiiiiiiiiiiieiiieie e, 1171
47.6. Logical Decoding Output PIUGINSccoiiuiiiiiiiiie e 1172
47.7. Logical Decoding OutpuUt WIILET'Scvvniiiiiiic e e 1175
47.8. Synchronous Replication Support for Logical Decodingccceeviiviiiiieiieiinnennnnnnn. 1175
48. Replication Progress TTaCKITIgciuueiiiiiieiiieeiie e et e tee et e e ete et e st e et eeaeeeranasenasanaeanesnnnns 1177
VI, REIETEIICE ..ouniiiiiiiii ettt et e et e et e et e e et s e e et s e et s eataseeaaeeaaaneeasanaaes 1178
| ST) I O} 01 00 T< 1 s Lo - JUTPRN 1179
FN 20)24 TSP PRUPPRN 1180
ALTER AGGREGATE ...ttt et ettt e et e e et s e et e e et e e aea s eeaaneeenans 1181
ALTER COLLATTON .ottt ettt ettt ettt et e et e e et s e et e e et e e eea e e eaa s eeban s eetaeeesasaaanneeenns 1183
ALTER CONVERSION ...ttt ettt ettt e et e et e e tbe e et e e eta s e et s eetaeeeetnneeesnnaeenns 1185
ALTER DATABASE ..ottt ettt ettt ettt e et e et e e et e e et e et e e eaaa s eetan s eatansaanannas 1186
ALTER DEFAULT PRIVILEGES ...ttt et ettt e et e et e e et e e et e e eaaa s 1188
ALTER DOMALIN ...ttt ettt ettt ettt e et e e et e e et e e et e etta e e aeaa s eeaanseataneeasnnaaasanas 1191
ALTER EVENT TRIGGERouiiiiiiiiiiiiii ettt e e et et e e et e et e e et e eaaaneeeen 1194
ALTER EXTENSION .ottt ettt et e et e et e et e e et e etb e e etaa e e eaaa s eetan s eataneeesnneeesnsaennns 1195
ALTER FOREIGN DATA WRAPPER ...ttt ettt ettt e e et e e e e eeeas 1198

xi

Postgres Pro Standard
11.22.1 Documentation

ALTER FOREIGN TABLE ...ttt ettt ete et e e e e e e e e 1200
ALTER FUNCTION ...ttt ettt ettt e et e et et e e eaa e e eaa e eenaaae 1205
ALTER GROUP ...ttt ettt e e e et e et e et e een e eena e 1208
ALTER INDEX .ottt ettt e et e et e et e e et e e eaa e e eaa e ennaeeanaeeeens 1209
ALTER LANGUAGE ...ttt ettt ettt et e et et e et e e e e eenaeeees 1212
ALTER LARGE OBJECT ...ttt ettt et e e e e e e e e e e e e eenaes 1213
ALTER MATERIALIZED VIEW ...ttt ettt ettt e et e e e e e et e e e e e 1214
ALTER OPERATOR ...ttt ettt ettt ettt e et e e e e e e e e ea e e enaee 1216
ALTER OPERATOR CLASS ...ttt ettt e et et e e e e e e e e 1218
ALTER OPERATOR FAMILY ..ottt ettt et ettt et e et e e e e eeneeeens 1219
ALTER POLICY .ottt et ettt e e e s e et e et e e e eaa e e eaneeenaes 1223
ALTER PROCEDURE ...ttt ettt et e e e e e e e e e ea e eeaa e 1224
ALTER PUBLICATIONouiiiiiiiiiieii ettt et ettt e et e e e e eae e e taae e e ean e eenaeeenaeeeens 1227
ALTER ROLE ..ottt ettt et e e e et e et et tae e e eaae e e raa e eenaeees 1229
ALTER ROUTINE ...ttt et ettt et e e et e et e et e e eae e eera e eenaeeeananes 1232
ALTER RULE ..ottt ettt e e e et s et e e ee e e eaa e eeea e ennes 1233
ALTER SCHEMA ittt ettt e e e e e e e e e e eea e e eaneeeens 1234
ALTER SEQUENCE ...ttt ettt ettt e et et e et e e eaaeeenas 1235
ALTER SERVER ...ttt ettt et et e e e et e e e e e e e eenaeeens 1238
ALTER STATISTICS ...ttt ettt e e e e e e e e e e eenae e eenaeee 1239
ALTER SUBSCRIPTION ...oeiiiiiiiiiiii ettt ettt e e et e et e e e e enn e eens 1240
ALTER SYSTEM ..ottt et ettt e et s e et e e et e e e e e e ran e eeanaees 1242
ALTER TABLE ...ttt ettt et e et et e et e et e e e e eeneeennaeerens 1244
ALTER TABLESPACE ...ttt et ettt e et e e et e e e e ren e eana e 1259
ALTER TEXT SEARCH CONFIGURATION ...ttt ettt 1260
ALTER TEXT SEARCH DICTIONARY ..ottt e 1262
ALTER TEXT SEARCH PARSER ... ettt e 1264
ALTER TEXT SEARCH TEMPLATE ...ttt et 1265
ALTER TRIGGER ...ttt ettt et e e e e et e ene e e eeaeeeans 1266
ALTER TYPE .ottt ettt et e e e eaa e e ea e ena e 1267
ALTER USER ...ttt ettt et e e ettt e e e et ea s e e e e e eaneeeane e nens 1270
ALTER USER MAPPING ...ttt ettt ete e et et e e e e enaeeee 1271
ALTER VIEW Lottt ettt ettt e e s e et e e et e e taa e et e eraa e ennaeeeees 1272
ANALYZE ottt ettt ettt e et et et e e e eaas 1274
BEGIN ottt ettt et ettt ettt ea et e e e e ea e ean e naas 1277
(O I PR PSPRT PP 1279
CHECKPOINT ...ttt ettt et s e et e e et e et e e e taa e e taa e eenaeeenaeranaeeenaees 1280
CLIOSE o ettt ettt ettt et et e e et e e e naans 1281
CLUSTER ..ottt ettt et e et e et e et et e et e s eeana e eenae e eenaeennannen 1282
COMMENT ..ttt ettt et e e e et et ea et ea e et e s eenne e eenneenanenes 1284
COMMIT ..ttt ettt ettt et e et e e eee e e eae e e e e e e e e anaeeanaenens 1288
COMMIT PREPARED ..ottt ettt et e e et e et e e e e e e e eenaes 1289
(10 = PSPPI 1290
CREATE ACCESS METHOD ...couiiiiiiiiiii ittt et et e e e e e e e e e eena e 1299
CREATE AGGREGATE ...ttt ettt e et e et e e e e e ea e ean e 1300
CREATE CAST ittt ettt et e et e et e et e e e e e ean e eane e nens 1307
CREATE COLLATION ..ottt ettt et ettt et e e e et e et e e e tan e eean e eenaeeeenaens 1311
CREATE CONVERSION ..ottt ettt ettt e e e e e e e e enees 1313
CREATE DATABASE ...ttt ettt e et e et e et e et e e e e e eaaeennaeees 1315
CREATE DOMALIN ...ttt ettt ettt et e et e s e et e e et e e taa e e ran e eraaeeenaeeenes 1318
CREATE EVENT TRIGGERcoimiiiiiiiiiiii ettt ettt e 1321
CREATE EXTENSION ...ttt ettt et e e e et et e e een e e e e s eeaa e eennees 1323
CREATE FOREIGN DATA WRAPPER ...t 1326
CREATE FOREIGN TABLE ..ottt ettt et e et e e e s e e e e e eeneeeens 1328
CREATE FUNCTTION ..ottt ettt ettt e e et e e e e e ae e e een e e ean e eeanes 1332
CREATE GROUP ...ttt ettt e et e et e et e e et e een e eanaees 1339
CREATE INDEX ...ttt ittt ettt et e e ettt e e e e et e s e et e ean e e raneeraneeeennns 1340
CREATE LANGUAGE ...ttt ettt ettt e e e e et et e e ra e eeanes 1347

xii

Postgres Pro Standard
11.22.1 Documentation

CREATE MATERIALIZED VIEW L..oiiiiiiiiii ettt ettt et e e e e e e 1350
CREATE OPERATOR ...ttt ettt ettt e s et e e e ne e e ee e e ean e eenaes 1352
CREATE OPERATOR CLASS oottt ettt et e e e e e e een e eens 1355
CREATE OPERATOR FAMILY ...outiiiiiiiii ettt e e e 1358
CREATE POLICY ..ttt ettt ettt ettt e et st et e e eee e e rea e e eaa e e et e eenaeennnnnee 1359
CREATE PROCEDURE ..ottt ettt et e et et e e e e e e eenaeeees 1364
CREATE PUBLICATTION ...ttt ettt ettt et et e e e e e e e e e et e eeaaeeeena e 1367
CREATE ROLE ...ttt ettt ettt ettt e et et e e taa e et s et e e e eaneeraneeenns 1369
CREATE RULE ..ottt ettt ettt e et e et e e e e e e e e e e e e eena e eenaees 1374
CREATE SCHEMA ..ot ettt e e ettt e e e e e s e ean e eeenees 1377
CREATE SEQUENUCE ..ottt ettt ettt e e e e et e e e e eenaeee 1379
CREATE SERVER ...ttt et ettt et e e e e e et e e e e eena e 1382
CREATE STATISTICS ...ttt et ettt et e et e et ene e e e e e e ran e eenneeenes 1384
CREATE SUBSCRIPTION ...oouiiiiiiiiiieiie ettt ettt ettt e e e et e e et e e ee e e eaae e e naneeenaes 1386
CREATE TABLE ..ottt ettt et e e e e ettt e e e e e eaa e eenaes 1389
CREATE TABLE AS ottt ettt et e et e e et e een e e ran e eeena e 1408
CREATE TABLESPARCE ...ttt ettt et ettt et e e e e e e e eeneeeens 1411
CREATE TEXT SEARCH CONFIGURATIONcoititiiiiiiiiiiiiieiiiee ettt eee e 1413
CREATE TEXT SEARCH DICTIONARY ...ttt et eeees 1414
CREATE TEXT SEARCH PARSER ...ttt et 1416
CREATE TEXT SEARCH TEMPLATE ..ottt ettt 1418
CREATE TRANSFORM .. .ottt ettt ettt e e e e e e e e eenaeeee 1419
CREATE TRIGGERouiiiiiiiiiii ettt et e e e et et e e e e s eenn e eennees 1421
CREATE TYPE .ottt ettt ettt e e et e et e e eaa e e eaa e eenaeeens 1427
CREATE USER ..ottt ettt ettt et e e e e e e e et e e e e rana e eeana e 1435
CREATE USER MAPPINGoetiiiiiiiiiei ettt ettt e e e e e eae e e ea e eeens 1436
CREATE VIEW Lottt ettt et e et e et e e et e e e e e eaneeeanes 1437
DEALLOGCATE ...ttt ettt ettt ettt e et e et e et e et e enn e ean e e ranaeeennaees 1441
DECLARE ...ttt ettt ettt et et et eea e eeaeee 1442
DELETE ..ottt ettt e et e et e et e et e et e e e e e e et e en e e eaa e 1445
DISCARD .ttt ettt et ettt e ettt et et et a et e e e ea e eaas 1448
| L PPN 1449
DROP ACCESS METHODoriiiiiiiiiie ettt ettt e et e e e e e e eeeas 1450
DROP AGGREGATE ..ottt ettt ettt e e et et e e e e eaa e e e e eenaeeeens 1451
DROP CAST .ottt ettt ettt ettt e et e et e et e e e e et e e e ran e e raneeenaeees 1453
DROP COLLATION ...iittiiietitie ettt ettt ettt e e e e et e et e et et e s e een s eenn e eeaneeeeanneennns 1454
DROP CONVERSION ...ttt ettt et ettt et e et e e et e e eaa e e ran e erana e 1455
DROP DATABASE ...ttt ettt et e e e e et et e et e e en e eenas 1456
DROP DOMALIN ..ottt ettt ettt e et e et e et et ea e et e s eeaa s eenaeeeenaeennannes 1457
DROP EVENT TRIGGER ..ottt ettt et e e e e e e eees 1458
DROP EXTENSION ...ttt ettt et e et e et et et et e e et e s e et e eena e e raaeeraneenaneens 1459
DROP FOREIGN DATA WRAPPER ...ttt 1460
DROP FOREIGN TABLE ...ttt ettt et e et e et e e e e e raa e e ran e eeaneeees 1461
DROP FUNCTION ..ottt et ettt e e e et e et e et e e eaa e e et e eenaeennaenes 1462
DROP GROUP ...ttt ettt et e e e e et e et e et e e ea e eena e eenans 1464
DROP INDEX ...ttt ettt et ettt e et e et e et e e ta e et e een e tana e ranaeeennneennaeeens 1465
DROP LANGUAGE ...ttt ettt ettt e e e et e et e et e eeaa e eeaa e eenanas 1466
DROP MATERIALIZED VIEW ..ottt et ettt e e e e e ee e 1467
DROP OPERATOR ...ttt ettt et e e et e et e e et e eeneeeenae s 1468
DROP OPERATOR CLASS .ottt et ettt e e et e et e e ren e e ean e eenna e 1470
DROP OPERATOR FAMILY ...ouiiiiiiiiiiiiii ettt ettt ettt e e e e e e et e eenaeeen 1471
DROP OWNED ...ttt ettt et e e ettt e et e et e e e e e enn e ran e eanaees 1472
DROP POLICY ..ttt ettt ettt et et e et e et et e et e s e eaaa e eeaa e eeaa e eaaeenanneennans 1473
DROP PROCEDURE ...ttt et ettt e e e e s e ee e eeaaeeeenae e 1474
DROP PUBLICATTON ...uiiiiiiiii ittt ettt ettt e et e et e e e e e e e eenaeeens 1476
DROP ROLE ...ttt et et e et e e et e et e e et e e eaa e e raa e e ran e enaaeees 1477
DROP ROUTINE ...ttt ettt e e et e et e eaa e eenaeeenaes 1478
DROP RULE ...ttt et ettt et et ettt et e e tea e e eaa e e et e e eaa s e eaaeeranneennaeeees 1479

xiii

Postgres Pro Standard
11.22.1 Documentation

DRODP SCHEMA ...ttt e ettt e e e ettt e e e ettt e e e eaaaa e e e eeannaseeeesnnnseaeesnnnseesnsnnnaeeeennnns 1480
DROP SEQUENCEiiiiiiiiiiiiiie ettt e ettt e e e et e e e e et e e e e eeasaaeeeeasan e eesasnnnaseassnnnaseeesnnneeenenns 1481
DROP SERVER ...oiiiiiiiiiiiieie it et etee e e et e e e ettt ee e e ettt e e e eetanaeeaeeannnseeeasnnnaseeessnnnseenssnnnseeneennn 1482
DRODP STATISTICS ..oeeeieeeieie ettt e et e e ettt e e e ettt e e e ettt e e e eetana e e aeasnnaeeeesnnneeeesnnnnseresnnnnnaees 1483
DROP SUBSCRIPTIONuiiiiiiiieiiiiiiieeeteiieeeeeetieeeeetenaeeeeeannnaeeetaannseeeennnseeersnneeeeesnnneeeessnns 1484
|) 2T i 1V 2) I RN 1485
DRODP TABLESPACEoiiiiiiiiiiiiie ettt e ettt e e e et e e e ettt e e e eeataa e eeaaesnssaaessnnseerssnnaeeerasnnnaaenes 1486
DROP TEXT SEARCH CONFIGURATIONcooitiiiiiiiiiieee e e eeeie e eeeen e e e eeta e e e eeenneeeeeeenns 1487
DROP TEXT SEARCH DICTIONARY ...iiiiiiieeiiiiiiee ettt e e ettt e e eeeeeeeeeeeaneeeeeeannseeeesnnneeeenenns 1488
DROP TEXT SEARCH PARSER ..ottt eeetiee e et e e e ettt e e e eeatee e e e ette e e e eesnneeeeennnnnnns 1489
DROP TEXT SEARCH TEMPLATE ..ottt e et e e e et e e e e et e e e eeannneeaees 1490
DROP TRANSFORMciiiiiiiiiitiiiee e ettt e ettt e e e et tte e e e e taa e e e e ettnneaeaessnneeeessnnnseeeesnnnaeeresnnnnaaees 1491
1B) 2T 1 N 24] 2 U 1492
1) 20 1 4 USSP 1493
1B) 2U0 i Y 0 3 U 1494
DROP USER MAPPING ...ouiiiiiiieiiiiiiie ettt iee e e e ettee e e ettt e e e eeeaneeeeetanaseeeesnnnsaeasssnnaseeesnnnseenees 1495
1) 2T VA 1 A PN 1496
0 R 1497
0 O 1 SRR 1498
0 o 7N 1 PSRN 1499
O = USRI 1504
() 22N A PSRN 1508
IMPORT FOREIGN SCHEMA ...ttt e e ettt e e e e eete e e e e eaneeeeeesnaeeeeesnnneeeeennns 1515
AN 0 3 U S 1517
LIS TEN oiiiiiiiiiiee ettt e ettt e e ettt e e e e et e e e eetaa e eeeeannn e eeesnnnaeeaeesnnseaaesnnnseansnnnnssennsnnnseeensnnnaeeenes 1524
10 7 5 U 1525
00 10 P 1526
11 (Y SRR 1529
L 1 S 1531
o 2 0 N 2 P 1533
PREPARE TRANSACTION ...uuiiiiiiiieiietiiie e e e tiie e e ettt e e e et e e e eeaaneeeeeesnnnaeeaesnnnnseeeennneeeennnnnnns 1535
REASSIGN OWNED ..ottt ettt e et e et tee e e et tte e e e eeaae e e e eesanaeeeeesnneeeersnnnaseeeennnnseeennnnns 1537
REFRESH MATERIALIZED VIEW ...uiiiiiiiiiiieiiiiee et e et e e e et e e e e et e e e eeeann e e eeennneeeeeeens 1538
L2 D A B) GOSN 1540
RELEASE SAVEPOINT ..ottt ettt e ettt e e et tte e e e e ette e e e eetteeeeeeatnneeeaesnnnaeeeesnnneeeeennnnnnns 1543
2 Y N SR 1544
2 D) PP 1545
|20) N 0 2 7 O U 1549
ROLLBACK PREPARED ..ottt e ettt e e e ettt e e e e et e e e e esna e e e eeanneeeeeennneeeennnnnnns 1550
ROLLBACK TO SAVEPOINT ...ootiiiiiiiiiiiieeeeiiiee e e eeiee e e e et e e e eetaaeeeeesnnaeeeeaannnseeeesnnnaaeeeennnnaaees 1551
SAVEPOINT ..ttt et e ettt e e ettt e e et teaa e eeataaaaeeaseannseeensnnnseeeesnnnsseeessnnnseenssnnnseenees 1553
SECURITY LABEL ..ottt ettt e e ettt e e e ettt e e e et ttaeeeetanaeseaeesnnseaessnnnseessnnnaeeensnnnnsaeees 1555
1S 2 N 3 PP 1558
1S 2 0 O I 1\ X LN 1577
1S 3 P USPN 1579
SET CONSTRAINTS ...oitiieitiiiiee e eeiee e ettt ee e ettt ee e e e etaa e e e eeasnaeeeaeanneeeeesnnnsseensnnnseeensnnnseerennns 1582
1S 2 2) SR 1583
SET SESSION AUTHORIZATIONiiiiiiiiiieeiiiee e e eeiee e e e ettee e e e eete e e e eeanaeeeeeannaeeeeennneeeeennnnnns 1585
SET TRANSACTION ..ottt et e ettt e ettt e e e e et e e e e ettt e e eetaanaeeaessnnseaessnnseeeesnneeeresnnnnns 1587
1S 3 (O USRI 1590
START TRANSACTION ...ouiiiiiiiieeeeiiiie e et etiee e e et tee e e e e et e e e e eetaaeeeeaananaeeeesnnnsaeeesnnnaeesrnnnnseeeennnns 1592
TRUNGCATE ..ottt ettt e e e ettt e e e e e et e e e ettt e e eeeannaeeeesnnneeeesnnnaseersnnnserennnnneeeennnnns 1593
L8N 1 0\ SRR 1595
L8 5 7N P 1596
2 O U 1 RPN 1600
2N N 0 S 1603
WATITLSN Lottt ettt e e e et e e e et e e e e ettt e e eeetaa e eaestna s eeessnnneeeesnnnnsaessnnnnsernsnnnnseenennnnnns 1605
II. Postgres Pro Client APPLCAtIONSoiiuniiiiiiiiiie e e e e et e e e e e et e e e e aenaes 1607

Xiv

Postgres Pro Standard
11.22.1 Documentation

CIUSEETAD .. et et e et e e et e e et e e et e e et e e et e eebaeeees 1608
o2 4 == 1 7=Te | o TP 1611
CTEALEUSEYT ..eeuniiiiii ittt ettt et ettt et e et e et et e et e ean e eaueeeba et etaneauaeesnsetnsaanseenaetanranaenneenes 1614
6 By} 076 1 o J 1618
6 By} 010 F=1=Y 1620
704 o Yo E PRSP 1622
PG DASEDACKUD ettt e e e e e 1624
9701 0 1=1 s Vol o U 1631
oTo Je10) 1 Vi (o E RO 1645
o Yo Je L0 N1 o J OO SRPPPRR RPN 1648
o Yo Je Lbha] o ¥ 1 | KPP PRUTPRRRt 1660
1910 B E] =TT | PO TOPPRPPPPRRPRt 1666
DG TECERIVEWAL ..cetiiiii ittt ettt et e et e et e e et e e et e e eea s e et s e et e eebaeeananas 1668
o Yo I A =ToaTa o To 1 [o}- 1 RPN 1672
DU TESTOTE «.eeniiiiiieei ettt et e e et et e et et e et e et e etn e eaaetaa e ean s eaneeanaeetasetnnaannaenneeenns 1675
10 2 =Y 0] 0 1) AP PR PRRR 1683
1910 1 S 1685
30010 155 (6 | o PSPPI 1722
VACTUINAD ..ottt e et e et e e et s e et s e eta e e et e e eaa e eenaaees 1725
ITII. Postgres Pro Server APPLICAtIONSiiiuiiiiiiii i e e e et e e e e e e aenas 1729
1011 e | o T OO PPPRRPRt 1730
PG ATCRIVECLEATITD ..iiiiiiiii ettt et e e et e et e et e e et s e et s e et s eeanneeaens 1734
o Yo I et0) a1 o) Ko b= 1 - O USROS 1736
o1 2 1 RO PP PRSPPIt 1737
PO TESEEWAL ..ttt ettt e e et e e et e et e eb et e eeb e eab s 1742
910 B A=) o Lo OO PRSPPI 1745
110 TS Y A1 o IR 1748
PG EESE FSYTIC ettt ettt et e e et et e et e e et e e e eaa e 1750
o Jo ST A 001 o o S PP UP TR PPTPPRRPRURt 1751
joTo JVY o Yo 1 o= Yo [T OO OTPRUOPPRRRS 1754
PG VETIEY ChECKSUINS ..couuniiiiiiiiii et e e et e e et e e ee e eeb e e 1761
PG WALAUINID «.eiiiieiiii et ettt et e et e et e et e e e et s e eta e e ett e e aaa e e et eeetaneeebaneeesaeaennaes 1762
[TSI o 1 ol SRR 1764
0TS m a0 b) =) PN 1771
VIL INEETTIALS oeenieiiii ittt et et e et e et e e et e e et s e et e e eta e e et s e et s aetanseaannaeesanaansnnaes 1772
49. Overview of Postgres Pro INTETNalscccouiiiiiiiiiii et e e e e eaa e 1773
49.1. The Path Of @ QUETY ..uceuniiiiiiiee e et e et e e e e et e e te e s e et e et e e e s aenesaneerneees 1773
49.2. How Connections are Establishedccooiiiiiiiiiiiiiiiiiii e, 1773
49.3. The ParSeT STAgE ..ceuiiiiiiiiiiiiiie et e e e et e e te et e et e et e et e aenetanasanesanasnnasrnaarnnns 1774
49.4. The Postgres Pro RUle SYStEIMciiuiiiiiiiiiiii et e e e e e ea e 1775
2 NS TN T = o N 0 o T=Y 47 @)] 01 =) Rt 1775
49.6. EXCCULOT .ottt ettt e et e e et e et et et et e eaeeaa e 1776
O 4] =Y 0 N O 1 = 1 Lo o £ 1778
$0.1. OVEIVIEW .euiiiiiiiiiiie ettt et ettt et et et e et e et e ta e et e ean s ean e the e et eanetnsaanneenneeeneenns 1778
IS] I o Yo f- Yo o b ol =T 1= ot < SUUT PSP 1779
S R T o te = I U TP 1782
R S oY Y 1) < I ROt 1782
ST O S T oY Y 111 o} ate L AN 1783
o O ST Yo = N ok o e L= S A O UIURPN 1784
(S VR <Y =L o o o < ol = S OOt 1784
S O e T Yo R ol o e E RN 1787
oYU Yo RO ol T 111 111 oY= 5 ok SN 1788
YO N T T =1 U TP URURIRt 1789
o R R oY A N = =T R PR 1790
151000 B e ot e M = ¥ i I) o NPT 1793
ST O I ST oY i olo) oP=k ol ar= K I o | TP 1794
YOI T Yo B eTe) o R 72 Y of =k e s R T PR 1797

XV

Postgres Pro Standard
11.22.1 Documentation

50.15.
50.16.
50.17.
50.18.
50.19.
50.20.
50.21.
50.22.
50.23.
50.24.
50.25.
50.26.
50.27.
50.28.
50.29.
50.30.
50.31.
50.32.
50.33.
50.34.
50.35.
50.36.
50.37.
50.38.
50.39.
50.40.
50.41.
50.42.
50.43.
50.44.
50.45.
50.46.
50.47.
50.48.
50.49.
50.50.
50.51.
50.52.
50.53.
50.54.
50.55.
50.56.
50.57.
50.58.
50.59.
50.60.
50.61.
50.62.
50.63.
50.64.
50.65.
50.66.
50.67.
50.68.
50.69.
50.70.

Je 1 e =N =N o = = T P
jele el ol o NRTIN-TN ol ok I o Lo AP PPN

ST @ L= 5 B = X 2 PN

21 @ LY 0 U N

jele e ISF=Tohah i o) vl Kol o NN ST PP PPN

JST RSNV o R i i el I o
el MRS St o F= ki Kol o T PP PPN

jele il felalchile) olile k- Rul- W A ar-] o) o= 5 i NN

o @B =i R b o = =B a2 =
j <Xl iRtk Ne o N =Y o 1 N = T P

DO N AINE SPACE tuttuttnntanttntenteaneaeantaataateaaeaaaaaeantaateteaneaaeantenttaeeaeeantantententtaneaneententeneennenns
<1 T T @ = =
L) 1 U
o1 @) @ = B
jele il oT-Biakul i ik o) o LYo L =1 o 11 K SO PP PP PP PPPPPPPRE
LS <30 G < 41 T i
o N @ X
o] J o o < N PP

jele il bl NIk R Lo vl o) o N PPN

ol S BY oM N e T=) wl I o N ar =T
jole JlN ar-BeYe | U PPN
jele i =Y NI Nel-} vl Nel oMl o} ak Ko i I o RN PP PPN
o1 T A i N
<1 = 1Y @ = @ =
ol HE=1Ye 15 1Y ool PP PPPP
S 1 TS 0 LS €T o ¥
JS 1o =T o T LS T= e ial Iy o il I @ o LN
oL =T o F=T Yo A=Y o= N
jole =] or- Rl = ol o S PPN
Jo1o SR u= Rl A= ol o = - N

JSTe T RBY o F=T e R iak Iy < uil @ o

jele fINE1 oF-Tohah i o) i Kol o il ol Y O PP PP PPN
ST T =T TN Y=
F L T o o = 3 1
jole ook e [< 15 ol PP PPN
jole i Tl o1 o) o ik Ko HN PPN
jolo M o= T ol o) o i Ko H 11T o TN
<1 = T I N
S X N = T © = = < 2

LS = T = (0 = N

jele MR ETShall 11 F=1 o) ol o Lo AN PP PPN
SYSEEIML VIBWS ettt ettt et e e e et et e e e et et e e et e e s e eaneans
PO _availlabl e Xt e S i ONS tiiiitiiiitiitieitriiteeeuteettereetentsesaesssssessessesssnssssnsssnssesssssnssennens
PO_available exXtensSion VeI SIONS tiiiiiiiiiiiiiiiiiitiiittiteiitetiateenteerntesntsesssssnssensssssssancs

<X o o Bl I
oL @b B = o B N
Jo 1o N N T TN ol wil B o L = S N

L e a1) = e

XVi

Postgres Pro Standard
11.22.1 Documentation

51.

52.
53.

54.

55.

56.

57.

151 O A R oo B oY o - T i M = Y o U = PSRN 1845
S VR A oY B B o Yo L3 3= 1= ST O U TPRPINt 1845
S O A T oY i Ko Te) 3= PP 1846
YO T oY i = s v = 2 O PPNt 1848
S VA T oY f < Yo B I Nk K=Y U TSN 1849
50.76. PG _PrepPared ST At MENES tiiiirireireiereiteenereternereereenereesesneraesesneresesnesaesersersesessesaesesnesnes 1850
IS] O RVAVARE oo Hll e al=] o= Bt Yo b €=V o) o - U 1850
S O RVA ST Yol o101 B I L= Rl Moy s M =Y o =Y = SR 1851
SO RVAS I oo fi ot =Yele)ia=S o VN -T=Vuh o o Lo £~ HUUNUU O OO TON 1851
50.80. pg_replication _Origin_ StaAtUs tiviiiiiiiiieiiiiieieieiieieeeeeteeternereeterneraererneraeresnesaeresnesns 1851
SO SN IR oTe B =) B I el R o) o M= Ko ko= OO PSPt 1852
S O S A oY i oo B K=Y SO 1853
S R S 1O T oY f o L Y= U OO PP 1854
S O e 7 T o Yo BT Y el Y < Y= I = TRt 1854
S O Jo T oY M= Yo 1o 1=} oot =T Rt 1855
S OIS { ST oY B =T=5 ol o I o L 1= T U U PPN 1856
O S R < Te TR e =L [) PSPPSR 1858
ST OIS 1 S T oY =R o=} o= S OO 1859
S U e I oY f o= < 1 =Y PPN 1861
SO IO oTe M uh B =¥ To) o ToTII=Y o) oF =37 U USSP 1861
YOS N R oo B o B =% 2o o TN o F=Y 11 1= 1862
S O A oY L =1=F PR 1862
STORS IS oTe MRTT-T=S ol | =) o) < ki oo 1= NN U TP UOTURIRt 1863
O oY B T == E TP 1863
Frontend/Backend ProtoCOLcouuiiiiiiiiiiiiiie ettt e e e e e 1864
D11 OVEIVIEW .eniiiiiiiiiiiee ettt et ettt et et e et e et et e et e et e ean e tb e et s ean e etnaannaennaeeneenns 1864
51.2. MESSAGE FLOW ...einiiiiiiiiiie ettt et e et e et e e te e e e st e et e eaeeean e et eanaaanaeaenasnnnns 1865
51.3. SASL AUthentiCAtionccceuniiiiiiiii ettt e et e e e e eeaans 1877
51.4. Streaming Replication ProtoColccoouiiiiiiiiiiii e 1878
51.5. Logical Streaming Replication Protocolc.ooivuiiiiiiiiiiiiiice e 1885
51.6. MeSSAGE DAta TYDES cuuieniiiiiiiiiiii ettt e e e eans 1886
51.7. MeSSAge FOTINALS ..iiuiiiiiiiiie et et e et e e et e et e e e eae et et eaneeaaanes 1886
51.8. Error and Notice Message Fieldsccouiiiiiiiiiiiiiiiiiii et ea e 1901
51.9. Logical Replication Message FOrmatsccoeiueiiiiiiiiiiiieiiieeee e 1903
51.10. Summary of Changes since Protocol 2.0cccoiiiiiiiiiiiiiiiiie e e e 1907
Writing A Procedural Language Handlerccouiiiiiiiiiiiiieieee et e e eaa s 1908
Writing A Foreign Data WIaDDETc.uiiniiiiiiiiiiii ettt et e ee et et e ee et e e s e e e eanes 1911
53.1. Foreign Data Wrapper FUNCEIONS ...c.ciiiiiiiiiiiie e e e e e e 1911
53.2. Foreign Data Wrapper Callback ROUtINEScovvniiiniiiiiiiiii e, 1911
53.3. Foreign Data Wrapper Helper FUNCLIONSc.ooiviiiiiiiiiiiiiie e 1923
53.4. Foreign Data Wrapper Query Planningc..cceeeiiiiiiiiiiniiiiiiieeee e 1924
53.5. Row Locking in Foreign Data WTIapPETScccueiiuiiiiiiieieeiieeiieeieeeiee et eereerneeeeneeaneeanns 1926
Writing A Table Sampling Methodcouniiiiiiiii e e e e aaaas 1928
54.1. Sampling Method Support FUNCLIONScovuiiiniiiiiee e 1928
Writing A Custom SCan PrOVIAETiiiiiiiiiiiieii et e e e e e et e et e e e e eanaeens 1931
55.1. Creating Custom Scan Pathsc.oiiiiiiiiii e e 1931
55.2. Creating Custom ScCan PIANScccuoiiiiiiiiiiiiie e e e e e e e e et e e e e e eanns 1932
55.3. Executing CUSEOI SCAIS ...ivniiiiiiiiiiiiiie ettt e et e ee et et e e e aaeeanaeneaanannns 1933
GenetiC QUETY OPTIIIZET ..ovuiiniiiiiiiiiiie et e et e ettt et e et et e e e et aaaetneenaaaneeneeneaeneens 1935
56.1. Query Handling as a Complex Optimization Problemc.cccooeviiiiiiiiiiiiiiiiinieeeens 1935
ST I ©1=) o T=Y mTolFAN Lo £} o 1 0o - TSR 1935
56.3. Genetic Query Optimization (GEQO) in Postgres Proccccceveviieiiieiiieeieeeeeeeeen, 1936
56.4. FUIther REAMING ...cuuiiiiiiiiiiiiieee ettt e e e et e et e et e et e et e eaaaeaenesenaennnns 1937
Index Access Method Interface Definitionccooeuiviiiiiiiiiiiiiiiiiii e 1938
57.1. Basic API Structure for INAEXESoeiiiuiiiiiiiiiii ettt eeeaees 1938
57.2. Index Access Method FUNCLIONSoiiiuiiiiiiiiiiiii e 1940
SIARC T §a Lo 1) Qi Tot=1 a1 12 o PR 1945

xvii

Postgres Pro Standard
11.22.1 Documentation

57.4. Index Locking ConsSiderationscceiuieiieiiiiiiiieiiie e e e e eeae e e e e e e eaaeeannas 1946
57.5. Index Uniqueness CRECKSccuiiiiiiiiiiiiiee e e et e e e et e et e e e eaeeaeesaneeens 1947
57.6. Index Cost Estimation FUNCTIONSc..viiiiiiiiiiiiiiiiiiie e e 1948
58. GENETIC WAL RECOTAS ..uuiiiuiiiiiiieiiee ettt ettt ettt e et e e et s e et s e et e e et e eeeaeeetaeeananaees 1951
59, B-TTEE IMAEXES .oeuuiiiiieiiie ettt ettt e et e et e e et e e et e e et e e eaa e e et e eetaeeetaeeeeanseeenns 1953
1S TR IO 4 L o Yo L o1 1 o) o A OO OO 1953
59.2. Behavior of B-Tree Operator ClaSSEScccueeiiuiiiiieiieiiieeiieeeieeeieeie e e eaeeaeeaneeaenasannas 1953
59.3. B-Tree Support FUNCLIONSc.oiuiiiiiii ettt e e et e s e e e eaeane e 1954
B0. GIST INAEKES ..eiuuiiiieeiiie ettt ettt et e et e et s e et s e ett s e et e eeaa e eetaneeataneeataeeennsaetnnseennnns 1956
B0.1. INETOAUCTION .eviiiiiiiieiii ettt et e e et s e et e e et e et e e e et e e et s entaeeenanns 1956
60.2. BUilt-in OPerator CLASSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e et et e et e et e eaeaeaeesanasrnaesnneenns 1956

LS O JC TR 5 Y o 3 31 5 RN 1956
60.4. IMPLEMENtAtION ...iieniiiieie e e et e et e et e et e e e et e et e e e et aaaaaaeaan 1965

S 0T 5= 1001 o] (=T S 1965
1. SP-GIST INAEXES ..evuuiiiiiiiiie ettt ettt ettt et e e et e e et e e et s e et s e et e ettaeeeaaseeasanaeetaneensaeaennnaes 1966
0 IO 4 L 4 o To L o1 o) o A PO 1966
61.2. BUilt-in OpPerator CLlAaSSES ...c.uciiuiiiiiiiieieeiii et e e e et et e et e e te e s e et e et e eaeeeaeesanaernaesnneenns 1966

O NG TR 5 Y o 153 31) RPN 1966
61.4. IMPLemMENtAtION ...cveiiiiiieee e e et e e et et e e et e et e e e e e aaaaaan 1973
B2, GIN IIAEKES ..eevuuniiiietiii ettt ettt ettt e e et e e et e e et e e et e e et e etha e etaa e eaunseetnnseetnnseesnnsennnnns 1975
2/ IO 4 L o Lo L T o1 1 o) o A OO PO 1975
62.2. BUilt-in OpPerator CLASSES ...c.uiiiuiiiiiiiiiieeie et e e e e e et eete et e et e et e eaeeeaeesanasanaesnnasens 1975
LSV C T 0 1Y o 531 031) RN 1975
Y N 00} 0] Lo a =Y a1 =) o PN 1978
62.5. GIN TipS @nd TTICKS ..ccuuiiiiiiiiiiiieiiie et et et e e et e et e st e st e et e eaesesaneeanaeanaeenns 1979
62.6. LIMITATIONIS .oeuniiiiiiiiii ittt e et et et e et e et e e e e eb e een e ean e e eenas 1979
Y 5 <= 1111 o] (=T S 1979
63. BRIN INAEXES ..uieiiiiiiiieiiiie ettt ettt et e et e e et e et e ettt e ettt s e et s e eta s eataaseeanneeasnneeesanaenes 1981
76 T80 IO 4 L 4 0 To L T o1 1 o) o AU OO 1981
63.2. BUilt-in OpPerator CLlASSES ...c.uciiuiiiiiiiieieeiii et e e e et e e et e e te e e e et e et e ereeaenesanaernaesnneenns 1981
LS36 T0C T 05 1Y o 531 031 51 RN 1982
B4, HASH INAEXES ouuiiiiiiiiiie ettt ettt e et e ettt e e et e e et s e et s e et e eeanseeasaeeenanaees 1986
4.1 . OVEIVIEW .ouiiiiiiiiiiieii ettt et et et e ettt e et e et e et e et eea e et e ean s eaneeabe et etnetnsaenneenneeeneenns 1986
64.2. IMPLemMENtAtION ...cveniiiiiie e e et e et e e e et e e et e e e eaaaaan 1987
65. Database PhySiCal StOTAQEccuuiiiuiiiiiiiii et e et e et e et e et e e ae e st e st e eaneeeanaees 1988
65.1. Database File LayOoulcccuiiiiiiiiiiiie et e e e e e et e et e e e e et e et e e e e aena s 1988
85,2, TOA ST .ottt ettt ettt ettt e e et e e et e e et e et e et et e e e e et e et eaaanes 1990
05.3. FIEE SPACE MAD tiuiiniiiiiiiiiie ettt e e e e et e e e e et et et e e et e e e e aans 1992
65.4. VISIDILIEY MAPD tiituiiiiiiiiiit ettt e et e et e et e et e et e e aa e eaaas 1993
65.5. The Initialization FOTKcouiiiiiii ettt e e e e e e e eee 1993
65.6. Database Page LayOulciiiiiiiiiiii et e e e et e e e aaas 1993
65.7. Heap-0Only TupleS (HOT) oo e ettt e e et e e e et e e a e e s e eaneaaneeaneanns 1996
66. How the Planner Uses StatiStiCScviiiuiiiiiiiiiiiiiiiii et e e 1997
66.1. Row Estimation EXampPlesc.oiiiiiiiiiiiiiiiiieie et e e e e e e et e e e e e e saeeaanas 1997
66.2. Multivariate StatisticsS EXamPILEsiiiiiiiiiii i 2001
66.3. Planner Statistics and SECUTILYccivuiiiiiiiiiie e e 2003

AV 0 N o) 1= oL b (=Y SN 2004
FAWN =053 o =TSR 20 W o T 2 o /o) 010 Yo L= SN 2005
B. Date/Time SUPPOTTE «.ouniiiiiii et et e et et e et e e et e et eaa et e e aaneaneeneannaeneens 2013
B.1. Date/Time Input INterpretationccoiiiiiiiii i e 2013
B.2. Handling of Invalid or Ambiguous Timestampscccccueiiiiiiiiiiiiieii e e 2014
B.3. Date/Time KEY WOTASccuiiiuiiiiiieiiie ettt e e e et e et e e te et e et e et e e s eaenesanesaneaannesennns 2014
B.4. Date/Time Configuration Filescccoiiiiiiiiiiiiii e ea e e e 2015
B.5. POSIX Time Zone SPecifiCationsc.oeiiiiiiiiiiiiii et e e e e 2017
B.6. HiStOTY Of UTIES coiuniiiiiiiii it e et e et e et e e e et e et e e aneeaneaaneasnnaes 2018

S TR L TN E= o D - L =Y 2019
(OO) I =) A 0] oo £ 2021
D. SQOL CONLOTINATICE .euinininininieei ettt ettt ettt ettt e ea et e eneastetnensastetnensassesensneseteensnennnns 2044

xviii

Postgres Pro Standard
11.22.1 Documentation

| IO I 1 o] o Yo i X=Ye B L cY N =Y 2045
D.2. Unsupported FEATUTESuuiiiiiiiiiiiei et et et e e e et e et e e et e eae e s e aeneaanaannnas 2060
D.3. XML Limits and Conformance t0 SQL/XML ...ttt erenenes 2071
B ReELEASE INOTES ..ttt ettt et e e et s e et s e et e e et e e et e e et e eetaeeenanns 2075
E.1. Postgres Pro Standard 11.22.1 ...t e et e e et e e a e e e eanaean 2075
E.2. Postgres Pro Standard 11.21.2 ... e et e e et e e e et e e a e e e eaaaeas 2076
E.3. Postgres Pro Standard 11.21.1 ... e et e e et e e et e e a e e aa e eaaeean 2076
E.4. Postgres Pro Standard 11.20.1 ... e e et e e e e et e e a e e e eaaeean 2078
E.5. Postgres Pro Standard 11.19.1 ...t e e e et e e e e e ean 2079
E.6. Postgres Pro Standard 11.18.1 ... e et e e e et e e e e e eaaeean 2080
E.7. Postgres Pro Standard 11.17.2 ...t e e e et e et e e e et e e a e e aaeeanaeen 2081
E.8. Postgres Pro Standard 11.17.1 ..o e et e e et e e et e e a e e aa e eaaaean 2082
E.9. Postgres Pro Standard 11.16.2ccoiiiniiiiiiiiiiiiieeiee et e et e e et e e e et e e aa e e aeeeaaees 2084
E.10. Postgres Pro Standard 11.16.1 ..o et e e e v e e e eeaa e 2085
E.11. Postgres Pro Standard 11.15.1 .. e e e e e e a e e e e e e eaa e 2086
E.12. Postgres Pro Standard 11.14.1 ..ot e e e e et e e e e e e eaeeaan e 2087
E.13. Postgres Pro Standard 11.13.1 ..o e e e et e e e e e e eaa e 2088
E.14. Postgres Pro Standard 11.12.1 ...t e e et e ea e e e e eaa e 2090
E.15. Postgres Pro Standard 11.11.2 ...t e e e et e e it e e e e ea e eaa e 2091
E.16. Postgres Pro Standard 11.11.1 . e e e et e e e e e e ea e eaa e 2092
E.17. Postgres Pro Standard 11.10.1 ..o et e e et e et e e ae e ea e eaa e 2093
E.18. Postgres Pro Standard 11.9.1 ... et e e e 2094
E.19. Postgres Pro Standard 11.8.1couuiiiiiiiiiiiiiii et e e e e e e e e e ean 2095
E.20. Postgres Pro Standard 11.7.1 ... e et e e e et e e a e e e ean 2096
E.21. Postgres Pro Standard 11.6.1ccoiiiniiiiiiiiiiii et e e e et e e a e e e eaa e eas 2098
E.22. Postgres Pro Standard 11.5.4 ... e e et e e e et e e e e ean 2099
E.23. Postgres Pro Standard 11.5.3 ... et e e e e e e e e e 2099
E.24. Postgres Pro Standard 11.5.1 ... et e e e et e e e e e 2099
E.25. Postgres Pro Standard 11.4.1 ... e et e e e et e e a e e e eaaaean 2100
E.26. Postgres Pro Standard 11.2.1 ... et e e e e e e e e e ean 2101
E.27. Postgres Pro Standard 11.1.1 ...t e e e et e e e e e e ean 2103
E.28. RELEASE L11.22 oottt ettt e et e et e et e e et e et e e e et e e et e eaaaes 2106
E.20. RelE@SE L11.21 oottt ettt e et e et e et e e et e e et e e ea s e et e eaaans 2109
E.30. RELEASE L11.20 .uuiiiiiiiiiiiiii ettt ettt e et e et e e et e e et e e et e e eaaa s eenaeeenaans 2112
E.31. RelE@SE 11,10 ottt ettt e e et e et e et e e et e e eb e e eaa s e et e eeaaans 2116
E.32. RelE@SE L11.18 oottt e et et e e et e e et e e et s e et e eeaaaes 2119
E.33. RELEASE 11,17 oottt ettt e et e e et e e et e e et e e e et e e et eenaans 2122
E.34. RELEASE L11.16 cuuuiiiiiiiiiiiiii ettt ettt e e et e et e et e e et e e et e e eaa s e et e eenaans 2125
E.35. RELEASE 11,15 oottt ettt e et e et e et e e et e e et e e eaa s e et eenaans 2128
E.36. RELEASE L11.14 oottt e e et e et e et e e et e e et e e eaa s e et e eenaaes 2131
E.37. Rele@SE 11,13 oottt e et e et e et e e et e e et e e aa s e et e enaans 2136
E.38. RELEASE L11.12 oottt ettt e et e et et e e et e e et e e e et s e et e eenaaes 2141
E.39. RelE@SE L11.11 oottt ettt e et e et e e et e e et e e et e e eaaa s eeaaeeenaaes 2144
E.40. RELEASE L11.10 couiiiiiiiiiiieeii ettt ettt e et e et e e et s e et e e et e e eaaa s eetaeeenaans 2148
ELAL. RelE@SE 11,9 it ettt e e e e et e et e e e e e e e e et e enaans 2152
EL.42. ReElE@SE L11.8 .ottt ettt e et e et e et e et e et e e e e et e eaaaes 2156
EL43. RELEASE 11,7 ettt ettt et e et e et e et e e et e e e e e et e eaaans 2160
EL44. RELEASE L11.6 oeuuiiiiiiiiiiieii ettt e e et e et e et e e et e e e e e e e e s e et e eeaaans 2164
EL45. RELEASE L11.5 ittt ettt e e e e et e et e e et e e e e et e aaaaes 2169
EL4G. ReELEASE L11.4 .ottt ettt e et e et e e tb e e et e e e e s e et e eenaans 2172
EL47. ReElE@SE L11.3 ittt ettt e e et e et e et e e tb e e et e e et e et e eaaaes 2174
EL48. RElEASE L11.2 ittt ettt et e et e et e et e e et e e et e et e eaaans 2179
E.49. RelE@SE L1.1 ittt ettt e et e et e et e e tb e e et e e et e e et e enaans 2183
E.DO. RELEASE L1 .oeiiiiiiiiiiiiie ettt e et e et e et e e et e e et e e e e s e eaa s e et e eenanes 2185
E.DL. PTiOT REIEASES .uuiiiiieiiieeiiee ettt ettt et e et e et e et s e et e e et s e et s eetaseaanneeaens 2203
F. Additional Supplied MOAUIESc..iiiiiiiiiiei et et e e e e et e e e e et e eae e e e eanaaannas 2204
| IO Yo a0 o Y- L] : RIS 2204
| 111 Lo a U= Tod - S OO PPPRRPRt 2205

Xix

Postgres Pro Standard
11.22.1 Documentation

F.3.
F4.
F.5.
F.6.
F.7.
F.8.
F.9

F.10.
F.11.
F.12.
F.13.
F.14.
F.15.
F.16.
F.17.
F.18.
F.19.
F.20.
F.21.
F.22.
F.23.
F.24.
F.25.
F.26.
F.27.
F.28.
F.29.
F.30.
F.31.
F.32.
F.33.
F.34.
F.35.
F.36.
F.37.
F.38.
F.39.
F.40.
F41.
F.42.
F.43.
F.44.
F.45.
F.46.
F.47.
F.48.
F.49.
F.50.
F.51.
F.52.
F.53.
F.54.
F.55.
F.56.
F.57.
F.58.
F.59.
F.60.

AUEN AELAY oeniiiiie ettt e et e e eaae s
Lo I 5):q] F= 1 RPN
o] (oo 1's ES PP
o1 cTC T o 11 R PPN
o1y cTC R o 1) AU PRRPRRRPRt
(012« AP PP PP PPRPPPI
CUDIE ottt ettt e et et e e e e eh e eb e eaaan s
ADIINK Lo ettt e e e et eeaa e eaa e
[0 101 A o L PP UOPPROTPRRt
Lo hlo] b <) 1 RO OTPRUPPRRRt
(o 10N} S - ORI
CATTNAISTATICE ..eiuiiiiiii ittt e e et e et e et e et e et e e e eeas
i 5 D o OO PP
11 L (0 A OO PPRRRN
L0 1 L= o
VP77 1 o 0T) (o] o N
L1153 o) T O PSPPIt
Hunspell Dictionaries MOAUIESccvuniiiiiiiiii e e e e e e e e e e e eaaaas
101 %< 1o £ E RNt

1

| o XN

ONLINE ANALYZE ..oevnniiii ettt e et e et et e e e
=T (3101 =T o VPP
T 3SR A0 e Lol o =T od - RN
PG DUITETCACKE ..ottt e e e e e e
| 916 (01 174 01 (o R PPN
DG fTEESPACEIMAD .uuiiiiniiiii ettt ettt et ettt e et e et e et e et e e et e et e eba e et eaaanes

PO PATIINAN ..ottt ettt e et e eaae s
DO DPTEWATTIL «euueiiunettineettueetuneeetun s eetuaeeetueettunetaaneettaseettaeatsnerennseesnnsessnnseesnnsensnseeennsees

PO QUETY SEALE ..oniniiiii et
10 10N 1o Yol <SS
PG stat statements
L0 FST = 1 b o) 1SRN
910 [A 1 8 1 R PP PP PSPPI
PO TSPATSET .ttt ettt ettt ettt ettt e e e e e e

PG VATIADLIES ettt et ettt et e e e et e et e eaa e eaa e
PG VISIDILIEY eeeii i ettt et ea e

o Yo LG VATV a0 o] hia T A PR PPOT PP
oY E= N b 0 1= RN
POSETES FAW ettt ettt et e e et e et e e e et s e et s e et e eanaeeeans
0101 o] : N

Y=Y o TSP

=TS e LeTodoTe Yo AP UP PR PPPRTRTRN
TSI SYSTEIM TOWS L.eeiitiiiii ettt e e eas
ESIM SYSTEIMN TIIME L.oenniiiiiii ettt et e e et et e ee e e e e e e ena s
UNACCENT L.oviiiiiii

XX

Postgres Pro Standard
11.22.1 Documentation

| I U U o 077 o T 2400

| G 111 1 RO O R ROPPTUPPPRRRE 2402

G. Additional SUPPlied PIrOGTAmS ... ccuuiiiiiiieeiieeiie et et et et e et e et e st e st e etnaeanseeneesnaeanaeanaesnnnns 2407
L I O 1Y o LN o o] i Tok= Y) <SP 2407
(CTVRITC) 1£2) AN o 01§ (o= 1 1 o) o PPN 2485

| R 5 =Y = | o 4 0 =T SNt 2545
i I O =Y ol 0 Y o it o Y SRR 2545
H.2. AdminiStration TOOLSccuuiiiuiiiiiiiii ettt e e et e e te e e et e eae e st eaanesanearnaaannns 2545
H.3. Procedural LanQUagESceeuueeiuiiiieieeieeiieeiertnestnaeetestestneesnnessnessnaernassenessnessneesnnesnns 2545

| I =Y 153 0) 0 1 SR 2545

I. Configuring Postgres Pro for 1C SOIULIONScoiveiiiiiiiiii e 2546
J. Demo Database “AITINES”ccuuiiiiiiieii et e et e e e et e et e et e et e eta e e e st e et arnaaanaaen 2547
0 6 0 1 =1 1 Y w0) o N 2547
RS Tl a1 o a = D I =Y i< 1o o RN 2548
J.3. Schema DeSCIIPLION ...cuuiiiiiieiie et e et e e e et e e e et e et e e s e eaneeaneeanaanns 2548
R o a1 00 = R O] o) =Y o] N 2549
RS T U= Yo [PR 2555

| Vo o0 1} 2 1 4 SR 2563
L. Obsolete or Renamed FEATUTEScccuoiiuiiiiiii ittt e et e e e et e e e e s e eaeeaaaas 2568
L.1. pg_xlogdump renamed 0 pg_WaldUMD .oeueeeieeieienienieeenieeieeneenenernerneaeenerneeaenernereeeernerneneens 2568
L.2. pg_resetxlog renamed t0 PG _TeSeLWaL tiviiiriiiriiniinireiteieererneterernereererneraererneraerernernenns 2568
L.3. pg_receivexlog renamed t0 pg_reCeivVeWal .ivviiiiiieiieirnerneiieerernerierrernernerreerernernaennees 2568

|50 0) N oY 1= o] 0|7/ PR 2569
| B3Te 1) QPP PP UPP TR UPPPPTRUPPPPR 2571

xXxXi

Preface

This book is the official documentation of Postgres Pro Standard. It has been written by the Postgres
Pro developers, PostgreSQL community, and other volunteers in parallel to the development of the Post-
greSQL and Postgres Pro software. It describes all the functionality that the current version of Postgres
Pro officially supports.

To make the large amount of information about Postgres Pro manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
Postgres Pro experience:

e PartIis an informal introduction for new users.

e Part Il documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every Postgres Pro user should read this.

» Part III describes the installation and administration of the server. Everyone who runs a Postgres
Pro server, be it for private use or for others, should read this part.

» Part IV describes the programming interfaces for Postgres Pro client programs.

* Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

e Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

e Part VII contains assorted information that might be of use to Postgres Pro developers.

1. What is Postgres Pro Standard?

Postgres Pro Standard is an object-relational database management system (ORDBMS), developed by
Postgres Professional in the Postgres Pro fork of PostgreSQL, which is in turn based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

Postgres Pro Standard runs on all major Linux and Windows operating systems. Like PostgreSQL, Post-
gres Pro Standard is ACID-compliant.

Both PostgreSQL and Postgres Pro Standard support a large part of the SQL standard and offer many
modern features:

* complex queries

» foreign keys

* triggers

* updatable views

* transactional integrity

e multiversion concurrency control

Besides, PostgreSQL and Postgres Pro can be extended by the user in many ways, for example by adding
new

e data types

» functions

* operators

* aggregate functions

* index methods

* procedural languages

xxii

http://postgresql.org
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://en.wikipedia.org/wiki/ACID

Preface

2. Difference between Postgres Pro Standard and Post-
greSQL

Postgres Pro provides the most actual PostgreSQL version with some additional patches applied and
extensions added. It includes new features developed by Postgres Professional, as well as third-party
patches already accepted by the PostgreSQL community for the upcoming PostgreSQL versions. Post-
gres Pro Standard users thus have early access to important features and fixes.

Note

Postgres Pro Standard is provided under the following license: https://postgrespro.com/prod-
ucts/postgrespro/eula. Make sure to review the license terms before downloading Postgres Pro
Standard.

Postgres Pro Standard provides the following enhancements over PostgreSQL.:

Improved deadlock detection mechanism that does not cause performance degradation.

Reduced WAL size on CREATE INDEX operation for GiST, GIN, SP-GiST.

Better planning speed and accuracy for various query types.

Reduced memory consumption in complex queries that involve multiple tables.

Displaying planning time in the output of the auto explain module.

NUL byte replacement with the specified ASCII code while loading data using the copy FrROM com-
mand. (See nul byte replacement on import parameter description.)

"\u0000"' character replacement with the specified unicode character when calling a function pro-
cessing JSONB (See unicode nul character replacement in jsonb parameter description.)

ICU collation support on all platforms to provide platform-independent sort for various locales. By
default, the icu collation provider is used for all locales except ¢ and POSIX. (See Section 22.2.2.)
PTRACK implementation, which enables pg probackup to track page changes on the fly when cre-
ating incremental backups.

Consistent reads on standby servers. (See WAITLSN.)

pg_recovery_settings view that displays the current recovery settings stored in the recov-
ery.conf file.

Changing parameters in recovery.conf without restarting the server.

Improvements for command-line editing using WinEditLine in the Windows version of psql, includ-
ing autocomplete support in psql console and changing the psql default encoding to UTF-8.
Unified structure of binary installation packages across all Linux distributions, which facilitates mi-
gration between them and allows to install different PostgreSQL-based products side by side, with-
out any conflicts. (See Chapter 16.)

Postgres Pro Standard also includes the following additional modules:

dump stat module that allows to save and restore database statistics when dumping/restoring the
database.

fasttrun module that provides transaction-unsafe function to truncate temporary tables without
growing pg_class Size.

fulleq module that provides additional equivalence operator for compatibility with Microsoft SQL
Server.

hunspell-dict module that provides dictionaries for several languages.

jsquery module that provides a specific language for effective index-supported querying of JSONB
data.

mamonsu monitoring service, which is implemented as a Zabbix agent.

mchar module that provides additional data type for compatibility with Microsoft SQL Server.
online analyze module that provides a set of changes to immediately update statistics after INSERT,
UPDATE, DELETE Or SELECT INTO operations applied for affected tables.

xxiii

https://postgrespro.com/products/postgrespro/eula
https://postgrespro.com/products/postgrespro/eula

Preface

* pgbouncer connection pooler.

* pg pathman module that provides optimized partitioning mechanism and functions to manage par-
titions.

* pg probackup, a backup and recovery manager.

* pgpro controldata, an application to display control information of a PostgreSQL/Postgres Pro data-
base cluster and compatibility information for a cluster and/or server.

* pg query state module that enables you to get the current state of query execution for a backend.

* pg repack utility for reorganizing tables.

* pg tsparser module, which is an alternative text search parser.

* pg variables module that provides functions for working with variables of various types.

* pg wait sampling extension for sampling-based statistics of wait events. With this extension, you
can get an insight into the server activity, including the current wait events for all processes and
background workers.

¢ plantuner module that provides hints for the planner to disable or enable indexes for query execu-
tion.

¢ rum module that provides RUM index based on GIN.

e shared ispell module that enables storing dictionaries in shared memory.

* sr plan module that allows to save and restore query plans.

Postgres Pro Standard releases follow PostgreSQL releases, though sometimes occur more frequently.
The Postgres Pro Standard versioning scheme is based on the PostgreSQL one and has an additional
decimal place.

3. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With decades of development behind
it, PostgreSQL is now the most advanced open-source database available anywhere.

3.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid track-
ing database, a medical information database, and several geographic information systems. POSTGRES
has also been used as an educational tool at several universities. Finally, Illustra Information Technolo-
gies (later merged into Informix, which is now owned by IBM) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

XXiv

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

3.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface li-
brary libpgq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see be-
low), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

¢ The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

* The instance-level rule system was removed. Rules were still available as rewrite rules.

* A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

¢ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

w

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

4. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (.. .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should be
taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the Postgres Pro system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

XXV

Preface

5. Bug Reporting Guidelines

When you find a bug in Postgres Pro we want to hear about it. Your bug reports play an important part
in making Postgres Pro more reliable because even the utmost care cannot guarantee that every part of
Postgres Pro will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

* A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

¢ A program produces the wrong output for any given input.
* A program refuses to accept valid input (as defined in the documentation).

* A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

* Postgres Pro fails to install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

5.2. What to Report

When reporting a bug, make sure to state all the facts. Each bug report should contain the following
items:

* The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your ex-
ample, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the of-
fending queries.

* The output you got. If there is an error message, show it. If the program terminates with an operat-
ing system error, say which. If nothing at all happens, say so. Even if the result of your test case is
a program crash or otherwise obvious it might not happen on our platform. The easiest thing is to
copy the output from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the

XXVi

Preface

server log, set the run-time parameter log error verbosity to verbose so that all details are
logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the in-
formation available. Please also look at the log output of the database server.

¢ The output you expect is very important to state. Please provide the expected output, if applicable.

* Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default.

e Anything you did at all differently from the installation instructions.

* The Postgres Pro version. You can run the command SELECT pgpro_version(); to find out the ver-
sion of the server you are connected to. Most executable programs also support a —-version op-
tion; at least postgres --version and psql —--version should work.

¢ Platform information. This includes the kernel name and version, C library, processor, memory in-
formation, and so on.

5.3. Where to Report Bugs

In general, send bug reports to our support email address at <bugs@postgrespro.ru>. You are requested
to use a descriptive subject for your email message, perhaps parts of the error message.

Do not send bug reports specific to Postgres Pro to the PostgreSQL support email address, as Postgres
Pro is not supported by the PostgreSQL community. But you can send reports to <pgsgql-bugs@list-—
s.postgresql.org> for any bugs related to PostgreSQL.

Even if your bug is not specific to Postgres Pro, do not send bug reports to any of the user mailing
lists, such as <pgsql-sql@lists.postgresql.org> Or <pgsgl—-general@lists.postgresql.org>. These
mailing lists are for answering user questions, and their subscribers normally do not wish to receive bug
reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers' mailing list <pgsgl-hackers@lists.post—
gresql.org>. This list is for discussing the development of PostgreSQL, and it would be nice if the com-
munity could keep the bug reports separate. The community might choose to take up a discussion about
your bug report on pgsgl-hackers, if the PostgreSQL-related problem needs more review.

xXxVii

Part |. Tutorial

Welcome to the Postgres Pro Tutorial. The following few chapters are intended to give a simple introduc-
tion to Postgres Pro, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the Postgres Pro system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for Post-
gres Pro. When learning SQL, you can use the demo database described in Appendix J. Those who set up
and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use Postgres Pro you need to install it, of course. It is possible that Postgres Pro is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access Postgres Pro.

If you are installing Postgres Pro yourself, then see instructions on installation (Chapter 16), and return
to this guide when the installation is complete. Be sure to follow closely the section about setting up
the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic Postgres Pro system architecture. Understanding
how the parts of Postgres Pro interact will make this chapter somewhat clearer.

In database jargon, Postgres Pro uses a client/server model. A Postgres Pro session consists of the
following cooperating processes (programs):

¢ A server process, which manages the database files, accepts connections to the database from
client applications, and performs database actions on behalf of the clients. The database server pro-
gram is called postgres.

e The user's client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the Postgres Pro distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The Postgres Pro server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
Postgres Pro server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

Getting Started

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then Postgres Pro was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation in-
structions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such
file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Postgres
Pro user account for you. (Postgres Pro user accounts are distinct from operating system user accounts.)
If you are the administrator, see Chapter 20 for help creating accounts. You will need to become the
operating system user under which Postgres Pro was installed (usually postgres) to create the first user
account. It could also be that you were assigned a Postgres Pro user name that is different from your
operating system user name; in that case you need to use the -u switch or set the PGUSER environment
variable to specify your Postgres Pro user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If Postgres Pro refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed Postgres Pro yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as.

You can also create databases with other names. Postgres Pro allows you to create any number of data-
bases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

! Asan explanation for why this works: Postgres Pro user names are separate from operating system user accounts. When you connect to a database, you can choose
what Postgres Pro user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a Postgres Pro user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the -U option everywhere to select a Postgres Pro user name to connect as.

Getting Started

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the Postgres Pro interactive terminal program, called psql, which allows you to interac-
tively enter, edit, and execute SQL commands.

* Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC sup-
port to create and manipulate a database. These possibilities are not covered in this tutorial.

e Writing a custom application, using one of the several available language bindings. These possibili-
ties are discussed further in Part IV.

You probably want to start up psgl to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psgl mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (11.22.1)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Postgres
Pro instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of cre-
atedb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psqgl is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT pgpro_version();
version

PostgresPro 11.22.1 on x86_64-pc-linux—-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2,
64-bit
(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
?column?

Getting Started

(1 row)

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various Postgres Pro SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including melt93 and date97. You should be aware that some Postgres Pro
language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

2.2. Concepts

Postgres Pro is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for table. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number
of other ways of organizing databases. Files and directories on Unix-like operating systems form an ex-
ample of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single Postgres Pro
server instance constitutes a database cluster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_1lo int, —-— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)i

You can enter this into psgl with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

Postgres Pro supports the standard SQL types int, smallint, real, double precision, char (N), var—
char (N), date, time, timestamp, and interval, as well as other types of general utility and a rich set of
geometric types. Postgres Pro can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The SQL Language

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i
The point type is an example of a Postgres Pro-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The 1INSERT statement is used to populate a table with rows:
INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)"');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.q., if the precip-
itation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM '/home/user/weather.txt';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here + is a shorthand for “all columns”. ! So the same result would be had with:

! While sErECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

The SQL Language

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;
The output should be:

city | temp_lo | temp_hi | prcp | date
——————————————— B T s
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;
This should give:

city | temp_avg | date
_______________ S
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward \ 45 | 1994-11-29
(3 rows)

Notice how the As clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a wHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather

WHERE city = 'San Francisco' AND prcp > 0.0;
Result:
city | temp_lo | temp_hi | prcp | date
——————————————— e e A
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— —————
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward

The SQL Language

San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once,
or access the same table in such a way that multiple rows of the table are being processed at the same
time. A query that accesses multiple rows of the same or different tables at one time is called a join query.
As an example, say you wish to list all the weather records together with the location of the associated
city. To do that, we need to compare the city column of each row of the weather table with the name
column of all rows in the cities table, and select the pairs of rows where these values match.

Note

This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— e e et e e e it

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

Observe two things about the result set:

¢ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see
shortly how this can be fixed.

e There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities

2 In some database systems, including older versions of Postgres Pro, the implementation of DISTINCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current Postgres Pro does not guarantee that DISTINCT causes the rows to be ordered.

The SQL Language

WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— et s et it et et
Hayward | 37 | 54 | | 1994-11-29 |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a selfjoin. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all other
weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— e
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

10

The SQL Language

Like most other relational database products, Postgres Pro supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to com-
pute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

46
(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weather WHERE temp_lo = max (temp_lo); WRONG

but this will not work since the aggregate max cannot be used in the wWHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate sep-
arately from what is happening in the outer query.

Aggregates are also very useful in combination with GRour BY clauses. For example, we can get the
number of readings and the maximum low temperature observed in each city with:

SELECT city, count(*), max(temp_lo)
FROM weather
GROUP BY city;

city | count | max
_______________ I
Hayward \ 11 37
San Francisco | 2| 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, count(*), max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | count | max
_________ +_______+_____
Hayward | 1 | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we
only care about cities whose names begin with “s”, we might do:

SELECT city, count (*), max(temp_lo)
FROM weather
WHERE city LIKE 'S%' -
GROUP BY city;

11

The SQL Language

city | count | max
_______________ +_______+_____
San Francisco | 2 46
(1 row)

The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

Another way to select the rows that go into an aggregate computation is to use FILTER, which is a per-
aggregate option:

SELECT city, count(*) FILTER (WHERE temp_lo < 45), max(temp_lo)
FROM weather
GROUP BY city;

city | count | max
,,,,,,,,,,,,,,, S I
Hayward | 11 37
San Francisco | 1 | 46
(2 rows)

FILTER is much like WHERE, except that it removes rows only from the input of the particular aggregate
function that it is attached to. Here, the count aggregate counts only rows with temp_1o below 45; but
the max aggregate is still applied to all rows, so it still finds the reading of 46.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature read-
ings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28";

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B s e e ittt L e e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

12

The SQL Language

DELETE FROM weather WHERE city = 'Hayward';
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et s e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form
DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Postgres
Pro. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some Postgres Pro extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT name, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weather table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the cities table to check if a matching record exists,
and then inserting or rejecting the new weather records. This approach has a number of problems and
is very inconvenient, so Postgres Pro can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
name varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities (name),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:

14

Advanced Features

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint
"weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly en-
couraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00

WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00

WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database sys-
tem, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter.
For example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit
to his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk)
before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In Postgres Pro, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and coMMIT commands. So our banking transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00

15

Advanced Features

WHERE name = 'Alice';
—-— etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of commIT, and all our
updates so far will be canceled.

Postgres Pro actually treats every SQL statement as being executed within a transaction. If you do
not issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and coMMIT is sometimes called
a transaction block.

Note

Some client libraries issue BEGIN and coMMIT commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLL-
BACK TO. All the transaction's database changes between defining the savepoint and rolling back to it
are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's ac-
count, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance
WHERE name = 'Bob';

-— oops ... forget that and use Wally's account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Wally';

COMMIT;

balance + 100.00

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

16

Advanced Features

However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e e
develop \ 11 | 5200 | 5020.0000000000000000
develop \ 7 4200 | 5020.0000000000000000
develop \ 9 | 4500 | 5020.0000000000000000
develop \ 8 | 6000 | 5020.0000000000000000
develop \ 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales \ 3 | 4800 | 4866.6666666666666667
sales \ 1 | 5000 | 4866.6666666666666667
sales \ 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the non-window
avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a normal function or non-window aggregate.
The oVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY clause within ovER divides the rows into groups, or partitions, that share the
same values of the PARTITION BY expression(s). For each row, the window function is computed across
the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
——————————— R
develop \ 8 | 6000 | 1
develop \ 10 | 5200 | 2
develop \ 11 | 5200 | 2
develop \ 9 | 4500 | 4
develop \ 7 4200 | 5
personnel | 2| 3900 | 1
personnel | 5 | 3500 | 2
sales \ 1| 5000 | 1
sales \ 4 | 4800 | 2
sales \ 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank for each distinct oORDER BY value in the
current row's partition, using the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the ovER clause.

17

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FrROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways using different oveRr clauses, but they all act
on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is a single partition containing all rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists
of all rows from the start of the partition up through the current row, plus any following rows that are
equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rows in the partition. ! Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;
salary | sum
,,,,,,,, I
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
________ I
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they logically ex-
ecute after the processing of those clauses. Also, window functions execute after non-window aggregate

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

18

Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a wINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

elevation int, -— (in ft)
state char (2)

)i

CREATE TABLE non_capitals (

name text,
population real,
elevation 1int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, elevation FROM capitals
UNION
SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.
A better solution is this:

CREATE TABLE cities (
name text,

19

Advanced Features

population real,
elevation int —— (in ft)
)i

CREATE TABLE capitals (
state char (2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its parent,
cities. The type of the column name is text, a native Postgres Pro type for variable length character
strings. The capitals table has an additional column, state, which shows its state abbreviation. In
Postgres Pro, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

which returns:

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953
Madison \ 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ o
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

Postgres Pro has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

20

https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in Postgres Pro. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should see Part VI.

Readers of this part should know how to connect to a Postgres Pro database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the Postgres Pro interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chap-
ters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to Postgres Pro.

4.1. Lexical Structure

4

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
II.”

minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one com-
mand can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MYy_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

22

SQL Syntax

can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this creates
an ambiguity with the operator s. Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "data" could be written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UEscaprclause
after the string, for example:

U&"d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary.
(Surrogate pairs are not stored directly, but combined into a single code point that is then encoded in
UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F00, foo, and "foo" are considered the same by Postgres Pro, but
"Foo" and "Foo" are different from these three and each other. (The folding of unquoted names to lower
case in Postgres Pro is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FO0O" not "foo" according to the standard. If you
want to write portable applications you are advised to always quote a particular name or never quote it.)

1.2. Constants

There are three kinds of implicitly-typed constants in Postgres Pro: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

23

SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'

'bar';

is equivalent to:

SELECT 'foobar';

but:

SELECT 'foo' 'bar’';

is ncgc vdal;d syntax. (This slightly bizarre behavior is specified by SQL; Postgres Pro is following the
standard.

4.1.2.2. String Constants with C-style Escapes

Postgres Pro also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E' foo'. (When continuing an escape string constant across lines, write £ only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (o =0-7) octal byte value

\xh, \xhh(h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9,A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \ ', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadeci-
mal escapes, compose valid characters in the server character set encoding. When the server encoding is
UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3,
should be used instead. (The alternative would be doing the UTF-8 encoding by hand and writing out
the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is uTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the 4-digit and
the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF8, they are first combined into a single
code point that is then encoded in UTF-8.)

24

SQL Syntax

Caution

If the configuration parameter standard conforming strings is off, then Postgres Pro recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters escape string warn-
ing and backslash quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

Postgres Pro also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us'foo'. (Note that this creates an ambiguity with the operator . Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string 'data’' could be written as

Us'd\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&'\0441\043B\043E\043D"'

If a different escape character than backslash is desired, it can be specified using the UEscaprclause
after the string, for example:

U&'d!0061t!+000061"' UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into a single code
point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard conforming strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes, since each of those must be doubled. To
allow more readable queries in such situations, Postgres Pro provides another way, called “dollar quot-
ing”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($), an optional
“tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that makes

25

SQL Syntax

up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne's horse” using dollar quoting:

$$Dianne's horses
$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ $gS[\t\r\n\v\\15g$);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\]g represents a dollar-quoted literal string [\t\r\n\v\\1, which
will be recognized when the function body is executed by Postgres Pro. But since the sequence does not
match the outer dollar quoting delimiter $functions, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagString contentStag is correct, but
$TAGSString content$tag$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when represent-
ing string constants inside other constants, as is often needed in procedural function definitions. With
single-quote syntax, each backslash in the above example would have to be written as four backslashes,
which would be reduced to two backslashes in parsing the original string constant, and then to one when
the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., 8'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X' 1Fr'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string con-
stants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:
digits
digits.[digits] [e[+-]1digits]

[digits].digits|[e[+-]digits]
digitse[+-]1digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.

26

SQL Syntax

There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

3.5

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL '1.23' -- string style
1.23::REAL —-— Postgres Pro (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

'string'::type

CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, casT (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

'string' syntax is that it does not work for array types; use :: or CAST () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type 'string' syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but Postgres Pro allows it for all types. The syntax with
: : is historical Postgres Pro usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:
+-*¥/<>=~1@#% "~ &|" ?

27

SQL Syntax

4.

There are a few restrictions on operator names, however:

* ——and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1T@#% "~ &|° 7
For example, @- is an allowed operator name, but *- is not. This restriction allows Postgres Pro to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent op-
erators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@, you cannot write x*@y; you must write x* @Y to ensure that Postgres Pro reads it as two operator
names not one.

1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an oper-
ator. Details on the usage can be found at the location where the respective syntax element is described.
This section only exists to advise the existence and summarize the purposes of these characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a func-
tion definition or a prepared statement. In other contexts the dollar sign can be part of an identifier
or a dollar-quoted string constant.

* Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

* Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

* Commas (,) are used in some syntactical constructs to separate the elements of a list.

* The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, ex-
cept within a string constant or quoted identifier.

* The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

* The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

* The period (.) is used in numeric constants, and to separate schema, table, and column names.

1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—-— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */

*/

where the comment begins with /* and extends to the matching occurrence of */. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

28

SQL Syntax

4.1.6. Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in Postgres Pro. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5 ! - 6;

will be parsed as:

SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;
This is the price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left Postgres Pro-style typecast
[] left array element selection
+ - right unary plus, unary minus
A left exponentiation
* /% left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN IN LIKE ILIKE SIMILAR range containment, set member-
ship, string matching
<> =<=>=<> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS
DISTINCT FROM, etc
NOT right logical negation
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other oper-
ator”. This is true no matter which specific operator appears inside OPERATOR ().

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; Is tests used to have higher priority; and

29

SQL Syntax

NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator precedence warning turned on to see if
any warnings are logged.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

e A constant or literal value

* A column reference

* A positional parameter reference, in the body of a function definition or prepared statement

* A subscripted expression

¢ A field selection expression

* An operator invocation

¢ A function call

* An aggregate expression

* A window function call

* A type cast

¢ A collation expression

e A scalar subquery

* An array constructor

* A row constructor

* Another value expression in parentheses (used to group subexpressions and override precedence)
In addition to this list, there are a number of constructs that can be classified as an expression but do

not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.
4.2.1. Column References
A column can be referenced in the form:
correlation.columnname
correlationisthe name of a table (possibly qualified with a schema name), or an alias for a table defined

by means of a FroM clause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

30

SQL Syntax

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL state-
ment. Parameters are used in SQL function definitions and in prepared queries. Some client libraries
also support specifying data values separately from the SQL command string, in which case parameters
are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

4

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
will be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname
In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An im-
portant special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:

31

SQL Syntax

(compositecol) .*

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name (|lexpression [, expression ... 1])

For example, the following computes the square root of 2:

sqgrt (2)
The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard but
is provided in Postgres Pro because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by clause]) [FILTER

(WHERE filter clause)]

aggregate_name (ALL expression [, ... 1 [order_by_clause]) [FILTER

(WHERE filter clause)]

aggregate_name (DISTINCT expression [, ...] [order_by_ _clause]) [FILTER

(WHERE filter clause)]

aggregate_name (*) [FILTER (WHERE filter_ clause) |

aggregate_name ([expression [, ... 1 1) WITHIN GROUP (order_by_clause) [FILTER

(WHERE filter clause)]

32

SQL Syntax

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since ALL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count (*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yields the total number of input rows; count (£f1) yields the number of input
rows in which f£1 is non-null, since count ignores nulls; and count (distinct f1) yields the number of
distinct non-null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order_by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the oORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ',') FROM table; -— incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If pIsTINCT is specified in addition to an order by _clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DISTINCT list.

Note

The ability to specify both DISTINCT and ORDER BY in an aggregate function is a Postgres Pro
extension.

Placing orDER BY within the aggregate's regular argument list, as described so far, is used when order-
ing the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an order by clause is
required, usually because the aggregate's computation is only sensible in terms of a specific ordering
of its input rows. Typical examples of ordered-set aggregates include rank and percentile calculations.
For an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order_by_clause are evaluated once per
input row just like regular aggregate arguments, sorted as per the order_by_clause's requirements,
and fed to the aggregate function as input arguments. (This is unlike the case for a non-wITHIN GROUP
order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument expres-

33

SQL Syntax

sions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from the aggre-
gated arguments listed in the order_by_clause. Unlike regular aggregate arguments, direct arguments
are evaluated only once per aggregate call, not once per input row. This means that they can contain
variables only if those variables are grouped by GROUP BY; this restriction is the same as if the direct
arguments were not inside an aggregate expression at all. Direct arguments are typically used for things
like percentile fractions, which only make sense as a single value per aggregation calculation. The direct
argument list can be empty; in this case, write just () not (*). (Postgres Pro will actually accept either
spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
TOWS.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row)

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVING clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (lexpression [, expression ...]]) [FILTER (WHERE filter_clause) |
OVER window_name
function_name (lexpression [, expression ...]]) [FILTER (WHERE filter_clause) |

OVER (window_definition)

34

SQL Syntax

) [FILTER (WHERE filter_ clause)] OVER window_name
) [FILTER (WHERE filter clause)] OVER (window_definition)

function_name (*
function_name (*
where window_definition has the syntax

[existing_window_name]
[PARTITION BY expression [, ...] 1
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]

[, «..1 1]
[frame_clause]

The optional frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_ exclusion]

where frame start and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW

offset FOLLOWING
UNBOUNDED FOLLOWING

and frame exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's winDow clause. Al-
ternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the winDow clause; see the SELECT reference page for details. It's worth
pointing out that OVER wname is not exactly equivalent to OVER (wname ...); the latter implies copy-
ing and modifying the window definition, and will be rejected if the referenced window specification
includes a frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS Or GROUPS mode; in each case, it runs from the frame_start to the frame_end. If frame_end
is omitted, the end defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition.

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current row's
first peer row (a row that the window's ORDER BY clause sorts as equivalent to the current row), while
a frame_end of CURRENT ROW means the frame ends with the current row's last peer row. In ROWS mode,
CURRENT ROW simply means the current row.

35

SQL Syntax

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an expression not
containing any variables, aggregate functions, or window functions. The meaning of the offset depends
on the frame mode:

* In rROWS mode, the offset must yield a non-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GrROUPS mode, the offset again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
offset specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the offset expression varies
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columns it is an interval. For
example, if the ordering column is of type date or timestamp, one could write RANGE BETWEEN '1
day' PRECEDING AND '10 days' FOLLOWING. The offset is still required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both rows and GrROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to CURRENT
rowW. This normally holds in RANGE mode as well, for an appropriate data-type-specific meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UN-
BOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, this means all rows
of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUND-
ED PRECEDING, and the frame_end choice cannot appear earlier in the above list of frame_start and
frame_end options than the frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND
offset PRECEDING is not allowed. But, for example, ROWS BETWEEN 7 PRECEDING AND 8 PRECEDING is
allowed, even though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count (*) OVER (PARTITION BY x ORDER BY y). The asterisk (*) is customarily not used for
window-specific functions. Window-specific functions do not allow DISTINCT or ORDER BY to be used
within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

36

SQL Syntax

4.2.9. Type Casts

4

A type cast specifies a conversion from one data type to another. Postgres Pro accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical Postgres Pro usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, dou-
ble precision cannot be used this way, but the equivalent float8 can. Also, the names interval,
time, and timestamp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

2.10. Collation Expressions

The coLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than oper-
ators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

37

SQL Syntax

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';
But this is an error:
SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:
SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word aArRRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY([1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,411;

{1,2},{3,4}}
(1 row)

38

SQL Syntax

SELECT ARRAY[[1,2],[3,4]];

{{1,2},{3,4}}
(1 row)
Since multidimensional arrays must be rectangular, inner constructors at the same level must produce

sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automat-
ically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr (f1 int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY([[1,2],1[3,4]]1, ARRAY[[5,6],1[7,811);
SELECT ARRAY([f1, f2, '{{9,10},{11,12}}"'::int[]] FROM arr;

array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word array followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, 1*2] FROM generate_series(1,5) AS a(i));

{1,2},4{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARrAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word row, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

39

SQL Syntax

SELECT ROW(1,2.5, 'this is a test');
The key word row is optional when there is more than one expression in the list.
A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements

of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see Sec-
tion 8.16.5). For example, if table t has columns f1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note

Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW (t.*, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . *, for instance rROW (t, 42).

By default, the value created by a ROw expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl1 int, f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS 'SELECT $1.fl1' LANGUAGE SQL;

—— No cast needed since only one getfl () exists
SELECT getfl (ROW(1,2.5,"'this is a test'));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, £2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,'this is a test'));

ERROR: function getfl (record) is not unique
SELECT getfl (ROW(1,2.5, 'this is a test')::mytable);
getfl
1
(1 row)

SELECT getfl (CAST(ROW (11, 'this is a test',2.5) AS myrowtype));
getfl

11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with Is NULL or Is NOT NULL, for example:

SELECT ROW(1,2.5, 'this is a test') = ROW(1l, 3, 'not the same');

40

SQL Syntax

SELECT ROW (table.*) IS NULL FROM table; —-— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(aND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A cask construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 36.7, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END

41

SQL Syntax

FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min (). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

Postgres Pro allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

Postgres Pro also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function de-
finition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS
$S
SELECT CASE
WHEN $3 THEN UPPER(S1 || ' ' || $2)
ELSE LOWER(S$1 || " ' || $2)
END;
$S

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in Postgres Pro. An
example is:

SELECT concat_lower_or_upper ('Hello', 'World', true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello', 'World');
concat_lower_or_upper

hello world
(1 row)

42

SQL Syntax

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument expres-
sion. For example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper (a => 'Hello', b => 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a => 'Hello', uppercase => true, b => 'World');
concat_lower_or_upper

HELLO WORLD

(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello', 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD

(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

43

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

Postgres Pro includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers, nu-
meric for possibly fractional numbers, text for character strings, date for dates, time for time-of-day
values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named first_column
and has a data type of text; the second column has the name second_column and the type integer.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i

(The numeric type can store fractional components, as would be typical of monetary amounts.)

44

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for

the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of CUR-
RENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is generating
a “serial number” for each row. In Postgres Pro this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval ('products_product_no_seq'),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)i

45

Data Definition

The seErRIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would vi-
olate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i
So, to specify a named constraint, use the key word coNSTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written

46

Data Definition

as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (Postgres Pro doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (

)i

product_no integer,

name text,

price numeric,

CHECK (price > 0),
discounted_price numeric,

CHECK (discounted_price > 0),
CHECK (price > discounted_price)

or even:

CREATE TABLE products (

)i

product_no integer,
name text,
price numeric CHECK (price > 0),

discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

)i

product_no integer,
name text,
price numeric,

CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note

Postgres Pro does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and restore to fail. The restore could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNIQUE, EXCLUDE, or FOREIGN KEY constraints to express cross-row and
cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a continu-
ously-maintained consistency guarantee, a custom trigger can be used to implement that. (This
approach avoids the dump/restore problem because pg dump does not reinstall triggers until after
restoring data, so that the check will not be enforced during a dump/restore.)

47

Data Definition

Note

Postgres Pro assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in a
CHECK expression, and then change the behavior of that function. Postgres Pro does not disallow
that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and restore to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in Postgres Pro creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to Postgres Pro to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

48

Data Definition

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric
)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful
when developing applications that are intended to be portable.

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,

49

Data Definition

name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.) Rela-
tional database theory dictates that every table must have a primary key. This rule is not enforced by
Postgres Pro, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (

product_no integer PRIMARY KEY,

name text,

price numeric
)i
Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer
)
Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

50

Data Definition

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer
)i
because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of a
tree structure, you could write

CREATE TABLE tree (
node_id integer PRIMARY KEY,
parent_id integer REFERENCES tree,
name text,

)i

A top-level node would have NULL parent_id, but non-NULL parent_id entries would be constrained
to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

51

Data Definition

)i
Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

* Disallow deleting a referenced product
* Delete the orders as well
* Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO acTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to oN DELETE there is also oN UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same. In this case, CASCADE means that the updated values of
the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a

52

Data Definition

row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too.
Because this is not always needed, and there are many choices available on how to index, declaration of
a foreign key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created using
WITH 01DS, or if the default with oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.19 for more information about the type.
tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it's difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.
xmin
The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)
cmin

The command identifier (starting at zero) within the inserting transaction.

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

53

Data Definition

ctid

The physical location of the row version within its table. Note that although the ctid can be used
to locate the row version very quickly, a row's ctid will change if it is updated or moved by vacuum
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

* A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 232 (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

* QOIDs should never be assumed to be unique across tables; use the combination of tableocid and
row OID if you need a database-wide identifier.

* Of course, the tables in question must be created wiTa 01Ds. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign key
constraint). Therefore Postgres Pro provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

¢ Add columns

¢ Remove columns

¢ Add constraints

¢ Remove constraints

* Change default values

¢ Change column data types
¢ Rename columns

¢ Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

54

Data Definition

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

Tip
From Postgres Pro 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. Instead, the

default value will be returned the next time the row is accessed, and applied when the table is
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default value is volatile (e.g., clock_timestamp ()) each row will need to be up-
dated with the value calculated at the time ALTER TABLE is executed. To avoid a potentially lengthy
update operation, particularly if you intend to fill the column with mostly nondefault values any-
way, it may be preferable to add the column with no default, insert the correct values using up-
DATE, and then add any desired default as described below.

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the App will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

5.5.2. Removing a Column
To remove a column, use a command like:
ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, Postgres Pro will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.
5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

55

Data Definition

(If you are dealing with a generated constraint name like s$2, don't forget that you'll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add cAscADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column's Default Value
To set a new default for a column, use a command like:
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;
This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.
5.5.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

Postgres Pro will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object vary
depending on the object's type (table, function, etc). For complete information on the different types of

56

Data Definition

privileges supported by Postgres Pro, refer to the GRANT reference page. The following sections and
chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g., ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details
see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves as well as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or func-
tions coming from the user's query. (The only exceptions to this rule are 1eakproof functions, which are
guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the row-
security check.) Rows for which the expression does not return true will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

57

Data Definition

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when access-
ing a table. Table owners normally bypass row security as well, though a table owner can choose to be
subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using either Or (for permissive policies,
which are the default) or using AND (for restrictive policies). This is similar to the rule that a given role
has the privileges of all roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the con-
straint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, Or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name pUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a sELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

58

Data Definition

—— Simple passwd-file based example
CREATE TABLE passwd (

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; —-- Administrator
CREATE ROLE bob; —-— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table
INSERT INTO passwd VALUES

('admin', 'xxx',0,0, "Admin', '111-222-3333"',null, '/root', '/bin/dash"');
INSERT INTO passwd VALUES

('bob', 'xxx',1,1, 'Bob', '123-456-7890"',null, ' /home/bob', ' /bin/zsh'");
INSERT INTO passwd VALUES

('alice', "xxx',2,1,"'Alice"','098-765-4321"',null, '/home/alice', '/bin/zsh'");

—-— Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies
—— Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—— Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
—-— Normal users can update their own records, but
—— limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND
shell IN ('/bin/bash', '/bin/sh','/bin/dash', '/bin/zsh','/bin/tcsh')
)i

—— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—-— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—— admin can view all rows and fields
postgres=> set role admin;
SET

59

Data Definition

postgres=> table passwd;
user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir
shell

admin | xxx \ 0 | 0 | Admin | 111-222-3333 | | /root

| /bin/dash

bob | xxx \ 1 | 1 | Bob | 123-456-7890 | | /home/bob
| /bin/zsh
alice

| /bin/zsh
(3 rows)

098-765-4321 /home/alice

XXX \

—-— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for table passwd

postgres=> select user_name, real_name, home_phone,extra_info,home_dir, shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir \ shell
——————————— e e s st
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for table passwd
—— Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE O
postgres=> update passwd set shell = '/bin/xx';

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for table passwd

postgres=> insert into passwd (user_name) values ('xxx');

ERROR: permission denied for table passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';

UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple poli-
cies are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add a restrictive policy to require the administra-
tor to be connected over a local Unix socket to access the records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
USING (pg_catalog.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current_user;
current_user

60

Data Definition

admin
(1 row)

=> select inet_client_addr();
inet_client_addr

127.0.0.1

(1 row)

=> SELECT current_user;
current_user

=> TABLE passwd;
user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
shell

=> UPDATE passwd set pwhash = NULL;
UPDATE O

Referential integrity checks, such as unique or primary key constraints and foreign key references, al-
ways bypass row security to ensure that data integrity is maintained. Care must be taken when devel-
oping schemas and row level policies to avoid “covert channel” leaks of information through such ref-
erential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row security configuration parameter to of£. This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow informa-
tion leakage if care is not taken. As an example, consider the following table design:

—— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL) ;

INSERT INTO groups VALUES

(1, "low'"),
(2, 'medium'),
(5, 'high'");
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

—— definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups);

61

Data Definition

INSERT INTO users VALUES
('alice', 5),
("bob', 2),
('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
('barely secret', 1),
('slightly secret', 2),
('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

—— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
USING (group_id <= (SELECT group_id FROM users WHERE user_name

current_user));
-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory';

UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice's does. It blocks waiting for
alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTS in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the ref-
erenced table could pose a performance problem, especially if updates of it are frequent. Another solu-
tion, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock on
the referenced table when updating it, so that no concurrent transactions could be examining old row
values. Or one could just wait for all concurrent transactions to end after committing an update of the
referenced table and before making changes that rely on the new security situation.

62

Data Definition

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A Postgres Pro database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases
in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects
in any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To allow many users to use one database without interfering with each other.
* To organize database objects into logical groups to make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
)i

To drop a schema if it's empty (all objects in it have been dropped), use:

63

Data Definition

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in Postgres Pro internals, adding a schema to search_path effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

64

Data Definition

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects
in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

65

Data Definition

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a
secure schema usage pattern, users wishing to securely query that database would take protective action
at the beginning of each session. Specifically, they would begin each session by setting search_path to
the empty string or otherwise removing non-superuser-writable schemas from search_path. There are
a few usage patterns easily supported by the default configuration:

* Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that user.
Recall that the default search path starts with $user, which resolves to the user name. Therefore,
if each user has a separate schema, they access their own schemas by default. After adopting this
pattern in a database where untrusted users had already logged in, consider auditing the public
schema for objects named like objects in schema pg_catalog. This pattern is a secure schema us-
age pattern unless an untrusted user is the database owner or holds the CREATEROLE privilege, in
which case no secure schema usage pattern exists.

* Remove the public schema from the default search path, by modifying postgresqgl.conf or by issu-
ing ALTER ROLE ALL SET search_path = "$Suser". Everyone retains the ability to create objects
in the public schema, but only qualified names will choose those objects. While qualified table ref-
erences are fine, calls to functions in the public schema will be unsafe or unreliable. If you create
functions or extensions in the public schema, use the first pattern instead. Otherwise, like the first
pattern, this is secure unless an untrusted user is the database owner or holds the CREATEROLE priv-
ilege.

* Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or a few mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user_name.table_name. This is how Postgres Pro will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

66

Data Definition

Postgres Pro implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (

name text,
population float,
elevation int -— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In Postgres Pro, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

Given the sample data from the Postgres Pro tutorial (see Section 2.1), this returns:

name | elevation
___________ e
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953

Here the onLy keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the oNLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are in-
cluded:

SELECT name, elevation

67

Data Definition

FROM cities*
WHERE elevation > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is still sup-
ported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

which returns:

tableoid | name | elevation

__________ +___________+___________
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison \ 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities ¢, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

relname | name | elevation
__________ +___________+___________
cities | Las Vegas | 2174

cities | Mariposa | 1953

capitals | Madison \ 845

Another way to get the same effect is to use the regclass alias type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or cOPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-

68

Data Definition

5

null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the cascape
option (see Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the cAsCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as
well, when they are accessed through cities. This preserves the appearance that the data is (also)
in the parent table. But the capitals table could not be updated directly without an additional grant.
Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables are
always checked, whether they are processed directly or recursively via those commands performed on
the parent table.

In a similar way, the parent table's row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table's policies, if any, are applied only when it is the
table explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used for
data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child tables
and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

* If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals table
from having rows with names duplicating rows in cities. And those duplicate rows would by de-
fault show up in queries from cities. In fact, by default capitals would have no unique constraint

69

Data Definition

at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

* Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

* Specifying that another table's column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative parti-
tioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is useful
for your application.

5.10. Table Partitioning

Postgres Pro supports basic table partitioning. This section describes why and how to implement parti-
tioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. Par-
titioning effectively substitutes for the upper tree levels of indexes, making it more likely that the
heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by using a sequential scan of that partition instead of using an index, which would require
random-access reads scattered across the whole table.

e Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern
is accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTITION, is far faster than a bulk operation. These commands also
entirely avoid the vacuuM overhead caused by a bulk DELETE.

* Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Postgres Pro offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if one
partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10 belongs
to the second partition not the first.

List Partitioning

The table is partitioned by explicitly listing which key value(s) appear in each partition.

Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

70

Data Definition

If your application needs to use other forms of partitioning not listed above, alternative methods such
as inheritance and UNTON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

Postgres Pro allows you to declare that a table is divided into partitions. The table that is divided is
referred to as a partitioned table. The declaration includes the partitioning method as described above,
plus a list of columns or expressions to be used as the partition key.

The partitioned table itself is a “virtual” table having no storage of its own. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table
will be routed to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of a row will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own index-
es, constraints and default values, distinct from those of other partitions. See CREATE TABLE for more
details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove a partition from
a partitioned table turning it into a standalone table; this can simplify and speed up many maintenance
processes. See ALTER TABLE to learn more about the ATTACH PARTITION and DETACH PARTITION sub-
commands.

Partitions can also be foreign tables, although considerable care is needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

5.10.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well as ice cream sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data. In this situation we can use partitioning to help us
meet all of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:

1. Create the measurement table as a partitioned table by specifying the PARTITION BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition

key.

CREATE TABLE measurement (
city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

) PARTITION BY RANGE (logdate);

71

Data Definition

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal Postgres Pro tables (or, possibly, foreign tables). It is
possible to specify a tablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at a time. So the commands might look like:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01') TO ('2006-03-01");

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
FOR VALUES FROM ('2006-03-01') TO ('2006-04-01");

CREATE TABLE measurement_y2007ml1l1 PARTITION OF measurement
FOR VALUES FROM ('2007-11-01'"') TO ('2007-12-01");

CREATE TABLE measurement_y2007ml12 PARTITION OF measurement
FOR VALUES FROM ('2007-12-01') TO ('2008-01-01")
TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
FOR VALUES FROM ('2008-01-01"') TO ('2008-02-01")
WITH (parallel_workers = 4)
TABLESPACE fasttablespace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTITION BY clause in the commands
used to create individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01') TO ('2006-03-01")
PARTITION BY RANGE (peaktemp);

After creating partitions of measurement_y2006m02, any data inserted into measurement that is
mapped to measurement_y2006m02 (or data that is directly inserted into measurement_y2006m02,
which is allowed provided its partition constraint is satisfied) will be further redirected to one of its
partitions based on the peaktemp column. The partition key specified may overlap with the parent's
partition key, although care should be taken when specifying the bounds of a sub-partition such that
the set of data it accepts constitutes a subset of what the partition's own bounds allow; the system
does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It is not necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual data is in child indexes on the individual partition tables.

CREATE INDEX ON measurement (logdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in post-
gresql.conf. If it is, queries will not be optimized as desired.

72

Data Definition

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It is common to want to remove partitions holding old data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allows this otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSIVE lock on the parent
table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 PARTITION OF measurement
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01")
TABLESPACE fasttablespace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows new data to be loaded, checked, and transformed prior
to it appearing in the partitioned table. The CREATE TABLE ... LIKE option is helpful to avoid tediously
repeating the parent table's definition:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');

\copy measurement_y2008m02 from 'measurement_y2008m02"'
—-— possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01");

Before running the ATTACH PARTITION command, it is recommended to create a CHECK constraint on the
table to be attached that matches the expected partition constraint, as illustrated above. That way, the
system will be able to skip the scan which is otherwise needed to validate the implicit partition constraint.
Without the CHECK constraint, the table will be scanned to validate the partition constraint while holding
an ACCESS EXCLUSIVE lock on the parent table. It is recommended to drop the now-redundant CHECK
constraint after ATTACH PARTITION is finished.

As explained above, it is possible to create indexes on partitioned tables so that they are applied auto-
matically to the entire hierarchy. This is very convenient, as not only will the existing partitions become

73

Data Definition

indexed, but also any partitions that are created in the future will. One limitation is that it's not possible
to use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock times, it is
possible to use CREATE INDEX ON ONLY the partitioned table; such an index is marked invalid, and the
partitions do not get the index applied automatically. The indexes on partitions can be created individ-
ually using CONCURRENTLY, and then attached to the index on the parent using ALTER INDEX .. ATTACH
PARTITION. Once indexes for all partitions are attached to the parent index, the parent index is marked
valid automatically. Example:

CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX measurement_usls_200602_idx
ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
ATTACH PARTITION measurement_usls_200602_idx;

This technique can be used with UNIQUE and PRIMARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;

5.10.2.3. Limitations
The following limitations apply to partitioned tables:

* To create a unique or primary key constraint on a partitioned table, the partition keys must not in-
clude any expressions or function calls and the constraint's columns must include all of the parti-
tion key columns. This limitation exists because the individual indexes making up the constraint can
only directly enforce uniqueness within their own partitions; therefore, the partition structure itself
must guarantee that there are not duplicates in different partitions.

¢ There is no way to create an exclusion constraint spanning the whole partitioned table. It is on-
ly possible to put such a constraint on each leaf partition individually. Again, this limitation stems
from not being able to enforce cross-partition restrictions.

* While primary keys are supported on partitioned tables, foreign keys referencing partitioned tables
are not supported. (Foreign key references from a partitioned table to some other table are sup-
ported.)

* BEFORE ROW triggers, if necessary, must be defined on individual partitions, not the partitioned ta-
ble.

» Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is tem-
porary. When using temporary relations, all members of the partition tree have to be from the same
session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables or
their partitions, as discussed below. Notably, a partition cannot have any parents other than the parti-
tioned table it is a partition of, nor can a table inherit from both a partitioned table and a regular table.
That means partitioned tables and their partitions never share an inheritance hierarchy with regular
tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, tableoid and all the normal rules of inheritance apply as described in Section 5.9, with a
few exceptions:

74

Data Definition

Partitions cannot have columns that are not present in the parent. It is not possible to specify
columns when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... AT-
TACH PARTITION only if their columns exactly match the parent, including any oid column.

Both cHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO INHERIT are not allowed to be created on partitioned tables.
You cannot drop a NOT NULL constraint on a partition's column if the same constraint is present in
the parent table.

Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using oNLY will result in an error. Instead, constraints on
the partitions themselves can be added and (if they are not present in the parent table) dropped.

As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.10.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some cir-
cumstances where a more flexible approach may be useful. Partitioning can be implemented using table
inheritance, which allows for several features not supported by declarative partitioning, such as:

For declarative partitioning, partitions must have exactly the same set of columns as the parti-
tioned table, whereas with table inheritance, child tables may have extra columns not present in
the parent.

Table inheritance allows for multiple inheritance.

Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
allows data to be divided in a manner of the user's choosing. (Note, however, that if constraint ex-
clusion is unable to prune child tables effectively, query performance might be poor.)

Some operations require a stronger lock when using declarative partitioning than when using ta-
ble inheritance. For example, adding or removing a partition to or from a partitioned table requires
taking an AccEss ExCLUSIVE lock on the parent table, whereas a SHARE UPDATE EXCLUSIVE lock is
enough in the case of regular inheritance.

5.10.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “master” table, from which all of the “child” tables will inherit. This table will contain no

data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For our
example, the master table is the measurement table as originally defined:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

. Create several “child” tables that each inherit from the master table. Normally, these tables will not

add any columns to the set inherited from the master. Just as with declarative partitioning, these
tables are in every way normal Postgres Pro tables (or foreign tables).

—

) INHERITS (measurement);
) INHERITS (measurement);

CREATE TABLE measurement_y2006m02
CREATE TABLE measurement_y2006m03

—

CREATE TABLE measurement_y2007ml1l
CREATE TABLE measurement_y2007ml2

—

) INHERITS (measurement);
) INHERITS (measurement);

—

75

Data Definition

CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);
. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghamshire', 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007ml1l (
CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01"')
) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2 (
CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01"')
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01"')
) INHERITS (measurement);
. For each child table, create an index on the key column(s), as well as any other indexes you might want.

logdate

4

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 () ;
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate)
()
(

4

4

CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate
CREATE INDEX measurement_y2008m0l1_logdate ON measurement_y2008m0l1 (logdate);

. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger function
to the master table. If data will be added only to the latest child, we can use a very simple trigger
function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
RETURN NULL;

END;

$S

LANGUAGE plpgsqgl;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

76

Data Definition

BEFORE INSERT ON measurement
FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

We must redefine the trigger function each month so that it always inserts into the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE '2006-02-01'" AND
NEW.logdate < DATE '2006-03-01"') THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.*);
ELSIF (NEW.logdate >= DATE '2006-03-01"' AND
NEW.logdate < DATE '2006-04-01"') THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.*);

ELSIF (NEW.logdate >= DATE '2008-01-01"' AND
NEW.logdate < DATE '2008-02-01"') THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger ()
function!';
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsqgl;

The trigger definition is the same as before. Note that each 1r test must exactly match the cHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order as in other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01"')
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.*);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01"')
DO INSTEAD

INSERT INTO measurement_y2008m0l1 VALUES (NEW.*);

77

Data Definition

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use copy to insert data, you'll need to copy into
the correct child table rather than directly into the master. cory does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the master table instead.

6. Ensure that the constraint exclusion configuration parameter is not disabled in postgresql.conf;
otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2. Maintenance for Inheritance Partitioning
To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE measurement_y2006m02;

To remove the child table from the inheritance hierarchy table but retain access to it as a table in its
own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01"')
) INHERITS (measurement);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
queries on the parent table.

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01"');
\copy measurement_y2008m02 from 'measurement_y2008m02"
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.10.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

* There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

* The schemes shown here assume that the values of a row's key column(s) never change, or at least
do not change enough to require it to move to another partition. An UPDATE that attempts to do that
will fail because of the CHECK constraints. If you need to handle such cases, you can put suitable up-

date triggers on the child tables, but it makes management of the structure much more complicat-
ed.

* Ifyou are using manual VACUUM or ANALYZE commands, don't forget that you need to run them on
each child table individually. A command like:

78

Data Definition

ANALYZE measurement;
will only process the master table.

* INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child rela-
tions.

» Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.10.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively parti-
tioned tables. As an example:

SET enable_partition_pruning = on; —-— the default
SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01"';

Without partition pruning, the above query would scan each of the partitions of the measurement table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that
the partition need not be scanned because it could not contain any rows meeting the query's WHERE
clause. When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable partition pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they
have not. A typical unoptimized plan for this type of table setup is:

SET enable_partition_pruning = off;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01';
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 width=8)
-> Append (cost=0.00..181.05 rows=3085 width=0)
—-> Seq Scan on measurement_y2006m02 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)
—-> Seqg Scan on measurement_y2006m03 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

—-> Seqg Scan on measurement_y2007ml1l1 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seqg Scan on measurement_y2007ml12 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

—-> Seqg Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enable_partition_pruning = on;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01';
QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 width=8)
-> Append (cost=0.00..36.21 rows=617 width=0)
-> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether

79

Data Definition

an index needs to be created for a given partition depends on whether you expect that queries that scan
the partition will generally scan a large part of the partition or just a small part. An index will be helpful
in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. This is useful as it can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time; for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery or using a parameterized value on the inner side of
a nested loop join. Partition pruning during execution can be performed at any of the following times:

¢ During initialization of the query plan. Partition pruning can be performed here for parameter val-
ues which are known during the initialization phase of execution. Partitions which are pruned dur-
ing this stage will not show up in the query's EXPLAIN or EXPLAIN ANALYZE. It is possible to deter-
mine the number of partitions which were removed during this phase by observing the “Subplans
Removed” property in the EXPLAIN output.

* During actual execution of the query plan. Partition pruning may also be performed here to re-
move partitions using values which are only known during actual query execution. This includes
values from subqueries and values from execution-time parameters such as those from parame-
terized nested loop joins. Since the value of these parameters may change many times during the
execution of the query, partition pruning is performed whenever one of the execution parameters
being used by partition pruning changes. Determining if partitions were pruned during this phase
requires careful inspection of the 1oops property in the EXPLAIN ANALYZE output. Subplans cor-
responding to different partitions may have different values for it depending on how many times
each of them was pruned during execution. Some may be shown as (never executed) if they were
pruned every time.

Partition pruning can be disabled using the enable partition pruning setting.

Note

Execution-time partition pruning currently only occurs for the Append node type, not for Mergeap-
pend or ModifyTable nodes. That is likely to be changed in a future release of Postgres Pro.

5.10.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purpos-
es, including with declarative partitioning.

Constraint exclusion works in a very similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusion is only applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declara-
tively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may be able
to elide additional partitions from the query plan.

The default (and recommended) setting of constraint exclusion is neither on nor of £, but an intermedi-
ate setting called partition, which causes the technique to be applied only to queries that are likely
to be working on inheritance partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

* Constraint exclusion is only applied during query planning, unlike partition pruning, which can also
be applied during query execution.

80

Data Definition

* Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as Cur-
RENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the func-
tion's value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the parti-
tion key.

¢ All constraints on all children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheri-
tance based partitioning will work well with up to perhaps a hundred child tables; don't try to use
many thousands of children.

5.10.6. Best Practices for Declarative Partitioning

The choice of how to partition a table should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. wHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRIMARY KEY Or a UNIQUE constraint. Removal of
unwanted data is also a factor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such a way that
all data to be removed at once is located in a single partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implications if in several years you instead find yourself with a
large number of small customers. In this case, it may be better to choose to partition by HAsH and choose
a reasonable number of partitions rather than trying to partition by .1sT and hoping that the number of
customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option is to use range partitioning with multiple columns in the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The query
planner is generally able to handle partition hierarchies with up to a few hundred partitions fairly well,
provided that typical queries allow the query planner to prune all but a small number of partitions.
Planning times become longer and memory consumption becomes higher as more partitions are added.
This is particularly true for the uUpPDATE and DELETE commands. Another reason to be concerned about
having a large number of partitions is that the server's memory consumption may grow significantly
over time, especially if many sessions touch large numbers of partitions. That's because each partition
requires its metadata to be loaded into the local memory of each session that touches it.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload, it
is important to make the right decisions early, as re-partitioning large quantities of data can be painfully

81

Data Definition

slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

5.11. Foreign Data

Postgres Pro implements portions of the SQL/MED specification, allowing you to access data that resides
outside Postgres Pro using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 53.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage in
the Postgres Pro server. Whenever it is used, Postgres Pro asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current Postgres Pro role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

* Views

¢ Functions, procedures, and operators
¢ Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, Postgres Pro makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we consid-
ered in Section 5.3.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;
ERROR: cannot drop table products because other objects depend on it

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

82

Data Definition

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In
this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there
because nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE
will do, run prop without cAscaDE and read the DETAIL output.)

Almost all brROP commands in Postgres Pro support specifying cascape. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE
to get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note

According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT Or CASCADE varies across systems.

If a brOP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of a foreign key
referencing tab1 from tab2 would not mean that cASCADE is needed to succeed.

For user-defined functions, Postgres Pro tracks dependencies associated with a function's externally-vis-
ible properties, such as its argument and result types, but not dependencies that could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
'SELECT note FROM my_colors WHERE color = $1'
LANGUAGE SOQL;

(See Section 36.5 for an explanation of SQL-language functions.) Postgres Pro will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping the
function, because its argument type would no longer be defined. But Postgres Pro will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

83

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric
)i
An example command to insert a row would be:
INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a Postgres Pro extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today';

84

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as

flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word upDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the wHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WwHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the seT clause. For example:

UPDATE mytable SET a = 5, b =3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

85

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The INSERT,
UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use of RE-
TURNING avoids performing an extra database query to collect the data, and is especially valuable when
it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see Sec-
tion 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNING *, which selects all columns of the target table in order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = 'today'
RETURNING *;

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

86

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM tablel;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if tablel has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tablel;
(assuming that b and ¢ are of a numerical data type). See Section 7.3 for more details.
FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions can

be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FrROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FroM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The rroM Clause

The the section called “FroM Clause” derives a table from one or more other tables given in a comma-sep-
arated table reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FrROM

87

Queries

clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).
The result of the FroM list is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word oNLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing oNLY before the table name, you can write * after the table name to explicitly spec-
ify that descendant tables are included. There is no real reason to use this syntax any more, because
searching descendant tables is now always the default behavior. However, it is supported for compati-
bility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join_type T2 [join_condition]
Joins of all types can be chained together, or nested: either or both 77 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.
Join Types
Cross join

T1 CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see below). It is also
equivalent to FrROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because JoIn
binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER JOIN T3 ON
condition is not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference 71 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the oN or USING clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

88

Queries

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the ON expression
evaluates to true.

The UsING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining 77 and 72 with USING (a, b) produces the join condition ON T1.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JoIN oN produces all columns
from 71 followed by all columns from 72, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from 71, followed by
any remaining columns from 72.

Finally, NATURAL is a shorthand form of usiNG: it forms a USING list consisting of all column names
that appear in both input tables. As with UsING, these columns appear only once in the output table.
If there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE, producing
a cross-product join.

Note

USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t1:

89

Queries

num | value
_____ +_______
1] xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM tl1 CROSS JOIN t2;
num | name | num value

XXX
Yyy
ZZZ
XXX
Yyy
ZZZ
XXX

Yyy
ZZZ

=> SELECT * FROM tl1 INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S
11 a \ 1 | xxx
3] c \ 31 yyy
(2 rows)

=> SELECT * FROM tl1 INNER JOIN t2 USING (num);

_____ +______+_______
11 a | xxx
3 1 c | yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ +______+_______
11 a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S

11 a \ 1 | xxx

2 1 b \ \

3] c \ 3 |1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ +______+_______
11 a | xxx
2 1 b \
3 c | yyy
(3 rows)

90

Queries

=> SELECT * FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
1] a \ 1] xxx
3] c \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT * FROM tl1 FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
11 a \ 1 | xxx
2 1 b \
3] c \ 31 yyy
\ 5| zzz
(4 rows)

The join condition specified with oN can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx';
num | name | num | value
_____ +______ —_—— —_———— e —
11 a \ 1 | xxx
2 1 Db \ \
3 1 c \ \
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = 'xxx';

name num value

This is because a restriction placed in the oN clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters

a lot with outer joins.
7.2.1.2. Table and Column Aliases
A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.
To create a table alias, write
FROM table reference AS alias
or
FROM table_reference alias
The as key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id =

a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

91

Queries

SELECT * FROM my_table AS m WHERE my_table.a > 5; —-— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a Jo1N clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'Jjones'), ('joe', 'blow'))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FroM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the rROWS FRrROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... 1)]1]

92

Queries

ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
[, .. 1)11

If the wITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the ordinal
column is called ordinality, but a different column name can be assigned to it using an As clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
r oo 1)1]

Ifno table_aliasis specified, the function name is used as the table name; in the case of a ROWS FROM ()
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS S
SELECT * FROM foo WHERE fooid = $1;
$S LANGUAGE SQL;

SELECT * FROM getfoo(l) AS t1;

SELECT * FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record with no ouT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the ROWS FROM () syntax, the column_definition list replaces the column alias list that
could otherwise be attached to the FroOM item; the names in the column definitions serve as column
aliases. When using the Rows FROM () syntax, a column_definition list can be attached to each member
function separately; or if there is only one member function and no WITH ORDINALITY clause, a colum-
n_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:

SELECT *

93

Queries

FROM dblink ('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
AS tl (proname name, prosrc text)
WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
(
json_to_recordset ('[{"a":40, "b":"foo"},{"a":"100", "b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series (1, 3)
) AS x (p, 4, S)

ORDER BY p;
p I a | s
_____ +_____ —_—
40 | foo | 1
100 | bar | 2
\ | 3

It joins two functions into a single FrROM target. json_to_recordset () is instructed to return two
columns, the first integer and the second text. The result of generate_series () is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FroM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FroM item.)

Table functions appearing in FROM can also be preceded by the key word 1LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at the top level in the FrROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JoIn that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FrROM items providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vil, v2
FROM polygons pl, polygons p2,

94

Queries

LATERAL vertices(pl.poly) vi,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vi1, v2

FROM polygons pl CROSS JOIN LATERAL vertices (pl.poly) vi,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id '= p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names ()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause
The syntax of the the section called “wHERE Clause” is
WHERE search_condition
where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.
After the processing of the FrROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one

column of the table generated in the FrROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the Jo1IN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FroM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FroM clause. The ON or USING
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

95

Queries

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FroOM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as £dt.c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GrROUP RY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GRour BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_1list
FROM ...
[WHERE ...]
GROUP BY grouping_column_reference [, grouping column_reference]...

The the section called “Group BY Clause” is used to group together those rows in a table that have the
same values in all the columns listed. The order in which the columns are listed does not matter. The
effect is to combine each set of rows having common values into one group row that represents all rows
in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM testl;

x |y
___+___
a | 3
c | 2
b | 5
a | 1
(4 rows)

(3 rows)

In the second query, we could not have written SELECT * FROM testl GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

96

Queries

c | 2
(3 rows)

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GroUP BY list since it is only used in an aggregate expression (sum (.. .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but Postgres Pro extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_1list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c';
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit

97

Queries

FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
GROUP BY product_id, p.name, p.price, p.cost

HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of group-
ing sets. The data selected by the FrRoOM and WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ +______+_______
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
(size), ());

brand | size | sum
_______ +______+_____
Foo \ | 30
Bar | | 20
| L | 15
| M | 35
\ | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GRouP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for group-
ing sets in which those columns do not appear. To distinguish which grouping a particular output row
resulted from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
(el, e2, e3, ...),

(el, e2),

98

Queries

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPING SETS (

4

c)y

(a, b, c),
(a, b)y
(a, c)y
(a)y
(b, ¢c),
(b)
()
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (¢, d))
is equivalent to

GROUPING SETS (
(a, b, ¢, d)
(a, b),
(c, d)
()

)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPING SETS (
(a, b, ¢, d)
(a, b, c),
(a)
()
)

The cuBe and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

99

Queries

GROUP BY GROUPING SETS (

(a, b, ¢, d), (a, b, c, e),
(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the Group
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are
the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in a
single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering
of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not recom-
mended to rely on this, however. Use an explicit top-level oORDER BY clause if you want to be sure the
results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermedi-
ate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

100

Queries

SELECT tbll.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table name.* notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference

any columns in the table expression of the FrROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified using as, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The as keyword is optional, but only if the new column name does not match any Postgres Pro keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM ...
but this does:
SELECT a "value", b + ¢ AS sum FROM ...

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FrRoOM clause (see Sec-
tion 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select
list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI1STINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

101

Queries

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] queryZ2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

where query? and query2 are queries that can use any of the features discussed up to this point.

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query: and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

Set operations can be combined, for example
queryl UNION queryZ2 EXCEPT query3
which is equivalent to

(queryl UNION queryZ2) EXCEPT query3

As shown here, you can use parentheses to control the order of evaluation. Without parentheses, unION
and EXCEPT associate left-to-right, but INTERSECT binds more tightly than those two operators. Thus

queryl UNION queryZ INTERSECT query3
means
queryl UNION (queryZ2 INTERSECT query3)

You can also surround an individual query with parentheses. This is important if the query needs to
use any of the clauses discussed in following sections, such as L.iM1T. Without parentheses, you'll get a
syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of its inputs. For example,

SELECT a FROM b UNION SELECT x FROM y LIMIT 10
is accepted, but it means

(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10
not

SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in

102

Queries

that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The orDER BY clause specifies the sort order:

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal ac-
cording to the earlier values. Each expression can be followed by an optional Asc or DEsc keyword to
set the sort direction to ascending or descending. Asc order is the default. Ascending order puts smaller
values first, where “smaller” is defined in terms of the < operator. Similarly, descending order is deter-
mined with the > operator. !

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FIRST is the default for pEsc order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum + c; —— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use As to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_1list
FROM table_ expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. OFFsSeT 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

! Actually, Postgres Pro uses the default B-tree operator class for the expression's data type to determine the sort ordering for Asc and pEsc. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

103

Queries

If both OFFSET and L.IMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using L.IMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different L1MIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with orRDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an OrrsSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must
have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for uNION (see Section 10.5).

As an example:
VALUES (1, 'one'), (2, 'two'), (3, 'three');
will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columnl, 'one' AS column2
UNION ALL

SELECT 2, 'two'

UNION ALL

SELECT 3, 'three';

By default, Postgres Pro assigns the names columnil, column2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently,
so it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num, letter);
num | letter
_____ o
1 | one
2 | two
3 | three
(3 rows)

Syntactically, vALUES followed by expression lists is treated as equivalent to:
SELECT select_1list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

104

Queries

7.8. WIiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a wWITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the wITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, Or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The wiTH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used in
top_regions and the output of top_regions is used in the primary SELECT query. This example could
have been written without wiTH, but we'd have needed two levels of nested sub-sELECTs. It's a bit easier
to follow this way.

The optional RECURSIVE modifier changes wiTH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+l1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For uNION (but not UNION ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. Solong as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the re-
cursive self-reference. For uN1oN (but not uNION ALL), discard duplicate rows and rows that du-
plicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

105

Queries

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

While RECURSIVE allows queries to be specified recursively, internally such queries are evaluated
iteratively.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part, p.quantity * pr.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just
one or a few fields to see if the same point has been reached before. The standard method for handling
such situations is to compute an array of the already-visited values. For example, consider the following
query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g

UNION ALL

SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link

)

SELECT * FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,

106

Queries

g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[ROW(g.f1, g.f2)],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.f1, g.£f2),
ROW(g.f1l, g.f2) = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Tip
Omit the rROW () syntax in the common case where only one field needs to be checked to recognize a
cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order. You

can display the results in depth-first search order by making the outer query orRDER BY a “path”
column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a L.IMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because Postgres Pro's implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the WITH query's output anyway.

A useful property of wITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling WwITH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a WITH query to avoid redundant
work. Another possible application is to prevent unwanted multiple evaluations of functions with side-

107

Queries

effects. However, the other side of this coin is that the optimizer is less able to push restrictions from
the parent query down into a wiTH query than an ordinary subquery. The wITH query will generally be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

The examples above only show wITH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in wITH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to perform
several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= '2010-10-01"' AND
"date" < '2010-11-01"
RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_1log.

A fine point of the above example is that the wiTH clause is attached to the INSERT, not the sub-SELECT
within the I1NSERT. This is necessary because data-modifying statements are only allowed in wITH clauses
that are attached to the top-level statement. However, normal wITH visibility rules apply, so it is possible
to refer to the wITH statement's output from the sub-SELECT.

Data-modifying statements in wITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying state-
ment, that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in w1TH lacks a RETURNING clause, then it forms no temporary table and cannot be referred to in
the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive wiTH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

108

Queries

Data-modifying statements in wITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query. There-
fore, when using data-modifying statements in wiTH, the order in which the specified updates actually
happen is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so
they cannot “see” one another's effects on the target tables. This alleviates the effects of the unpre-
dictability of the actual order of row updates, and means that RETURNING data is the only way to commu-
nicate changes between different wITH sub-statements and the main query. An example of this is that in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)
SELECT * FROM products;

the outer seLECT would return the original prices before the action of the UpDATE, while in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)
SELECT * FROM t;

the outer seLECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. There-
fore you should generally avoid trying to modify a single row twice in a single statement. In particular
avoid writing wITH sub-statements that could affect the same rows changed by the main statement or a
sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in wITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

109

Chapter 8. Data Types

Postgres Pro has a rich set of native data types available to users. Users can add new types to Postgres
Pro using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by Postgres Pro for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte inte-
ger

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [n) 1] variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) 1 varchar [(n)] variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float$8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [(p)] time span

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control) ad-
dress

macaddr8 MAC (Media Access Control) ad-
dress (EUI-64 format)

money currency amount

numeric [(p, s)] decimal [(p, s) exact numeric of selectable preci-
sion

path geometric path on a plane

pg_1lsn Postgres Pro Log Sequence Num-
ber

point geometric point on a plane

polygon closed geometric path on a plane

110

Data Types

time zone]

Name Aliases Description

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial? autoincrementing two-byte inte-
ger

serial seriald autoincrementing four-byte inte-
ger

text variable-length character string

time [(p) 1 [without time time of day (no time zone)

zone |

time [(p)] with time zone |[timetz time of day, including time zone

timestamp [(p)] [without date and time (no time zone)

timestamp [(p)] with time|timestamptz date and time, including time
zone zone

tsquery text search query

tsvector text search document

txid_snapshot

user-level transaction ID snap-
shot

uuid

universally unique identifier

xml

XML data

time zone), xml.

Compatibility

The following types (or spellings thereof) are specified by SQL: bigint, bit, bit varying, boolean,
char, character wvarying, character, varchar, date, double precision, integer, interval,
numeric, decimal, real, smallint, time (with or without time zone), t imestamp (with or without

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to Postgres Pro,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy

when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,

and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for integer|-2147483648 to
+2147483647

bigint 8 bytes large-range integer -9223372036854775808
1-::)9223372036854775807

111

Data Types

8

Name Storage Size Description Range
decimal variable user-specified precision, | up to 131072 digits be-
exact fore the decimal point;

up to 16383 digits after
the decimal point

numeric variable user-specified precision,|up to 131072 digits be-
exact fore the decimal point;
up to 16383 digits after
the decimal point

real 4 bytes variable-precision, inex-|{6 decimal digits preci-
act sion

double precision 8 bytes variable-precision, inex-|{15 decimal digits preci-
act sion

smallserial 2 bytes small autoincrementing|1 to 32767
integer

serial 4 bytes autoincrementing inte-|1 to 2147483647
ger

bigserial 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recommended for
storing monetary amounts and other quantities where exactness is required. Calculations with numer-
ic values yield exact results where possible, e.g., addition, subtraction, multiplication. However, calcu-
lations on numeric values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:

112

Data Types

NUMERIC (precision)
selects a scale of 0. Specifying:
NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a
bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000; NUMERIC
without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = 'NaN'. On input, the
string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including NaN). In order to allow numeric values to be sorted and used in tree-
based indexes, Postgres Pro treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:

SELECT x,
round (x: :numeric) AS num_round,
round (x: :double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | num_round | dbl_round
______ +___________+___________
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0
0.5 | 1 | 0
1.5 | 2 2
2.5 | 3 | 2
3.5 | 4 | 4

113

Data Types

(8 rows)

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system,
and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

* If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implemen-
tation carefully.

* Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least
6 decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

Note

The extra float digits setting controls the number of extra significant digits included when a float-
ing point value is converted to text for output. With the default value of 0, the output is the same on
every platform supported by Postgres Pro. Increasing it will produce output that more accurately
represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

» o«

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in an SQL command, you must put
quotes around them, for example UPDATE table SET x = '—Infinity'. On input, these strings are
recognized in a case-insensitive manner.

Note

IEEE754 specifies that naN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, Postgres
Pro treats NaN values as equal, and greater than all non-NaN values.

Postgres Pro also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. Postgres Pro accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double pre-

114

Data Types

cision. Values of p outside the allowed range draw an error. float with no precision specified is taken
to mean double precision.

Note

The assumption that real and double precision have exactly 24 and 53 bits in the mantissa
respectively is correct for IEEE-standard floating point implementations. On non-IEEE platforms
it might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

Note

This section describes a Postgres Pro-specific way to create an autoincrementing column. Another
way is to use the SQL-standard identity column feature, described at CREATE TABLE.

The data types smallserial, serial and bigserial are not true types, but merely a notational conve-
nience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported by
some other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL
)i

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq AS integer;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval ('tablename_colname_seq')
)
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Because smallserial, serial and bigserial are implemented using sequences, there may be
"holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval () in Section 9.16 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns
in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial should
be used if you anticipate the use of more than 23! identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

115

Data Types

The sequence created fora serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and float-
ing-point literals, as well as typical currency formatting, such as 's1,000.00'. Output is generally in
the latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.0]

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real and
double precision data types can be done by casting to numeric first, for example:

SELECT '12.34'::float8::numeric: :money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could poten-
tially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a
money value is divided by another money value, the result is double precision (i.e., a pure number, not
money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit
character (n), char(n) fixed-length, blank padded
text variable unlimited length

Table 8.4 shows the general-purpose character types available in Postgres Pro.

SQL defines two primary character types: character varying(n) and character (n), where n is a pos-
itive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt to
store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre

116

Data Types

exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store the
shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length value will
be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n), re-
spectively. If specified, the length must be greater than zero and cannot exceed 10485760. character
without length specifier is equivalent to character (1). If character varying is used without length
specifier, the type accepts strings of any size. The latter is a Postgres Pro extension.

In addition, Postgres Pro provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregard-
ed when comparing two values of type character. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C" < E'a
\n'::CHAR (2) returns true, even though c locale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a character value to one of the other string types. Note
that trailing spaces are semantically significant in character varying and text values, and when using
pattern matching, that is LT1KE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character
set, which is selected when the database is created. Regardless of the specific character set, the charac-
ter with code zero (sometimes called NUL) cannot be stored. For more information refer to Section 22.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use text
or character varying without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in Postgres Pro; in fact character (n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for informa-
tion about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok');
SELECT a, char_length(a) FROM testl; --

a | char_length
______ +_____________

117

Data Types

ok \ 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok');

INSERT INTO test2 VALUES ('good ')

INSERT INTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES ('too long'::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length
_______ +_____________
ok | 2
good \ 5
too 1 | 5

The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in Postgres Pro, shown in Table 8.5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a future
release. The type "char" (note the quotes) is different from char (1) in that it only uses one byte of
storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types
The bytea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
bytea 1 or 4 bytes plus the actual binary|variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and
also disallow any other octet values and sequences of octet values that are invalid according to the
database's selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings
are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the config-
uration parameter bytea output; the default is hex. (Note that the hex format was introduced in Post-
greSQL 9.0; earlier versions and some tools don't understand it.)

118

Data Types

The SQL standard defines a different binary string type, called BL.OB or BINARY LARGE OBJECT. The input
format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:

SET bytea_output = 'hex';

SELECT '\xDEADBEEF': :bytea;
bytea

\xdeadbeef

8.4.2. bytea Escape Format

The “escape” format is the traditional Postgres Pro format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practice it is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8.7. bytea Literal Escaped Octets

Decimal Octet|Description Escaped Input|Example Hex Representa-
Value Representation tion
0 zero octet "\000"' SELECT \x00
"\000"': :bytea;
39 single quote rrroor '\047! SELECT \x27
"' tbytea;
92 backslash "\\'or '\134"' SELECT "\ |[\x5¢c
\'::bytea;
0 to 31 and 127 to|“non-printable” "\ xxx ' (octal value) | SELECT \x01
255 octets "\001'::bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just
one single quote, which it treats as a plain data character. However, the bytea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

119

Data Types

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124"'::bytea;
bytea

abc klm *\251T
The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. bytea Output Escaped Octets

Decimal Octet|Description Escaped Output|Example Output Result

Value Representation

92 backslash \\ SELECT A\

'"\134"'::bytea;

0 to 31 and 127 to|“non-printable” \xxx (octal value) |SELECT \N001

255 octets "\001"'::bytea;

32 to 126 “printable” octets |client character set|SELECT ~
representation "\176'::bytea;

Depending on the front end to Postgres Pro you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

Postgres Pro supports the full set of SQL date and time types, shown in Table 8.9. The operations avail-
able on these data types are described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
timestamp [(|8 bytes both date and|4713 BC 294276 AD 1 microsecond
p) 1 [without time (no time
time zone] zone)
timestamp [(|8 bytes both date and|4713 BC 294276 AD 1 microsecond
p) 1 with time time, with time
zone zone
date 4 bytes date (no time of|4713 BC 5874897 AD 1 day

day)
time [(p) 1|8 bytes time of day (no|00:00:00 24:00:00 1 microsecond
[without time date)
zone |
time [(p) 1/12 bytes time of day (no|00:00:004+1559 |24:00:00-1559 |1 microsecond
with time zone date), with time

zone
interval [116 bytes time interval -178000000 178000000 1 microsecond
fields 1 [(years years
p)]

120

Data Types

Note

The SQL standard requires that writing just t imestamp be equivalent to timestamp without time
zone, and Postgres Pro honors that behavior. timestamptz is accepted as an abbreviation for
timestamp with time zone; this is a Postgres Pro extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6.

The interval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision applies
only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp without
time zone, and timestamp with time zone should provide a complete range of date/time functionality
required by any application.

The types abstime and reltime are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, bMY to select day-month-year interpretation,
or YMD to select year-month-day interpretation.

Postgres Pro is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for time, timestamp, and interval types, and can range from 0 to 6. If no
precision is specified in a constant specification, it defaults to the precision of the literal value (but not
more than 6 digits).

121

Data Types

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the date type.

Table 8.10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in bMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
pMy mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with time zone.time
alone is equivalent to time without time =zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11
and Table 8.12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone
offset is recorded in the time with time zone value and is output as stored; it is not adjusted to the
active time zone.

Table 8.11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601, with time zone as UTC offset
04:05:06-08:00 ISO 8601, with time zone as UTC offset

122

Data Types

Example Description

04:05-08:00 ISO 8601, with time zone as UTC offset
040506-08 ISO 8601, with time zone as UTC offset
040506+0730 ISO 8601, with fractional-hour time zone as UTC

offset

040506+07:30:00

UTC offset specified to seconds (not allowed in ISO
8601)

04:05:06 PST

time zone specified by abbreviation

2003-04-12 04:05:06 America/New_York

time zone specified by full name

Table 8.12. Time Zone Input

Example

Description

PST

Abbreviation (for Pacific Standard Time)

America/New_York

Full time zone name

PST8PDT POSIX-style time zone specification

-8:00:00 UTC offset for PST

-8:00 UTC offset for PST (ISO 8601 extended format)
-800 UTC offset for PST (ISO 8601 basic format)

-8 UTC offset for PST (ISO 8601 basic format)
zulu Military abbreviation for UTC

Z

Short form of zulu (also in ISO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time zone literals
by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according to the
standard,
TIMESTAMP '2004-10-19 10:23:54"

is a timestamp without time zone, while
TIMESTAMP '2004-10-19 10:23:54+02"

is a timestamp with time =zone. Postgres Pro never examines the content of a literal string before
determining its type, and therefore will treat both of the above as timestamp without time zone. TO
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02"

123

Data Types

In a literal that has been determined to be timestamp without time zone, Postgres Pro will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system's TimeZone parameter,
and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time =zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZzONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone normally assume
thatthe timestamp without time zone value should be taken or given as t imezone local time. A different
time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values

Postgres Pro supports several special date/time input values for convenience, as shown in Table 8.13.
The values infinity and -infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be enclosed in single quotes when used as constants in
SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—infinity date, timestamp earlier than all other time stamps

now date, time, timestamp current transaction's start time

today date, timestamp midnight (00:00) today

tomorrow date, timestamp midnight (00:00) tomorrow

yesterday date, timestamp midnight (00:00) yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the cor-
responding data type: CURRENT_DATE, CURRENT_TIME, CURRENT TIMESTAMP, LOCALTIME, LOCALTIMESTAMP.
(See Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

Caution

While the input strings now, today, tomorrow, and yesterday are fine to use in interactive SQL
commands, they can have surprising behavior when the command is saved to be executed later, for
example in prepared statements, views, and function definitions. The string can be converted to a
specific time value that continues to be used long after it becomes stale. Use one of the SQL func-
tions instead in such contexts. For example, CURRENT_DATE + 1 is safer than 'tomorrow': :date.

8.5.2. Date/Time Output

124

Data Types

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL’ output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the date and time types is generally only
the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

IS0 ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

Postgres original style Wed Dec 17 07:37:16 1997 PST

German regional style 17.12.1997 07:37:16.00 PST
Note

ISO 8601 specifies the use of uppercase letter T to separate the date and time. Postgres Pro
accepts that format on input, but on output it uses a space rather than T, as shown above. This is
for readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation
of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/month/year 17/12/1997 15:37:16.00 CET
SQL, MDY month/dayl/year 12/17/1997 07:37:16.00 PST
Postgres, DMY day/month/year Wed 17 Dec 07:37:16 1997 PST

In the ISO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number
of hours, else as hh:mm if it is an integral number of minutes, else as hh:mm:ss. (The third case is not
possible with any modern time zone standard, but it can appear when working with timestamps that
predate the adoption of standardized time zones.) In the other date styles, the time zone is shown as an
alphabetic abbreviation if one is in common use in the current zone. Otherwise it appears as a signed
numeric offset in ISO 8601 basic format (hh or hhmm).

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format date/
time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. Postgres Pro uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

125

Data Types

Postgres Pro endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

* Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

¢ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported by
Postgres Pro for legacy applications and for compliance with the SQL standard). Postgres Pro assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

Postgres Pro allows you to specify time zones in three different forms:

* A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 50.91). Postgres Pro uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

* A time zone abbreviation, for example PsT. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see Sec-
tion 50.90). You cannot set the configuration parameters TimeZone or log timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE
operator.

¢ In addition to the timezone names and abbreviations, Postgres Pro will accept POSIX-style time
zone specifications, as described in Section B.5. This option is not normally preferable to using a
named time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon local
time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04
12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern Standard
Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC+4
in others. Postgres Pro interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, this is not necessarily the
same as local civil time on that date.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from con-
figuration files stored under .../share/timezone/ and .../share/timezonesets/ of the installation
directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresgl.conf, or in any of the other
standard ways described in Chapter 18. There are also some special ways to set it:

* The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

* The pPGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

126

Data Types

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second, minute,
hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these units;
direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units are
implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for
interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, '1 12:59:10"' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a combination of
years and months can be specified with a dash; for example '200-10"' is read the same as '200 years
10 months'. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a p, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)

wIEY =R

Seconds

In the alternative format:
P [years—months-days] [T hours:minutes:seconds]

the string must begin with p, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE results in
dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04"
applies to both the days and hour/minute/second parts. Postgres Pro allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that the

127

Data Types

hour/minute/second part is considered positive in this example. If IntervalStyle is set to sql_standard
then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise
the traditional Postgres Pro interpretation is used. To avoid ambiguity, it's recommended to attach an
explicit sign to each field if any field is negative.

Field values can have fractional parts: for example, '1.5 weeks' or '01:02:03.45'. However, because
interval internally stores only three integer units (months, days, microseconds), fractional units must
be spilled to smaller units. Fractional parts of units greater than months are truncated to be an integer
number of months, e.g. '1.5 years' becomes '1 year 6 mons'. Fractional parts of weeks and days
are computed to be an integer number of days and microseconds, assuming 30 days per month and 24
hours per day, e.g., '1.75 months' becomes 1 mon 22 days 12:00:00. Only seconds will ever be shown
as fractional on output.

Table 8.17 shows some examples of valid interval input.

Table 8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

34:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 seconds|Traditional Postgres format: 1 year 2 months 3 days
4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same meaning
as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and microseconds. This is done because the
number of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment
is involved. The months and days fields are integers while the microseconds field can store fractional
seconds. Because intervals are usually created from constant strings or timestamp subtraction, this
storage method works well in most cases, but can cause unexpected results:

SELECT EXTRACT (hours from '80 minutes'::interval);
date_part

SELECT EXTRACT (days from '80 hours'::interval);
date_part

Functions justify_days and justify_hours are available for adjusting days and hours that overflow
their normal ranges.

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the postgres
format. Table 8.18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

128

Data Types

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to 150.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-1s0 output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Time Interval Mixed Interval
sql_standard 1-2 3 4:05:06 -1-2 43 -4:05:06
postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06
postgres_verbose ©@ 1 year 2 mons @ 3 days 4 hours 5 mins|@ 1 year 2 mons -3 days
6 secs 4 hours 5 mins 6 secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type

Postgres Pro provides the standard SQL type boolean; see Table 8.19. The boolean type can have several
states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description
boolean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.

The datatype input function for type boolean accepts these string representations for the “true” state:

true
yes
on

1

and these representations for the “false” state:

false
no
off

0

Unique prefixes of these strings are also accepted, for example t or n. Leading or trailing whitespace
is ignored, and case does not matter.

The datatype output function for type boolean always emits either t or £, as shown in Example 8.2.

Example 8.2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, 'sic est');
INSERT INTO testl VALUES (FALSE, 'non est');
SELECT * FROM testl;

129

Data Types

SELECT * FROM testl WHERE a;
a | b

___+ _________

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example 'yes': :boolean.

Note that the parser automatically understands that TRUE and FALSE are of type boolean, but this is not
so for NULL because that can have any type. So in some contexts you might have to cast NULL to boolean
explicitly, for example NULL: :boolean. Conversely, the cast can be omitted from a string-literal Boolean
value in contexts where the parser can deduce that the literal must be of type boolean.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiva-
lent to the enum types supported in a number of programming languages. An example of an enum type
might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:
CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy'):;

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (

name text,

current_mood mood

)i

INSERT INTO person VALUES ('Moe', 'happy');

SELECT * FROM person WHERE current_mood = 'happy';
name | current_mood

______ +______________

Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
name | current_mood

SELECT * FROM person WHERE current_mood > 'sad' ORDER BY current_mood;

name | current_mood
_______ +______________
Curly | ok

Moe | happy

130

Data Types

(2 rows)

SELECT name

FROM person

WHERE current_mood = (SELECT MIN(current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i

INSERT INTO holidays (num_weeks, happiness) VALUES (4, 'happy');
INSERT INTO holidays (num_weeks, happiness) VALUES (6, 'very happy');
INSERT INTO holidays (num_weeks, happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays (num_weeks, happiness) VALUES (2, 'sad');

ERROR: invalid input value for enum happiness: "sad"

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood: :text = holidays.happiness::text;

name | num_weeks
777777 +77777777777
Moe \ 4
(1 row)

8.7.4. Implementation Details

Enum labels are case sensitive, so 'happy' is not the same as 'HAPPY'. White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be
removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by the
NAMEDATALEN setting compiled into Postgres Pro; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in Postgres Pro.

131

Data Types

Table 8.20. Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line {A,B,C}

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to|((x1,yl),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to|((x1,y1),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

Arich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, v)
X, Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines

Lines are represented by the linear equation Ax + By + ¢ = 0, where a4 and B are not both zero. Values
of type 1line are input and output in the following form:

{4, B, C}

Alternatively, any of the following forms can be used for input:

[(xI, y1) , (x2, y2)]
((x1, y1) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are two different points on the line.

8.8.3. Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
1seqg are specified using any of the following syntaxes:

[(xI, y1) , (x2, y2)]
((x1, yl) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

132

Data Types

8.8.4. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(x1, y1) , (x2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in
the list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

[(x1, y1) , ..., (xn , yn) 1
((x1, y1) , ..., (xn, yn))
(x1 , y1) , ..., (xn , yn)

(x1 , yl ;e e xn , yn)
x1 , vyl ;e e xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([7])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, y1), ..., (xn, yn))
(x1 , y1) , ... , (xn , yn)
(x1 , y1 ;e g xn , yn)

x1 , yl ;e xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.
Polygons are output using the first syntax.

8.8.7. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x, vyv) , r>

((x, vyv) , r)
(x, y) , r
X, Y ;T

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

133

Data Types

8.9. Network Address Types

Postgres Pro offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

macaddrs8 8 bytes MAC addresses (EUI-64 format)

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the number
of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for IPv6, so the
value represents just a single host. On display, the /y portion is suppressed if the netmask specifies a
single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y
is omitted, it is calculated using assumptions from the older classful network numbering system, except
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table 8.22. cidr Type Input Examples

cidr Input cidr OQutput abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

134

Data Types

cidr Input cidr Output abbrev (cidr)

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81f- 2001:4f8:3:ba:2e0:81f- 2001:4f18:3:ba:2e0:81ff:fe22:d1f1
f:fe22:d1£1/128 f:fe22:d1£1/128

:ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120

::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not. For example, 192.168.0.1/24 is valid for inet
but not for cidr.

Tip
If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

'08:00:2b:01:02:03"
'08-00-2b-01-02-03"
'08002b:010203"
'08002b-010203"
'0800.2b01.0203"
'0800-2b01-0203"
'08002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through f. Output is always in the first of the forms shown.

IEEE Standard 802-2001 specifies the second form shown (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as used with bit-reversed, MSB-first notation,
so that 08-00-2b-01-02-03 = 10:00:D4:80:40:C0. This convention is widely ignored nowadays, and it is
relevant only for obsolete network protocols (such as Token Ring). Postgres Pro makes no provisions for
bit reversal; all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. macaddrs8

The macaddrs type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC addresses given
in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE,
respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after
the conversion from EUI-48. The function macaddr8_set7bit is provided to make this change. Generally
speaking, any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated
consistently by oneof ':', '-' or '.', is accepted. The number of hex digits must be either 16 (8 bytes)

135

Data Types

or 12 (6 bytes). Leading and trailing whitespace is ignored. The following are examples of input formats
that are accepted:

'08:00:2b:01:02:03:04:05"
'08-00-2b-01-02-03-04-05"
'08002b:0102030405"
'08002b-0102030405"
'0800.2b01.0203.0405"
'0800-2b01-0203-0405"
'08002b01:02030405"
'08002b0102030405"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown. The last six input formats that are mentioned
above are not part of any standard. To convert a traditional 48 bit MAC address in EUI-48 format to

modified EUI-64 format to be included as the host portion of an IPv6 address, use macaddr8_set7bit
as shown:

SELECT macaddr8_set7bit ('08:00:2b:01:02:03");

macaddr8_set7bit

0a:00:2b:ff:fe:01:02:03
(1 row)

8.10. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varying (n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be

rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note

If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(S));
INSERT INTO test VALUES (B'101', B'00'");
INSERT INTO test VALUES (B'10', B'101'");

ERROR: bit string length 2 does not match type bit (3)

INSERT INTO test VALUES (B'10'::bit(3), B'101'");
SELECT * FROM test;

136

Data Types

101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types

Postgres Pro provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a query.
The tsvector type represents a document in a form optimized for text search; the t squery type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to merge
different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination are
done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
tsvector
'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $Sthe lexeme ' ' contains spaces$$::tsvector;
tsvector

! ' 'contains' 'lexeme' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $Sthe lexeme 'Joe''s' contains a quote$$::tsvector;
tsvector

'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'
Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
tsvector

'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12 'sat':4

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set
to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be &, B, ¢, or D. D is the
default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
tsvector

'a':1A 'cat':5 'fat':2B, 4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

137

Data Types

It is important to understand that the tsvector type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT 'The Fat Rats'::tsvector;
tsvector

'Fat' 'Rats' 'The'

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn't care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

'fat':2 'rat':3

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED BY).
There is also a variant <n> of the FOLLOWED BY operator, where v is an integer constant that specifies
the distance between the two lexemes being searched for. <-> is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <-> (FOLLOWED BY) next most tightly, then s (AND), with | (OR) binding the least
tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
tsquery
'fat' & ('rat' | 'cat')

SELECT 'fat & rat & ! cat'::tsquery;
tsquery

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts them
to match only tsvector lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
tsquery

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
tsquery

'super':*

This query will match any word in a tsvector that begins with “super”.

138

Data Types

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type. The
to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

Note that to_tsquery will process prefixes in the same way as other words, which means this comparison
returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*');
?column?

because postgres gets stemmed to postgr:

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to_tsvector | to_tsquery

_______________ b
'postgradu':1 | 'postgr':*

which will match the stemmed form of postgraduate.

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using
the same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness
guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hy-
phens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12
digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

aleebc99-9c0b-4ef8-bb6d-6bb90bd380all

Postgres Pro also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four
digits. Examples are:

AQOEEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9%bd380all}
aleebc999c0bdef8bbo6debb9bd380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380all}

Output is always in the standard form.

Postgres Pro provides storage and comparison functions for UUIDs, but the core database does not in-
clude any function for generating UUIDs, because no single algorithm is well suited for every applica-
tion. The uuid-ossp module provides functions that implement several standard algorithms. The pgcrypto
module also provides a generation function for random UUIDs. Alternatively, UUIDs could be generated
by client applications or other libraries invoked through a server-side function.

8.13. XML Type

The xml data type can be used to store XML data. Its advantage over storing XML data in a text field
is that it checks the input values for well-formedness, and there are support functions to perform type-

139

Data Types

safe operations on it; see Section 9.14. Use of this data type requires the installation to have been built
with configure —--with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by reference to the more permissive “document node” of the XQuery and
XPath data model. Roughly, this means that content fragments can have more than one top-level element
or character node. The expression xmlivalue IS DOCUMENT can be used to evaluate whether a particular
xml value is a full document or only a content fragment.

Limits and compatibility notes for the xm1 data type can be found in Section D.3.

8.13.1. Creating XML Values

To produce a value of type xml from character data, use the function xmlparse:
XMLPARSE ({ DOCUMENT | CONTENT } value)
Examples:

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter>...</
chapter></book>")
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the Postgres Pro-specific syntaxes:

xml '<foo>bar</foo>'
'<foo>bar</foo>"::xml

can also be used.

The xm1 type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:
XMLSERTIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again, according to
the SQL standard, this is the only way to convert between type xml and character types, but Postgres
Pro also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or xM-
LSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML option”
session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };
or the more Postgres Pro-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results
to the client (which is the normal mode), Postgres Pro converts all character data passed between the
client and the server and vice versa to the character encoding of the respective end; see Section 22.3.
This includes string representations of XML values, such as in the above examples. This would ordinarily
mean that encoding declarations contained in XML data can become invalid as the character data is
converted to other encodings while traveling between client and server, because the embedded encoding
declaration is not changed. To cope with this behavior, encoding declarations contained in character

140

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

strings presented for input to the xml type are ignored, and content is assumed to be in the current
server encoding. Consequently, for correct processing, character strings of XML data must be sent
from the client in the current client encoding. It is the responsibility of the client to either convert
documents to the current client encoding before sending them to the server, or to adjust the client
encoding appropriately. On output, values of type xm1 will not have an encoding declaration, and clients
should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in
the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that Postgres Pro does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case
it will be omitted.

Needless to say, processing XML data with Postgres Pro will be less error-prone and more efficient if
the XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. This is known to be an issue for xmltable () and xpath () in particular.

8.13.3. Accessing XML Values

The xml data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
this is that you cannot retrieve rows by comparing an xml column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in Postgres Pro can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the Postgres Pro distribution.

8.14. JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159. Such
data can also be stored as text, but the JSON data types have the advantage of enforcing that each
stored value is valid according to the JSON rules. There are also assorted JSON-specific functions and
operators available for data stored in these data types; see Section 9.15.

There are two JSON data types: json and jsonb. They accept almost identical sets of values as input. The
major practical difference is one of efficiency. The json data type stores an exact copy of the input text,
which processing functions must reparse on each execution; while jsonb data is stored in a decomposed
binary format that makes it slightly slower to input due to added conversion overhead, but significantly
faster to process, since no reparsing is needed. jsonb also supports indexing, which can be a significant
advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The processing

141

https://tools.ietf.org/html/rfc7159

Data Types

functions consider the last value as the operative one.) By contrast, jsonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys
are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite special-
ized needs, such as legacy assumptions about ordering of object keys.

Postgres Pro allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uxxxx. In the input
function for the json type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input func-
tion for jsonb is stricter: it disallows Unicode escapes for non-ASCII characters (those above U+007F)
unless the database encoding is UTF8. The jsonb type also rejects \u0000 (because that cannot be rep-
resented in Postgres Pro's text type), and it insists that any use of Unicode surrogate pairs to designate
characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are convert-
ed to the equivalent ASCII or UTF8 character for storage; this includes folding surrogate pairs into a
single character.

Note

Many of the JSON processing functions described in Section 9.15 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errors just described even if
their input is of type json not jsonb. The fact that the json input function does not make these
checks may be considered a historical artifact, although it does allow for simple storage (without
processing) of JSON Unicode escapes in a non-UTF8 database encoding. In general, it is best to
avoid mixing Unicode escapes in JSON with a non-UTF8 database encoding, if possible.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are effec-
tively mapped onto native Postgres Pro types, as shown in Table 8.23. Therefore, there are some minor
additional constraints on what constitutes valid jsonb data that do not apply to the json type, nor to
JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, jsonb will reject numbers that are outside the range of the Postgres Pro numeric data type,
while json will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, as it is common to repre-
sent JSON's number primitive type as IEEE 754 double precision floating point (which RFC 7159 explicit-
ly anticipates and allows for). When using JSON as an interchange format with such systems, the danger
of losing numeric precision compared to data originally stored by Postgres Pro should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding Postgres Pro types.

Table 8.23. JSON primitive types and corresponding Postgres Pro types

JSON primitive type Postgres Pro type Notes

string text \u0000 is disallowed, as are non-
ASCII Unicode escapes if data-
base encoding is not UTF8

number numeric NaN and infinity values are dis-
allowed
boolean boolean Only lowercase true and false

spellings are accepted

null (none) SQL nULL is a different concept

142

Data Types

8.

14.1. JSON Input and Output Syntax
The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid json (or jsonb) expressions:

—— Simple scalar/primitive value
—-— Primitive values can be numbers, quoted strings, true, false, or null
SELECT '5'::json;

—-— Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

—— Object containing pairs of keys and wvalues
—-— Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-— Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
json
{"bar": "baz", "balance": 7.77, "active":false}
(1 row)
SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
jsonb
{"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according
to the behavior of the underlying numeric type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}"'::jsonb;
Jjson | Jjsonb
_______________________ +_________________________
{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

14.2. Designing JSON documents effectively

Representing data as JSON can be considerably more flexible than the traditional relational data model,
which is compelling in environments where requirements are fluid. It is quite possible for both approach-
es to co-exist and complement each other within the same application. However, even for applications
where maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed
structure. The structure is typically unenforced (though enforcing some business rules declaratively is
possible), but having a predictable structure makes it easier to write queries that usefully summarize
a set of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a
row-level lock on the whole row. Consider limiting JSON documents to a manageable size in order to

143

Data Types

decrease lock contention among updating transactions. Ideally, JSON documents should each represent
an atomic datum that business rules dictate cannot reasonably be further subdivided into smaller datums
that could be modified independently.

8.14.3. jsonb Containment and Existence

Testing containment is an important capability of jsonb. There is no parallel set of facilities for the
json type. Containment tests whether one jsonb document has contained within it another one. These
examples return true except as noted:

—— Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

—— The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

—— Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

—— Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

—— The object with a single pair on the right side is contained

—— within the object on the left side:

SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb @>
'{"version": 9.4}'::jsonb;

—— The array on the right side is not considered contained within the
—-— array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; —-- yields false

-— But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 31]1'::jsonb @> '"[[1, 3]1]'::jsonb;

—-— Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb; -- yields false

—-— A top-level key and an empty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when doing
a containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain
a primitive value:

—— This array contains the primitive string value:

SELECT '["foo", "bar"]'::jsonb @> '""bar"'::jsonb;
—— This exception is not reciprocal -- non-containment is reported here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests whether
a string (given as a text value) appears as an object key or array element at the top level of the jsonb
value. These examples return true except as noted:

—-— String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

144

Data Types

—-— String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

—— Object values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

—-— As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-— A string is considered to exist if it matches a primitive JSON string:
SELECT '"foo"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do not
need to be searched linearly.

Tip
Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. As an example, suppose that we have a doc column containing objects at the top level,
with most objects containing tags fields that contain arrays of sub-objects. This query finds entries

in which sub-objects containing both "term":"paris" and "term":"food" appear, while ignoring
any such keys outside the tags array:

SELECT doc->'site_name' FROM websites
WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

One could accomplish the same thing with, say,

SELECT doc->'site_name' FROM websites
WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.15.

8.14.4. jsonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of jsonb documents (datums). Two GIN “operator classes” are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for jsonb supports queries with top-level key-exists operators 2, 2& and
2 | operators and path/value-exists operator @>. (For details of the semantics that these operators imple-
ment, see Table 9.44.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An example
of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

{

145

Data Types

"guid": "9c36adcl-7fb5-4d5b-83b4-90356a46061a",
"name": "Angela Barton",

"is_active": true,

"company": "Magnafone",

"address": "178 Howard Place, Gulf, Washington, 702",

"registered": "2009-11-07T08:53:22 +08:00",
"latitude": 19.793713,
"longitude": 86.513373,
"tags": [
"enim",
"aliquip",

qui

}

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is created
on this column, queries like the following can make use of the index:

—— Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';

However, the index could not be used for queries like the following, because though the operator 2 is
indexable, it is not applied directly to the indexed column jdoc:

—-— Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "tags" key is common, defining an index like this may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));

Now, the WHERE clause jdoc -> 'tags' ? 'qui' will be recognized as an application of the indexable
operator 2 to the indexed expression jdoc -> 'tags'. (More information on expression indexes can
be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

—— Find documents in which the key "tags" contains array element "qui"
SELECT jdoc—->'guid', jdoc—->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]l}';

A simple GIN index on the jdoc column can support this query. But note that such an index will store
copies of every key and value in the jdoc column, whereas the expression index of the previous example
stores only data found under the tags key. While the simple-index approach is far more flexible (since
it supports queries about any key), targeted expression indexes are likely to be smaller and faster to
search than a simple index.

Although the jsonb_path_ops operator class supports only queries with the @> operator, it has notable
performance advantages over the default operator class jsonb_ops. A jsonb_path_ops index is usually
much smaller than a jsonb_ops index over the same data, and the specificity of searches is better,
particularly when queries contain keys that appear frequently in the data. Therefore search operations
typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former cre-
ates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. ! Basically, each jsonb_path_ops index item is a hash of the value and
the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item would
be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment query
looking for this structure would result in an extremely specific index search; but there is no way at all
to find out whether foo appears as a key. On the other hand, a jsonb_ops index would create three
index items representing foo, bar, and baz separately; then to do the containment query, it would look

! For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values within objects.

146

Data Types

for rows containing all three of these items. While GIN indexes can perform such an AND search fairly
efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops search, especially
if there are a very large number of rows containing any single one of the three index items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON structures
not containing any values, such as {"a": {}}.If a search for documents containing such a structure is
requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is therefore ill-suited
for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. The bt ree ordering for jsonb datums is seldom of great interest,
but for completeness it is:

Object > Array > Boolean > Number > String > Null
Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements
Objects with equal numbers of pairs are compared in the order:
key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

element-1, element-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying Postgres
Pro data type. Strings are compared using the default database collation.

8.14.5. Transforms

Additional extensions are available that implement transforms for the jsonb type for different procedural
languages.

The extensions for PL/Perl are called jsonb_plperl and jsonb_plperlu. If you use them, jsonb values
are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extensions for PL/Python are called jsonb_plpythonu, jsonb_plpython2u, and jsonb_plpython3u
(see Section 44.1 for the PL/Python naming convention). If you use them, jsonb values are mapped to
Python dictionaries, lists, and scalars, as appropriate.

8.15. Arrays

Postgres Pro allows columns of a table to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer|],
schedule text[]1[]

)i

As shown, an array data type is named by appending square brackets ([]) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee's

147

Data Types

salary by quarter, and a two-dimensional array of text (schedule), which represents the employee's
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3] [3]
)
However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a
particular element type are all considered to be of the same type, regardless of size or number of dimen-
sions. So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation;
it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],
Or, if no array size is to be specified:
pay_by_quarter integer ARRAY,

As before, however, Postgres Pro does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

'{ vall delim val2 delim ... }'

where delimis the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the Postgres Pro distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or low-
er-case variant of NULL will do.) If you want an actual string value “NULIL", you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES ('Bill',
'{10000, 10000, 10000, 10000%}"',
'"{{"meeting", "lunch"}, {"training", "presentation"}}');

INSERT INTO sal_emp
VALUES ('Carol',
'{20000, 25000, 25000, 25000%}"',
'{{"breakfast", "consulting"}, {"meeting", "lunch"}}');

148

Data Types

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;

name \ pay_by_qgquarter \ schedule

_______ +___________________________+___
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES ('Bill',
'{10000, 10000, 10000, 10000}"',
'{{"meeting", "lunch"}, {"meeting"}}');
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES ('Bill'"',
ARRAY[10000, 10000, 10000, 100001,
ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp
VALUES ('Carol',
ARRAY [20000, 25000, 25000, 250001,
ARRAY [['breakfast', 'consulting'], ['meeting', 'lunch']l]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default Postgres Pro uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_dguarter
10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing lower-bound: upper—-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill's schedule for the first two days of the week:

149

Data Types

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

schedule
{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified.
For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it's best to use slice syntax for all dimensions, e.g., [1:2]
[1:1],not [2][1:1].

It is possible to omit the 1ower-bound and/or upper—bound of a slice specifier; the missing bound is
replaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

schedule
{{lunch}, {presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';

schedule
{{meeting}, {training}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3][1:2] then referencing schedule[3] [3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather
than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = 'Carol';

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient

for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:

150

Data Types

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = 'Carol';

array_upper

(1 row)
array_length will return the length of a specified array dimension:

SELECT array_length (schedule, 1) FROM sal_emp WHERE name = 'Carol';

array_length

(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively the
number of rows a call to unnest would yield:

SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

cardinality

(1 row)

8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}"
WHERE name = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter ARRAY [25000,25000,27000,27000]7

WHERE name = 'Carol';
An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_qgquarter[4] = 15000
WHERE name = 'Bill';

or updated in a slice:

UPDATE sal_emp SET pay_by_qgquarter[1:2] = '{27000,27000}"
WHERE name = 'Carol';

The slice syntaxes with omitted lower-bound and/or upper-bound can be used too, but only when up-
dating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6];
myarray [5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | |:

SELECT ARRAY[1,2] || ARRAY[3,4];

151

Data Types

?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],1[3,41]1;
?column?

{{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result
is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1 || '"[0:1]={2,3}'"::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,41] || ARRAY[[5,6],[7,81,19,011);
array_dims

[1:5]1[1:2]
(1 row)

When an n-dimensional array is pushed onto the beginning or end of an n+1-dimensional array, the result
is analogous to the element-array case above. Each n-dimensional sub-array is essentially an element of
the nv+1-dimensional array's outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4],[5,6]11);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append, Or array_cat.
The first two only support one-dimensional arrays, but array_cat supports multidimensional arrays.
Some examples:

SELECT array_prepend(l, ARRAY[2,3]);

152

Data Types

array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)
SELECT array_cat (ARRAY([[1,2],[3,41], ARRAY[5,6]);

array_cat

{{1,2},4{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,4]11);
array_cat

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these func-
tions. However, because the concatenation operator is overloaded to serve all three cases, there are
situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '"{3, 4}'; —- the untyped literal is taken as an array
?2column?
{1,2,3,4}

SELECT ARRAY[1, 2] || '7'; —— so 1is this one

ERROR: malformed array literal: "7"

SELECT ARRAY([1, 2] || NULL; —— so is an undecorated NULL
?column?

{1,2}

(1 row)

SELECT array_append (ARRAY[1, 2], NULL); —— this might have been meant

array_append

{1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and
a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type is to
assume it's of the same type as the operator's other input — in this case, integer array. So the concate-
nation operator is presumed to represent array_cat, not array_append. When that's the wrong choice,
it could be fixed by casting the constant to the array's element type; but explicit use of array_append
might be a preferable solution.

8.15.5. Searching in Arrays

153

Data Types

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_qgquarter[1] = 10000 OR
pay_by_qgquarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT * FROM
(SELECT pay_by_quarter,
generate_subscripts (pay_by_quarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_quarter([s] = 10000;

This function is described in Table 9.59.

You can also search an array using the ss operator, which checks whether the left operand overlaps
with the right operand. For instance:

SELECT * FROM sal_emp WHERE pay_by_qgquarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an appro-
priate index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and array_positions
functions. The former returns the subscript of the first occurrence of a value in an array; the latter
returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT array_position (ARRAY['sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'], 'mon');
array_positions

SELECT array_positions (ARRAY[1, 4, 3, 1, 3, 4, 2, 11, 1);
array_positions

Tip
Arrays are not sets; searching for specific array elements can be a sign of database misdesign.

Consider using a separate table with a row for each item that would be an array element. This will
be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array's element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is deter-
mined by the typdelim setting for the array's element type. Among the standard data types provided
in the Postgres Pro distribution, all use a comma, except for type box, which uses a semicolon (;). In a

154

Data Types

multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and
delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric
data types it is safe to assume that double quotes will never appear, but for textual data types one should
be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array con-
tents. This decoration consists of square brackets ([]) around each array dimension's lower and upper
bounds, with a colon (:) delimiter character in between. The array dimension decoration is followed by
an equal sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[1:1]1[-2:-11[3:51={{{1,2,3},{4,5,6}}}'::int[] AS fl1l) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL’ to be
entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array nulls configu-
ration parameter can be turned off to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual array
element. You must do so if the element value would otherwise confuse the array-value parser. For exam-
ple, elements containing curly braces, commas (or the data type's delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings match-
ing the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element
value, precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to
protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip
The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-lit-

eral syntax when writing array values in SQL commands. In ARRAY, individual element values are
written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. Postgres Pro allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

155

Data Types

CREATE TYPE complex AS (
r double precision,
i double precision

)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the as keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer
)i
INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);
or functions:
CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS 'SELECT $1.price * $2' LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (To work around this, create a domain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

8.16.2. Constructing Composite Values

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(vall , valz , ...)"
An example is:
'("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL, write
no characters at all in its position in the list. For example, this constant specifies a NULL third field:

'("fuzzy dice",42,)"'

156

Data Types

If you want an empty string rather than NULL, write double quotes:

] ("",42,)]

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Sec-

tion 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary to tell which type to convert the constant to.)

The row expression syntax can also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax since you don't have to worry about multiple layers
of quoting. We already used this method above:

ROW('fuzzy dice', 42, 1.99)
ROW('', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:

('"fuzzy dice', 42, 1.99)
("', 42, NULL)

The roOW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a field
from a table name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you'd need to write something
like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name * means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;
The first example omits rRow, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

157

Data Types

Notice here that we don't need to (and indeed cannot) put parentheses around the column name appear-
ing just after seT, but we do need parentheses when referencing the same column in the expression to
the right of the equal sign.

And we can specify subfields as targets for INSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In Postgres Pro, a reference to a table name (or alias) in a query is effectively a reference to the composite
value of the table's current row. For example, if we had a table inventory_item as shown above, we
could write:

SELECT ¢ FROM inventory_item c;
This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query's tables.

The ordinary qualified-column-name syntax table_name.column_name can be understood as applying
field selection to the composite value of the table's current row. (For efficiency reasons, it's not actually
implemented that way.)

When we write

SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

name | supplier_id | price
____________ T T,
fuzzy dice | 42 | 1.99
(1 row)

as if the query were
SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

Postgres Pro will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that . * is applied to whenever it's not a simple
table name. For example, if myfunc () is a function returning a composite type with columns a, b, and
c, then these two queries have the same result:

SELECT (myfunc(x)).* FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip
Postgres Pro handles column expansion by actually transforming the first form into the second.

So, in this example, myfunc () would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT m.* FROM some_table, LATERAL myfunc(x) AS m;

158

Data Types

Placing the function in a LATERAL FROM item keeps it from being invoked more than once per row.
m. * is still expanded intom.a, m.b, m.c, but now those variables are just references to the output
of the FroM item. (The LATERAL keyword is optional here, but we show it to clarify that the function
is getting x from some_table.)

The composite_value.* syntax results in column expansion of this kind when it appears at the top level
of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause, or a row constructor.
In all other contexts (including when nested inside one of those constructs), attaching . * to a compos-
ite value does not change the value, since it means “all columns” and so the same composite value is
produced again. For example, if somefunc () accepts a composite-valued argument, these queries are
the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

In both cases, the current row of inventory_item is passed to the function as a single composite-valued
argument. Even though . * does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider c in c. * to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without . *, it is not clear whether
c means a table name or a column name, and in fact the column-name interpretation will be preferred
if there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY ROW(c.*);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.23.6. However, if inventory_item contained a column named c, the
first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_item c¢ ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT * FROM inventory_item c¢ ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word rRow omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table. field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item ¢ WHERE c.price > 1000;
SELECT name (c) FROM inventory_item ¢ WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.*) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn't
need to be directly aware that somefunc isn't a real column of the table.

Tip
Because of this behavior, it's unwise to give a function that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name

interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 always chose the field-name

159

Data Types

interpretation, unless the syntax of the call required it to be a function call. One way to force
the function interpretation in older versions is to schema-qualify the function name, that is, write
schema. func (compositevalue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses
it is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

' (42) '
the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In par-
ticular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note

Remember that what you write in an SQL command will first be interpreted as a string literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in
a composite value, you'd need to write:

INSERT ... VALUES (' ("\"\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the compos-
ite-value parser looks like ("\"\\"). In turn, the string fed to the text data type's input routine
becomes "\. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get
one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used
to avoid the need to double backslashes.

Tip
The row constructor syntax is usually easier to work with than the composite-literal syntax when

writing composite values in SQL commands. In row, individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types

160

Data Types

Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of t imestamp might be used to represent the ranges of time that a meeting
room is reserved. In this case the data type is tsrange (short for “timestamp range”), and timestamp is
the subtype. The subtype must have a total order so that it is well-defined whether element values are
within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.

8.17.1. Built-in Range Types
Postgres Pro comes with the following built-in range types:
* int4range — Range of integer
* int8range — Range of bigint
* numrange — Range of numeric
* tsrange — Range of timestamp without time zone
* tstzrange — Range of timestamp with time zone
* daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)");

—-— Containment
SELECT int4range (10, 20) @> 3;

-— Overlaps
SELECT numrange (11.1, 22.2) && numrange (20.0, 30.0);

—-— Extract the upper bound
SELECT upper (int8range (15, 25));

—— Compute the intersection
SELECT int4range (10, 20) * intd4range (15, 25);

-— Is the range empty?
SELECT isempty (numrange(l, 5));

See Table 9.50 and Table 9.51 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.
In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “ (”. Likewise, an inclusive upper bound is represented by “1”, while an exclusive
upper bound is represented by “) ”. (See Section 8.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

161

Data Types

8.

©

17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all values less than the upper bound are
included in the range, e.g., (, 31. Likewise, if the upper bound of the range is omitted, then all values
greater than the lower bound are included in the range. If both lower and upper bounds are omitted, all
values of the element type are considered to be in the range. Specifying a missing bound as inclusive
is automatically converted to exclusive, e.g., [, 1 is converted to (,). You can think of these missing
values as +/-infinity, but they are special range type values and are considered to be beyond any range
element type's +/-infinity values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example,
with timestamp ranges, [today, infinity) excludes the special timestamp value infinity, while [to-
day, infinity] include it, as does [today,) and [today,].

The functions lower_inf and upper_inf test forinfinite lower and upper bounds of a range, respectively.

17.5. Range Input/Output
The input for a range value must follow one of the following patterns:

(lower-bound, upper-bound)
(lower-bound, upper-bound]
[lower-bound, upper-bound)
[lower-bound, upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range
that contains no points).

The 1ower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to
indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound
value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value
is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal
strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters
that would otherwise be taken as range syntax. Also, to write a bound value that is an empty string,
write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might
or might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See Sec-
tion 8.16.6 for additional commentary.

Examples:
—— includes 3, does not include 7, and does include all points in between

SELECT '[3,7)'::int4range;

—— does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::intd4range;

162

Data Types

—— includes only the single point 4
SELECT '[4,4]'::int4range;

—— includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need
for extra quoting of the bound values. The constructor function accepts two or three arguments. The
two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive),
while the three-argument form constructs a range with bounds of the form specified by the third argu-
ment. The third argument must be one of the strings “()”, “(1”, “[)”, or “[1”. For example:

—— The full form is: lower bound, upper bound, and text argument indicating
—-— inclusivity/exclusivity of bounds.
SELECT numrange (1.0, 14.0, '"(1'");

—-— If the third argument is omitted, '[)' is assumed.
SELECT numrange (1.0, 14.0);

—— Although '(]' is specified here, on display the value will be converted to
—— canonical form, since int8range is a discrete range type (see below).
SELECT int8range(l, 14, '(1'");

—— Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange (NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as integer or date. In these
types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a range
over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated as
discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If
a canonicalization function is not specified, then ranges with different formatting will always be treated
as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other
conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of subtype
float8:

163

Data Types

CREATE TYPE floatrange AS RANGE (
subtype = floats,
subtype_diff = float8mi

)i

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges (1, 7] and [1, 8),
must be identical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over timestamp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of
an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a sub-
type difference, or subtype_diff, function. (The index will still work without subtype_diff, but it is
likely to be considerably less efficient than if a difference function is provided.) The subtype difference
function takes two input values of the subtype, and returns their difference (i.e., x minus Y) represent-
ed as a float8 value. In our example above, the function float8mi that underlies the regular float$8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, the subtype_diff function should agree with the sort ordering implied by the selected
operator class and collation; that is, its result should be positive whenever its first argument is greater
than its second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT (EPOCH FROM (x - y))' LANGUAGE sqgl STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = time,
subtype_diff = time_subtype_diff
)i
SELECT '[11:10, 23:00]'::timerange;

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a
GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &s, <@, @>, <<, >>,
-1-, &<, and &> (see Table 9.50 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for

164

Data Types

range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead,
an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
during tsrange,
EXCLUDE USING GIST (during WITH &&)
)i
That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
('[2010-01-01 121:30, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO reservation VALUES
('[2010-01-01 14:45, 2010-01-01 15:45)");
ERROR: conflicting key value violates exclusion constraint "reservation_during excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00™)) .

You can use the btree_gist extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after btree_gist
is installed, the following constraint will reject overlapping ranges only if the meeting room numbers
are equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (

room text,

during tsrange,

EXCLUDE USING GIST (room WITH =, during WITH &&)
)i

INSERT INTO room_reservation VALUES
('"123A', '[2010-01-01 14:00, 2010-01-01 15:00)");
INSERT O 1

INSERT INTO room_reservation VALUES
('"123A', '[2010-01-01 14:30, 2010-01-01 15:30)");
ERROR: conflicting key value violates exclusion constraint
"room_reservation_room_during_excl"
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00"))
conflicts
with existing key (room, during)=(123A7A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES

('123B', '[2010-01-01 14:30, 2010-01-01 15:30)");
INSERT 0 1

8.18. Domain Types

A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise

165

Data Types

it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOMAIN posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);

INSERT INTO mytable VALUES (1) ; -— works

INSERT INTO mytable VALUES (-1); —— fails

When an operator or function of the underlying type is applied to a domain value, the domain is auto-
matically down-cast to the underlying type. Thus, for example, the result of mytable.id - 1 is consid-
ered to be of type integer not posint. We could write (mytable.id - 1)::posint to cast the result
back to posint, causing the domain's constraints to be rechecked. In this case, that would result in an
error if the expression had been applied to an id value of 1. Assigning a value of the underlying type
to a field or variable of the domain type is allowed without writing an explicit cast, but the domain's
constraints will be checked.

For additional information see CREATE DOMAIN.

8.19. Object Identifier Types

Object identifiers (OIDs) are used internally by Postgres Pro as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created, or
the default with oids configuration variable is enabled. Type oid represents an object identifier. There
are also several alias types for ocid: regproc, regprocedure, regoper, regoperator, regclass, regtype,
regrole, regnamespace, regconfig, and regdictionary. Table 8.24 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table's OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confu-
sion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regclass;
rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table's OID to regclass is handy for symbolic
display of a numeric OID.

Table 8.24. Object Identifier Types

Name References Description Value Example

oid any numeric object identifier|564182

166

Data Types

Name References Description Value Example
regproc pg_proc function name sum
regprocedure pPg_proc function with argument|sum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument|* (integer, integer)
types or - (NONE, integer)
regclass prg_class relation name pg_type
regtype pg_type data type name integer
regrole pg_authid role name smithee
regnamespace pPg_namespace namespace name pg_catalog
regconfig pg_ts_config text search configuration|english
regdictionary pg_ts_dict text search dictionary simple

All of the OID alias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. The regproc and regoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most uses regprocedure oOr regoperator are more
appropriate. For regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval ('my_seq'::regclass), Postgres Pro understands that the default expression depends on the
sequence my_seq; the system will not let the sequence be dropped without first removing the default
expression. regrole is the only exception for the property. Constants of this type are not allowed in
such expressions.

Note

The OID alias types do not completely follow transaction isolation rules. The planner also treats
them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.20. pg Isn Type

The pg_1sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to a
location in the WAL. This type is a representation of Xl.ogRecPtr and an internal system type of Postgres
Pro.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/

167

Data Types

B374D848. The pg_1sn type supports the standard comparison operators, like = and >. Two LSNs can
be subtracted using the - operator; the result is the number of bytes separating those write-ahead log
locations.

8.21. Pseudo-Types

The Postgres Pro type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-types is useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.25 lists the existing pseudo-types.

Table 8.25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyelement Indicates that a function accepts any data type (see
Section 36.2.5).

anyarray Indicates that a function accepts any array data
type (see Section 36.2.5).

anynonarray Indicates that a function accepts any non-array da-
ta type (see Section 36.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 36.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data
type (see Section 36.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-
terminated C string.

internal Indicates that a function accepts or returns a serv-
er-internal data type.

language_handler A procedural language call handler is declared to
return language_handler .

fdw_handler A foreign-data wrapper handler is declared to re-
turn fdw_handler .

index_am_handler An index access method handler is declared to re-
turn index_am_handler

tsm_handler A tablesample method handler is declared to return
tsm_handler .

record Identifies a function taking or returning an unspec-
ified row type.

trigger A trigger function is declared to return trigger.

event_trigger An event trigger function is declared to return
event_trigger.

pg_ddl_command Identifies a representation of DDL commands that
is available to event triggers.

void Indicates that a function returns no value.

unknown Identifies a not-yet-resolved type, e.g., of an undec-

orated string literal.

opaque An obsolete type name that formerly served many
of the above purposes.

168

Data Types

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only void and record as a result type (plus trigger or event_trigger when the function is used
as a trigger or event trigger). Some also support polymorphic functions using the types anyelement,
anyarray, anynonarray, anyenum, and anyrange.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

169

Chapter 9. Functions and Operators

Postgres Pro provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and \do
can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended functionality is
present in other SQL database management systems, and in many cases this functionality is compatible
and consistent between the various implementations. This chapter is also not exhaustive; additional
functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and null, which represents “unknown”. Observe
the following truth tables:

a b a AND b aOR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators aND and OrR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of subex-
pressions.

9.2. Comparison Functions and Operators
The usual comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to

170

Functions and Operators

Operator Description
>= greater than or equal to
= equal
<>or!= not equal
Note

The !'= operator is converted to <> in the parser stage. It is not possible to implement != and <>
operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because there
is no < operator to compare a Boolean value with 3).

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators,
but have special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate Description

a BETWEEN x AND y between

a NOT BETWEEN x AND y not between

a BETWEEN SYMMETRIC x AND y between, after sorting the comparison values
a NOT BETWEEN SYMMETRIC x AND y not between, after sorting the comparison values
a IS DISTINCT FROM b not equal, treating null like an ordinary value
a IS NOT DISTINCT FROM b equal, treating null like an ordinary value
expression IS NULL is null

expression IS NOT NULL is not null

expression ISNULL is null (nonstandard syntax)

expression NOTNULL is not null (nonstandard syntax)
boolean_expression IS TRUE is true

boolean_expression IS NOT TRUE is false or unknown

boolean_expression 1S FALSE is false

boolean_expression IS NOT FALSE is true or unknown

boolean_expression 1S UNKNOWN is unknown

boolean_expression IS NOT UNKNOWN is true or false

The BETWEEN predicate simplifies range tests:
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the opposite
comparison:

a NOT BETWEEN x AND y

is equivalent to

171

Functions and Operators

a<xOR a>y

BETWEEN SYMMETRIC is like BETWEEN except there is no requirement that the argument to the left of AND
be less than or equal to the argument on the right. If it is not, those two arguments are automatically
swapped, so that a nonempty range is always implied.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
the Is [NOT] DISTINCT FROM predicates:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are null it
returns false, and if only one input is null it returns true. Similarly, 1S NOT DISTINCT FROM is identical to
= for non-null inputs, but it returns true when both inputs are null, and false when only one input is null.
Thus, these predicates effectively act as though null were a normal data value, rather than “unknown”.

To check whether a value is or is not null, use the predicates:

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, predicates:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

Tip
Some applications might expect that expression = NULL returns true if expression evaluates to
the null value. It is highly recommended that these applications be modified to comply with the

SQL standard. However, if that cannot be done the transform null equals configuration variable
is available. If it is enabled, Postgres Pro will convert x = NULL clauses to x IS NULL.

If the expression is row-valued, then 1S NULL is true when the row expression itself is null or when all
the row's fields are null, while 1s NOT NULL is true when the row expression itself is non-null and all
the row's fields are non-null. Because of this behavior, 1s NULL and 1S NOT NULL do not always return
inverse results for row-valued expressions; in particular, a row-valued expression that contains both null
and non-null fields will return false for both tests. In some cases, it may be preferable to write row 13
DISTINCT FROM NULL Or row IS NOT DISTINCT FROM NULL, which will simply check whether the overall
row value is null without any additional tests on the row fields.

Boolean values can also be tested using the predicates

boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input is
treated as the logical value “unknown”. Notice that 1S UNKNOWN and IS NOT UNKNOWN are effectively the
same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of Boolean type.

172

Functions and Operators

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function Description Example Example Result
num_nonnulls (returns the number of|num nonnulls (1, 2

VARIADIC "any") non-null arguments NULL, 2)

num_nulls (VARIADIC returns the number of|num nulls (1, NULL, 1

"any") null arguments 2)

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many Postgres Pro types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the available mathematical operators.

Table 9.4. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplication 2 * 3 6

/ division (integer division|4 / 2 2
truncates the result)

B modulo (remainder) 5 % 4 1

~ exponentiation (asso-|2.0 ~ 3.0 8
ciates left to right)

|/ square root |/ 25.0 5

]/ cube root [/ 27.0 3

! factorial (deprecated,|5 ! 120
use factorial () in-
stead)

1 factorial as a prefix op-|!! 5 120

erator (deprecated, use
factorial () instead)

@ absolute value @ -5.0 5

& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types and are also available for the bit string types bit
and bit varying, as shown in Table 9.13.

Table 9.5 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working

173

Functions and Operators

with double precision data are mostly implemented on top of the host system's C library; accuracy

and behavior in boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (=17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil(dp or nu-|(same as input) nearest integer|ceil (-42.8) —-42
meric) greater than or
equal to argument
ceiling(dp or|(same as input) nearest integer|ceiling (-95.3) -95
numeric) greater than or
equal to argument (
same as ceil)
degrees (dp) dp radians to degrees |degrees (0.5) 28.6478897565412
div(y numeric, |numeric integer quotient of|div (9, 4) 2
X numeric) ylx
exp(dp or numer-|(same as input) exponential exp(1.0) 2.71828182845905
ic)
factorial (numeric factorial factorial (5) 120
bigint)
floor (dp or nu-|(same as input) nearest integer less|floor (-42.8) -43
meric) than or equal to ar-
gument
In(dp or numer-|(same as input) natural logarithm |1n(2.0) 0.693147180559945
ic)
log(dp or numer-|(same as input) base 10 logarithm |10g(100.0) 2
ic)
log(b numeric, |numeric logarithm to base b |1og (2.0, 64.0) 6.0000000000
X numeric)
mod(y, x) (same as argument|remainder of y/x mod (9, 4) 1
types)
pi() dp “n” constant pi() 3.14159265358979
power (a dp, bldp a raised to the pow-|power (9.0, 3.0) 729
dp) erof b
power (a numer—|numeric a raised to the pow-|power (9.0, 3.0) 729
ic, b numeric) er of b
radians (dp) dp degrees to radians |radians (45.0) 0.785398163397448
round(dp or nu-|(same as input) round to nearest in-|round (42.4) 42
meric) teger
round(v numer-|numeric round to s decimal|round (42.4382, 42 .44
ic, s int) places 2)
scale (numeric) integer scale of the argu-|scale(8.41) 2
ment (the number
of decimal digits in
the fractional part)
sign(dp or nu-|(same as input) sign of the argu-|sign(-8.4) -1
meric) ment (-1, 0, +1)

174

Functions and Operators

Function Return Type Description Example Result
sqgqrt (dp or nu-|(same as input) square root sgrt (2.0) 1.4142135623731
meric)
trunc(dp or nu-|(same as input) truncate toward ze-|trunc (42.8) 42
meric) ro
trunc(v numer—|numeric truncate to s deci-|trunc(42.4382, 42.43
ic, s int) mal places 2)
width_bucket (int return the bucket|width bucket (3
operand dp, b1 number to which|s.35, 0.024,
dp, b2 dp, operand would be|10.06, 5)
count int) assigned in a
histogram having
count equal-width
buckets spanning
the range b1 to
b2; returns 0 or
count+1 for an in-
put outside the
range
width_bucket (int return the bucket|width_bucket (3
operand numeric, number to which|s.35, 0.024,
bl numeric, b2 operand would be(10.06, 5)
numeric, count assigned in a
int) histogram having
count equal-width
buckets spanning
the range b1 to
b2; returns 0 or
count+1 for an in-
put outside the
range
width_bucket (int return the bucket|width_bucket (2
operand anyele- number to which|now(), ar-
ment, thresholds operand would be ray['yester—
anyarray) aSSigned given an|day', '"to—
array listing the|qay', "t omor—
lower bounds of the | yoy '] :time-
buckets; returns 0|stamptz[])
for an input less
than the first lower
bound; the thresh-
olds array must
be sorted, smallest
first, or unexpected
results will be ob-
tained
Table 9.6 shows functions for generating random numbers.
Table 9.6. Random Functions
Function Return Type Description
random () dp random value in the range 0.0 <=

x< 1.0

175

Functions and Operators

Function Return Type Description

setseed(dp) void set seed for subsequent random (
) calls (value between -1.0 and
1.0, inclusive)

The characteristics of the values returned by random () depend on the system implementation. It is not
suitable for cryptographic applications; see pgcrypto module for an alternative.

Finally, Table 9.7 shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of type double precision. Each of the trigonometric functions comes in two
variants, one that measures angles in radians and one that measures angles in degrees.

Table 9.7. Trigonometric Functions

Function (radians) Function (degrees) Description
acos (x) acosd(x) inverse cosine
asin(x) asind(x) inverse sine
atan(x) atand(x) inverse tangent
atan2(y, x) atan2d(y, x) inverse tangent of y/x
cos (x) cosd (x) cosine
cot (x) cotd(x) cotangent
sin(x) sind (x) sine
tan(x) tand(x) tangent
Note

Another way to work with angles measured in degrees is to use the unit transformation functions
radians () and degrees () shown earlier. However, using the degree-based trigonometric func-
tions is preferred, as that way avoids round-off error for special cases such as sind(30).

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless otherwise
noted, all of the functions listed below work on all of these types, but be wary of potential effects of
automatic space-padding when using the character type. Some functions also exist natively for the bit-
string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.8. Postgres Pro also provides versions of these functions that use the regular
function invocation syntax (see Table 9.9).

Note

Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However, the
string concatenation operator (| |) still accepts non-string input, so long as at least one input is
of a string type, as shown in Table 9.8. For other cases, insert an explicit coercion to text if you
need to duplicate the previous behavior.

176

Functions and Operators

Table 9.8. SQL String Functions and Operators

a space by default)
from the start, end,
or both ends (both
is the default) of

string

Function Return Type Description Example Result
string || string |text String concatena-|'pPost’ | | |PostgreSQL
tion 'greSQL'
string || non-|text String concatena-|'value: ' || 42 |Value: 42
string Or non- tion with one non-
string || string string input
bit_length (int Number of bits in|bit_length(32
string) string 'jose')
char_length (int Number Ofcharac-char_length(4
string) Or char-— ters in string "jose')
acter_length (
string)
lower (string) text Convert string to|lower ('TOM') tom
lower case
octet_length (int Number of bytes in|octet_length(4
string) string "Jose')
overlay(string |text Replace substring |overlay (Thomas
placing string 'Txxxxas' placing
from int [for 'hom' from 2 for
int]) 4)
position (int Location of speci-|position('om' in |3
substring in fied substring '"Thomas"')
string)
substring text Extract substring |substring(hom
string [from int] 'Thomas' from 2
[for int]) for 3)
substring(text Extract substring|substring(mas
string from pat- matching POSIX| 'Thomas' from
tern) regular expression.|', . s")
See Section 9.7 for
more information
on pattern match-
ing.
substring text Extract substring|substring(oma
string from pat- matching SQL reg-|'Thomas' from
tern for escape) ular expression.| 's#"o_a#"_' for
See Section 9.7 for|4r)
more information
on pattern match-
ing.
trim([leading | |text Remove the longest|trim(both 'xyz' |Tom
trailing | both] string containing|from 'yxTomxx')
[characters] from only characters
string) from characters (

177

Functions and Operators

Function Return Type Description Example Result

trim([leading | |[text Non-standard Syn-|trim(both from |[Tom

trailing | both] tax for trim() 'yxTomxx ',

[from] string [, 'xyz")

characters])

upper (string) text Convert string to|upper('tom') TOM
upper case

Additional string manipulation functions are available and are listed in Table 9.9. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9.8.

Table 9.9. Other String Functions

Function Return Type Description Example Result

ascii(string) int ASCII code of the|ascii('x") 120
first character of
the argument. For
UTF8 returns the
Unicode code point
of the character.
For other multibyte
encodings, the ar-
gument must be an
ASCII character.

btrim(string text Remove the longest|btrim trim
text [, charac- string consisting| 'xyxtrimyyx"',
ters text]) only of characters| 'xyz')

in characters (a
space by default)
from the start and
end of string

chr(int) text Character with the|chr (65) A
given code. For
UTF8 the argument
is treated as a Uni-
code code point.
For other multibyte
encodings the ar-
gument must desig-
nate an ASCII char-
acter. The NULL (0)
character is not al-
lowed because text
data types cannot
store such bytes.

concat (str "any"|text Concatenate the|concat (abcde222
[, str "any" [, text representa-| 'abcde’, 2,
1) tions of all the argu-|nurLL, 22)
ments. NULL argu-
ments are ignored.

concat_ws(sep |text Concatenate all but|concat_ws (', abcde, 2,22
text, str "any" the first argu-|', 'abcde', 2,
[, str "any" [, ment with sepa-|nuLL, 22)

10D rators. The first
argument is used
as the separator

178

Functions and Operators

Function Return Type Description Example Result

string. NULL argu-

ments are ignored.
convert (string |bytea Convert string|convert ('text_ text_in_ utfs8
bytea, src_en- to dest_encoding .|in_utf8', represented in
coding name, The original en-|'uTrs’, Latin-1 encoding (
dest_encoding coding is speci-|'LATINI') ISO 8859-1)
name) fied by src_en-

coding. The string

must be wvalid in

this encoding. Con-

versions can be

defined by CRE-

ATE CONVERSTION.

Also there are some

predefined conver-

sions. See Ta-

ble 9.10 for avail-

able conversions.
convert_from/(text Convert string to|convert_from(text_in_utfs8
string bytea, the database encod-|'text in_ represented in the
src_encoding ing. The original en-|utfg8', 'UTF8"') current database
name) coding is specified encoding

by src_encoding .

The string must be

valid in this encod-

ing.
convert_to(bytea Convert string to|convert_to(some text repre-
string text, dest_encoding . 'some text', |sented in the UTF8
dest_encoding "UTF8") encoding
name)
decode (string bytea Decode binary data|decode ¢ \x3132330001
text, format from textual repre-|'MTIzAAE=",
text) sentationin string.|'base64"')

Options for format

are same as in en-

code.
encode (data text Encode binary data encode (MTIzAAE=
bytea, format into a textual repre-|'123\000\001",
text) sentation. Support-|'pbase64 ')

ed formats are:

base64, hex, es-—

cape. escape COnh-

verts zero bytes and

high-bit-set bytes to

octal sequences (

\nnn) and doubles

backslashes.
format (text Format arguments|format ('Hello Hello World,
formatstr text according to a for-|ss, 1s', |World
[, formatarg mat String. This 'World")
"any" [, ...]1 1) function is similar

to the C function

179

Functions and Operators

Function

Return Type

Description

Example

Result

sprintf. See Sec-
tion 9.4.1.

initcap(string)

text

Convert the first let-
ter of each word
to upper case and
the rest to lower
case. Words are se-
quences of alphanu-
meric characters
separated by non-
alphanumeric char-
acters.

initcap('hi
THOMAS')

Hi Thomas

left (
n int)

str text,

text

Return first n char-
acters in the string.
When n is negative,
return all but last
|n| characters.

left ('abcde',
2)

ab

length(string)

int

Number of charac-
ters in string

length ('jose'")

length (
bytea,
name)

string
encoding

int

Number of charac-
ters in string in
the given encoding.
The string must be
valid in this encod-
ing.

length('jose',
'UTF8"'")

lpad(string
text, length int
[, £fill text])

text

Fill up the string
to length Iength
by prepending the
characters rill (a
space by default).
If the string is al-
ready longer than
length then it is
truncated (on the
right).

lpad('hi', 5,
IXyl)

xyxhi

ltrim(
text [,
ters text])

string
charac—

text

Remove the longest
string containing
only characters
from characters (
a space by default)
from the start of
string

ltrim(
'zzzytest',
'XyZ')

test

md5 (string)

text

Calculates the MD5
hash of string, re-
turning the result in
hexadecimal

md5 ('abc')

900150983cd24£Db0
de963£7d28el7£72

parse_ident (
qualified_
identifier text
[, strictmode
boolean DEFAULT
true])

text []

Split qualified_

identifier into an
array of identifiers,
removing any quot-
ing of individual
identifiers. By de-
fault, extra charac-

parse_ident (
'"SomeSchema" . som|

{SomeSchema,
eTaielieab)l e }

180

Functions and Operators

Function Return Type Description Example Result

ters after the last
identifier are con-
sidered an error;
but if the second
parameter is false,
then such extra
characters are ig-
nored. (This behav-
ior is wuseful for
parsing names for
objects like func-
tions.) Note that
this function does
not truncate over-
length identifiers. If
you want truncation
you can cast the re-
sult to name[].

pg_client_ name Current client en-|pg_client_ SQL_ASCII

encoding () coding name encoding ()

quote_ident (text Return the (giv-|quote_ident ("Foo bar"
string text) en string suitably|'Foo bar')

quoted to be used
as an identifier
in an SQL state-
ment string. Quotes
are added only if
necessary (i.e., if
the string contains
non-identifier char-
acters or would be
case-folded). Em-
bedded quotes are
properly doubled.
See also Exam-

ple 41.1.
quote_literal (text Return the (giv-|quote_literal('O''Reilly'
string text) en string suitably|E'o\'Reilly")

quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that quote_

literal returns
null on null input; if
the argument might
be null, quote_

nullable is often
more suitable. See
also Example 41.1.

181

Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (
value anyelement)

text

Coerce the given
value to text and
then quote it as
a literal. Embed-
ded single-quotes
and backslashes
are properly dou-
bled.

quote_literal (

42.5)

'42.5"

quote_
nullable (
text)

string

text

Return the giv-
en string suitably
quoted to be used
as a string literal in
an SQL statement
string; or, if the ar-
gument is null, re-
turn nurLL. Embed-
ded single-quotes
and backslashes
are properly dou-
bled. See also Ex-
ample 41.1.

quote_

nullable (NULL)

NULL

quote_
nullable (
anyelement)

value

text

Coerce the given
value to text and
then quote it as a
literal; or, if the ar-
gument is null, re-
turn NULL. Embed-
ded single-quotes
and backslashes
are properly dou-
bled.

quote_

nullable (42.5)

'42.5"

regexp_match (
string text,
pattern text [,
flags text])

text[]

Return captured
substring(s) result-
ing from the first
match of a POSIX
regular expression
to the string. See
Section 9.7.3 for
more information.

regexp_match (
' foobarbeque-

baz',
beque) ')

' (bar) (

{bar, beque}

regexp_
matches (
text,
text [,
text])

string
pattern
flags

setof text[]

Return captured
substring(s) result-
ing from matching
a POSIX regular
expression to the
string. See Sec-
tion 9.7.3 for more
information.

regexp_
matches (

' foobarbeque-

baz',
'g")

'ba.’',

{bar}

{baz}

(2 rows)

regexp_
replace (
text,

string
pattern
text, replace-
ment text [,
flags text])

text

Replace substring(
S) matching a
POSIX regular ex-
pression. See Sec-
tion 9.7.3 for more
information.

regexp_
replace (
'Thomas’',
[mN]a.',

IMI)

ThM

182

Functions and Operators

Function Return Type Description Example Result
regexp_split_ text[] Split string using|regexp_split_ {hello, world}
to_array (a POSIX regular ex-|to_array (
string text, pression as the de-|'hello world',
pattern text [, limiter. See Sec-|'\s+'")
flags text]) tion 9.7.3 for more

information.
regexp_split_ setof text Split string using|regexp_split_ hello
to_table(a POSIX regular ex-|to_table (
string text, pression as the de-|'hello world', |7 ¢
pattern text [, limiter. See Sec-|: \s+"'") (2 I'OWS)
flags text]) tion 9.7.3 for more

information.
repeat (string text Repeat string the|repeat ('Pg', 4) PgPgPgPg
text, number specified number of
int) times
replace(string |text Replace all occur-|replace (abXXefabXXef
text, from rences in string of| 'abcdefabcdef',
text, to text) substring from with|'cd', 'xx'")

substring to
reverse (str) text Return reversed|reverse (edcba

string. 'abcde')
right (str text, |text Return last n char-|{right ('abcde', de

n int) acters in the string.| 2)

When n is negative,

return all but first

|n| characters.
rpad(string text Fill up the string|rpad('hi', 5, hixyx
text, length int to length Iength| 'xy')
[, fill text]) by appending the

characters rfill (a

space by default).

If the string is al-

ready longer than

length then it is

truncated.
rtrim(string text Remove the longest rtrim(test
text [, charac- string containing|'testxxzx',
ters text]) only characters| rxyz')

from characters (

a space by default)

from the end of

string
split_part (text Split string on de—|split_part (def
string text, de- limiter and return|'abc~@~de-
limiter text, the given field (|f~@~ghi',
field int) counting from one) |'~e~', 2)
strpos(string, |int Location of spec-|strpos('high', 2
substring) ified substring (|'ig')

same as posi-—

tion(substring

in string), but

183

Functions and Operators

Function Return Type Description Example Result
note the reversed
argument order)
substr (string, |text Extract substring|substr (ph
from [, count]) (same as sub-|'alphabet', 3,
string(string 2)
from from for
count))
starts_with(bool Returns true if|starts_with(t
string, prefix) string starts with|'alphabet’,
prefix. 'alph')
to_ascii(text Convert string to|to_ascii (Karel
string text [, ASCII from anoth-|'Karel')
encoding text]) er encoding (on-

ly supports conver-
sion from ILATINI,
LATIN2, LATING,
and WIN1250 en-
codings)

Convert number to|to_hex (TEEfffff
its equivalent hexa-|2147483647)
decimal represen-

to_hex (number text
int or bigint)

tation
translate (text Any character in|translate a2x5
string text, string that match-{'12345', '143",
from text, to es a character in|'ax')
text) the from set is re-

placed by the corre-
sponding character
in the toset. If from
is longer than to,
occurrences of the
extra characters in
from are removed.

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to be con-
catenated or formatted as an array marked with the varIADIC keyword (see Section 36.5.5). The array's
elements are treated as if they were separate ordinary arguments to the function. If the variadic array
argument is NULL, concat and concat_ws return NULL, but format treats a NULL as a zero-element
array.

See also the aggregate function string_agg in Section 9.20.

Table 9.10. Built-in Conversions

Conversion Name ° Source Encoding Destination Encoding
ascii_to_mic SQL_ASCIT MULE_TINTERNAL
ascii_to_utf8 SQL_ASCII UTF8

big5h_to_euc_tw BIG5 EUC_TW

big5_to_mic BIG5 MULE_TINTERNAL
big5h_to_utfs8 BIG5 UTF8

euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF8

184

Functions and Operators

Conversion Name ?

Source Encoding

Destination Encoding

euc_Jjp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sjis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utfs8 EUC_KR UTF8
euc_tw_to_bigb EUC_TW BIGS
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utfs8 EUC_TW UTFE8
gb18030_to_utfs GB18030 UTF8
gbk_to_utf8 GBK UTF8
iso_8859_10_to_utfs8 LATING UTFE8
iso_8859_13_to_utfs LATINY UTF38
is0_8859_14_to_utfs LATINS UTFE8
is0_8859_15_to_utfs LATINO UTF8
is0_8859_16_to_utfs LATIN1O UTFE8
1s0_8859_1_to_mic LATIN1 MULE_INTERNAL
is0_8859_1_to_utfs LATIN1 UTF8
1s0_8859_2_to_mic LATIN2 MULE_INTERNAL
is0_8859_2_to_utfs LATIN2 UTES8
iso_8859_ 2 to_windows_ LATINZ2 WIN1250

1250

1s0_8859_3_to_mic LATIN3 MULE_INTERNAL
is0_8859_3_to_utfs LATIN3 UTFES8
1s0_8859_4_to_mic LATIN4 MULE_INTERNAL
is0_8859_4_to_utfs LATIN4 UTFES8
is0_8859_5_to_koi8_r ISO_8859_5 KOIS8R
1s0_8859_5_to_mic IS0_8859_5 MULE_INTERNAL
is0_8859_5_to_utfs ISO_8859_5 UTFE8
iso_8859_ 5 to_windows_ IS0_8859_5 WIN1251

1251

is0_8859_5_to_windows_ IS0_8859_5 WINBG66

866

is0_8859_6_to_utfs ISO_8859_6 UTFE8
is0_8859_7_to_utfs IS0O_8859_7 UTF8
is0_8859_8_to_utfs ISO_8859_8 UTFE8
is0_8859_9_to_utf8 LATINS UTF8
johab_to_utf8 JOHAB UTF8
koi8_r_to_iso_8859_5 KOI8R IS0O_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_r_to_utf8 KOI8R UTES8

koi8_r to_windows_1251 KOI8R WIN1251

185

Functions and Operators

Conversion Name ?

Source Encoding

Destination Encoding

koi8_r_ to_windows_866 KOI8R WIN866
koi8_u_to_utfs8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCIT
mic_to_bigb MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_ 1 MULE_INTERNAL LATINI
mic_to_iso_8859_2 MULE_INTERNAL LATINZ
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_iso_8859_5 MULE_INTERNAL I50_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8R
mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utfs8 SJIS UTF8
windows_1258_to_utf8 WIN1258 UTF8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCIT
utf8_to_bigh UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_jp UTF8 EUC_JP
utf8_to_euc_kr UTFES8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TWwW
utf8_to_gbl18030 UTFES8 GB18030
ut£8_to_gbk UTF8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_ _to_iso_8859_13 UTF8 LATIN7Y
utf8_to_iso_8859_14 UTF8 LATINS8
utf8_to_iso_8859_15 UTF8 LATINS
utf8_to_iso_8859_16 UTF8 LATINIO0
utf8_to_iso_8859_2 UTEF8 LATINZ2
utf8_to_iso_8859_3 UTFES8 LATIN3
utf8_to_iso_8859_ 4 UTF8 LATIN4

186

Functions and Operators

Conversion Name ?

Source Encoding

Destination Encoding

utf8_to_iso_8859_5 UTF8 IS0_8859_5
utf8_to_iso_8859_6 UTF8 IS0O_8859_6
utf8_to_iso_8859_7 UTF8 IS0O_8859_7
utf8_to_iso_8859_8 UTF8 IS0_8859_8
utf8_to_iso_8859_9 UTF8 LATINS
ut£8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTF8 KOI8R
utf8_to_koi8_u UTF8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_windows_1258 UTEF8 WIN1258
ut£8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTEF8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTEF8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTFES8 WIN1257
utf8_to_windows_866 UTF8 WINB66
utf8_to_windows_874 UTFE8 WIN874
windows_1250_to_iso_ WIN1250 LATINZ
8859_2

windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_ WIN1251 I1S0_8859_5
8859_5

windows_1251_to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251_to_windows_ WIN1251 WINBG66

866

windows_1252_to_utf8 WIN1252 UTFE8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_ WIN866 IS0_8859_5
8859_5

windows_866_to_koi8_r WIN866 KOIS8R
windows_866_to_mic WIN866 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_ WIN866 WIN

1251

187

Functions and Operators

Conversion Name ° Source Encoding Destination Encoding
windows_874_to_utf8 WIN874 UTF8
euc_7jis_2004_to_utf8 EUC_JIS_2004 UTF8
utf8_to_euc_jis_2004 UTEF8 EUC_JIS_2004
shift_jis_2004_to_utf8 SHIFT_JIS_2004 UTF8
utf8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004
euc_7jis_2004_to_shift_ EUC_JIS_2004 SHIFT_JIS_2004
Jjis_2004

shift_Jis_2004_to_euc_ SHIFT_JIS_2004 EUC_JIS_2004
jis_2004

The conversion names follow a standard naming scheme: The official name of the source encoding with all non-alphanumeric characters replaced by underscores,
followed by _to_, followed by the similarly processed destination encoding name. Therefore, the names might deviate from the customary encoding names.

9.4.1. format

The function format produces output formatted according to a format string, in a style similar to the
C function sprintf.
format (formatstr text [, formatarg "any" [, ...] 1)

formatstris a format string that specifies how the result should be formatted. Text in the format string
is copied directly to the result, except where format specifiers are used. Format specifiers act as place-
holders in the string, defining how subsequent function arguments should be formatted and inserted
into the result. Each formatarg argument is converted to text according to the usual output rules for its
data type, and then formatted and inserted into the result string according to the format specifier(s).

Format specifiers are introduced by a % character and have the form
% [position] [flags] [width] type

where the component fields are:

position (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument
after formatstr. If the position is omitted, the default is to use the next argument in sequence.

flags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier's output to be left-justified.
This has no effect unless the width field is also specified.

width (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the left or right (depending on the - flag) with spaces as needed to fill the width.
A too-small width does not cause truncation of the output, but is simply ignored. The width may
be specified using any of the following: a positive integer; an asterisk (*) to use the next function
argument as the width; or a string of the form *n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that
is used for the format specifier's value. If the width argument is negative, the result is left aligned
(as if the - flag had been specified) within a field of length abs(width).

type (required)

The type of format conversion to use to produce the format specifier's output. The following types
are supported:

* s formats the argument value as a simple string. A null value is treated as an empty string.

188

Functions and Operators

* I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quote_ident).

* 1 quotes the argument value as an SQL literal. A null value is displayed as the string NULL, with-
out quotes (equivalent to quote_nullable).

In addition to the format specifiers described above, the special sequence $% may be used to output a
literal % character.

Here are some examples of the basic format conversions:

SELECT format ('Hello %s', 'World');
Result: Hello World

o\

SELECT format ('Testing %s, %s, %s, %', 'one', 'two', 'three');
Result: Testing one, two, three, %
SELECT format ('INSERT INTO %I VALUES(%L)', 'Foo bar', E'0O\ 'Reilly"');
Result: INSERT INTO "Foo bar" VALUES('O''Reilly')

SELECT format ('INSERT INTO %I VALUES (%L)', 'locations', 'C:\Program Files');
Result: INSERT INTO locations VALUES('C:\Program Files')

Here are examples using width fields and the - flag:

SELECT format ('|%10s]|', 'foo');
Result: | foo|

SELECT format ('|%-10s|', 'foo');
Result: |foo \

SELECT format ('|%*s|', 10, 'foo');
Result: | foo|

SELECT format ('|%*s|', -10, 'foo');
Result: |foo \

SELECT format ('|%-*s|', 10, 'foo');
Result: |foo \

SELECT format ('|%-*s]|', -10, 'foo');
Result: |foo \

These examples show use of position fields:

SELECT format ('Testing %3$s, %2$s, %1S$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format ('|%*2S$s|', 'foo', 10, 'bar');
Result: | bar|

SELECT format ('|%1$*2$s|', 'foo', 10, 'bar');
Result: | foo|

Unlike the standard C function sprintf, Postgres Pro's format function allows format specifiers with
and without position fields to be mixed in the same format string. A format specifier without a position
field always uses the next argument after the last argument consumed. In addition, the format function
does not require all function arguments to be used in the format string. For example:

SELECT format ('Testing %3$s, %2$s, %s', 'one', 'two', 'three');
Result: Testing three, two, three

189

Functions and Operators

The %1 and %1 format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 41.1.

9.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.11. Postgres Pro also provides versions of these functions that use the regular
function invocation syntax (see Table 9.12).

Note

The sample results shown on this page assume that the server parameter bytea_output is set to
escape (the traditional Postgres Pro format).

Table 9.11. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || string |bytea String concatena-|'\\Post'::bytea |\\Post'gres\000
tion | | "\047gres
\000"': :bytea
octet_length (int Number of bytes in|octet_length(5
string) binary string 'Jo
\000se"'::bytea)
overlay(string |bytea Replace substring |overlay ('Th T\\002\\003mas
placing string \0OOomas"': :bytea
from int [for placing
int]) '\002\003"'::bytea
from 2 for 3)
position (int Location of speci-|position (3
substring in fied substring "\00Qom"' : :bytea
string) in 'Th

\00OOomas"': :bytea)

substring bytea Extract substring |substring('Th h\000o
string [from int] \00Qomas"': :bytea

[for int]) from 2 for 3)
trim([both] bytea Remove the longest|trim(Tom
bytes from string containing|'\000\001"': :bytea
string) only bytes appear-|from "\000Tom

ing in bytes from|(\001'::bytea)
the start and end of
string

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the longest|btrim trim
bytea, bytes string containing|'\000trim

bytea) only bytes appear-|\001'::bytea,

ing in bytes from| '\000\001'::bytep)
the start and end of
string

190

Functions and Operators

Function Return Type Description Example Result
decode (string bytea Decode binary data|decode ¢ 123\000456
text, format from textual repre-|'123\000456",
text) sentationin string.|'escape')
Options for format
are same as in en-
code.
encode (data text Encode binary data|encode ¢ 123\000456
bytea, format into a textual repre-|'123\000456"' : :bytga,
text) sentation. Support-|'escape"')
ed formats are:
base64, hex, es-
cape. escape COnh-
verts zero bytes and
high-bit-set bytes to
octal sequences (
\nnn) and doubles
backslashes.
get_bit (int Extract bit from|get_bit (1
string, offset) string '"Th
\00Oomas"': :bytea,
45)
get_byte (int Extract byte from|get_byte (109
string, offset) string "Th
\0OOomas"': :bytea,
4)
length(string) |int Length of binary|length/ 5
string "Jo
\000se': :bytea)
md5 (string) text Calculates the MD5 |md5 (8ab2d3c9689%aaf18
hash of string, re-|'Th b4958c334c82d8bl
turning the resultin|\000omas"' : :bytea)
hexadecimal
set_bit (bytea Set bit in string set_bit (Th\000omAs
string, offset, 'Th
newvalue) \00Oomas"': :bytea,
45, 0)
set_byte (bytea Set byte in string |set_byte Th\000oRas
string, offset, 'Th
newvalue) \00OOomas"': :bytea,
4, 64)
sha224 (bytea) bytea SHA-224 hash sha224 ('abc') \x23097d223405d822864:
daz
55b32aadbcedb-
daOb3f7e36c9da’
sha256 (bytea) bytea SHA-256 hash sha256 ('abc') \xba7816bf8f0lcfepdl4]
b00361a396177a9cbd10£f-
f61£20015ad
sha384 (bytea) bytea SHA-384 hash sha384 ('abc') \xcb00753f45a35e8p-
b5a03d699%ac65007
272c32ab0ed-
edl1631a8b605a43f—

191

Functions and Operators

Function Return Type Description Example Result

f5bed
8086072bale7c—
c2358bae-
cal34c825a7

sha512 (bytea) bytea SHA-512 hash sha512 ('abc') \xddaf35a193617abac—
c417349ae204131
12e6fade89a97ea20@%eec
2192992a274fcla83pba3c
454d4423643ce80e2p9%ace

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit number
bits from the right within each byte; for example bit 0 is the least significant bit of the first byte, and
bit 15 is the most significant bit of the second byte.

Note that for historic reasons, the function md5 returns a hex-encoded value of type text whereas the
SHA-2 functions return type bytea. Use the functions encode and decode to convert between the two,
for example encode (sha256 ('abc'), 'hex') to get a hex-encoded text representation.

See also the aggregate function string_agg in Section 9.20 and the large object functions in Sec-
tion 33.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown in
Table 9.13 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9.13. Bit String Operators

Operator Description Example Result
| concatenation B'10001" || B'O11" 10001011
& bitwise AND B'10001' & B'01101" 00001
| bitwise OR B'10001' | B'01101"' 11101
bitwise XOR B'10001' # B'01101" 11100
~ bitwise NOT ~ B'10001" 01110
<< bitwise shift left B'10001' << 3 01000
>> bitwise shift right B'10001"' >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When working
with a bit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44 ;::bit (10) 0000101100
44 :bit (3) 100

cast (-44 as bit (12)) 111111010100
'1110"::bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant bit
of the integer.

192

Functions and Operators

Note

Casting an integer to bit (n) copies the rightmost n bits. Casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by Postgres Pro: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip
If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patterns from hostile sources. If you must do so, it is advisable to impose
a statement timeout.

Searches using sIMILAR TO patterns have the same security hazards, since SIMILAR TO provides
many of the same capabilities as POSIX-style regular expressions.

LIKE searches, being much simpler than the other two options, are safer to use with possibly-hos-
tile pattern sources.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the st ringmatches the supplied pattern. (As expected, the NOT LIKE
expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT (string
LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches)
any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true

'abc' LIKE '_b_ ' true
'abc' LIKE 'c' false

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective charac-
ter in pattern must be preceded by the escape character. The default escape character is the backslash
but a different one can be selected by using the ESCAPE clause. To match the escape character itself,
write two escape characters.

193

Functions and Operators

Note

If you have standard conforming strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing Escape ' '. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

The key word ILIKE can be used instead of L.IKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a Postgres Pro extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~*
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are Postgres
Pro-specific. You may see these operator names in EXPLAIN output and similar places, since the parser
actually translates LIKE et al. to these operators.

The phrases LIKE, ILIKE, NOT LIKE, and NOT ILIKE are generally treated as operators in Postgres Pro
syntax; for example they can be used in expression operator ANY (subquery) constructs, although an
ESCAPE clause cannot be included there. In some obscure cases it may be necessary to use the underlying
operator names instead.

There is also the prefix operator ~¢ and corresponding starts_with function which covers cases when
only searching by beginning of the string is needed.

9.7.2. sIMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape—-character]
string NOT SIMILAR TO pattern [ESCAPE escape—-character]

The sIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard's definition of
a regular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

Like L1KE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike
common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and . * in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

* | denotes alternation (either of two alternatives).

* * denotes repetition of the previous item zero or more times.

* + denotes repetition of the previous item one or more times.

* 2 denotes repetition of the previous item zero or one time.

* {m} denotes repetition of the previous item exactly m times.

* {m,} denotes repetition of the previous item m or more times.

* {m, n} denotes repetition of the previous item at least m and not more than n times.

* Parentheses () can be used to group items into a single logical item.

* A bracket expression [...] specifies a character class, just as in POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

194

Functions and Operators

Some examples:

'abc' SIMILAR TO 'abc' true
'abc' SIMILAR TO 'a' false
'abc' SIMILAR TO '$(b|d)$%' true
'abc' SIMILAR TO '"(b|c)%' false

The substring function with three parameters, substring(string from pattern for escape-char-
acter), provides extraction of a substring that matches an SQL regular expression pattern. As with
SIMILAR TO, the specified pattern must match the entire data string, or else the function fails and returns
null. To indicate the part of the pattern that should be returned on success, the pattern must contain
two occurrences of the escape character followed by a double quote ("). The text matching the portion
of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring ('foobar' from '$#"o_b#"%' for '#') oob
substring('foobar' from '#"o_b#"%' for '#') NULL

9.7.3. POSIX Regular Expressions

Table 9.14 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.14. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, case|'thomas' ~ '.*thomas.*'
sensitive

~x Matches regular expression, case|'thomas' ~* '.*Thomas.*'
insensitive

I~ Does not match regular expres-|'thomas' !~ '.*Thomas.*'
sion, case sensitive

I~k Does not match regular expres-|'thomas' !~* ' *vadim.*'
sion, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching than the L1kt and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are
special characters in the regular expression language — but regular expressions use different special
characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere
within a string, unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

'abc' ~ 'abc! true
'abc' ~ '?a! true
'abc' ~ "(bld)' true
'abc' ~ '"*(blc)' false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides extraction
of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use

195

Functions and Operators

parentheses within it without triggering this exception. If you need parentheses in the pattern before
the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring('foobar' from 'o.b') oob
substring('foobar' from 'o(.)b"') o

The regexp_replace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags]). The
source string is returned unchanged if there is no match to the pattern. If there is a match, the source
string is returned with the replacement string substituted for the matching substring. The replacement
string can contain \n, where n is 1 through 9, to indicate that the source substring matching the n'th
parenthesized subexpression of the pattern should be inserted, and it can contain \& to indicate that
the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal back-
slash in the replacement text. The rflags parameter is an optional text string containing zero or more
single-letter flags that change the function's behavior. Flag i specifies case-insensitive matching, while
flag g specifies replacement of each matching substring rather than only the first one. Supported flags
(though not g) are described in Table 9.22.

Some examples:

regexp_replace ('foobarbaz', 'b..', 'X'")
fooXbaz
regexp_replace ('foobarbaz', 'b..', 'X', 'g')
fooXX
regexp_replace ('foobarbaz', 'b(..)', 'X\1Y', 'g")
fooXarYXazyY

The regexp_match function returns a text array of captured substring(s) resulting from the first match of
a POSIX regular expression pattern to a string. It has the syntax regexp_match(string, pattern|[, flags
1). If there is no match, the result is NULL. If a match is found, and the pattern contains no parenthesized
subexpressions, then the result is a single-element text array containing the substring matching the
whole pattern. If a match is found, and the pattern contains parenthesized subexpressions, then the
result is a text array whose n'th element is the substring matching the n'th parenthesized subexpression
of the pattern (not counting “non-capturing” parentheses; see below for details). The rf1ags parameter
is an optional text string containing zero or more single-letter flags that change the function's behavior.
Supported flags are described in Table 9.22.

Some examples:

SELECT regexp_match ('foobarbequebaz', 'bar.*que');
regexp_match

{barbeque}

(1 row)

SELECT regexp_match ('foobarbequebaz', ' (bar) (beque)');
regexp_match

{bar,beque}

(1 row)

In the common case where you just want the whole matching substring or nULL for no match, write
something like

SELECT (regexp_match ('foobarbequebaz', 'bar.*que')) [1l];
regexp_match

barbeque

(1 row)

196

Functions and Operators

The regexp_matches function returns a set of text arrays of captured substring(s) resulting from match-
ing a POSIX regular expression pattern to a string. It has the same syntax as regexp_match. This func-
tion returns no rows if there is no match, one row if there is a match and the g flag is not given, or nv
rows if there are N matches and the g flag is given. Each returned row is a text array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pattern, just
as described above for regexp_match. regexp_matches accepts all the flags shown in Table 9.22, plus
the g flag which commands it to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
regexp_matches

SELECT regexp_matches ('foobarbequebazilbarfbonk', '"(b["b]+) (b["b]l+)', 'g');
regexp_matches

{bar,beque}

{bazil,barf}

(2 rows)

Tip
In most cases regexp_matches () should be used with the g flag, since if you only want the first
match, it's easier and more efficient to use regexp_match (). However, regexp_match () only exists

in Postgres Pro version 10 and up. When working in older versions, a common trick is to place a
regexp_matches () call in a sub-select, for example:

SELECT coll, (SELECT regexp_matches(col2, ' (bar) (beque)')) FROM tab;

This produces a text array if there's a match, or NULL if not, the same as regexp_match () would do.
Without the sub-select, this query would produce no output at all for table rows without a match,
which is typically not the desired behavior.

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern|, flags]). If there is no match to
the pattern, the function returns the string. If there is at least one match, for each match it returns
the text from the end of the last match (or the beginning of the string) to the beginning of the match.
When there are no more matches, it returns the text from the end of the last match to the end of the
string. The flags parameter is an optional text string containing zero or more single-letter flags that
change the function's behavior. regexp_split_to_table supports the flags described in Table 9.22.

The regexp_split_to_array function behaves the same as regexp_split_to_table, except that reg-
exp_split_to_array returns its result as an array of text. It has the syntax regexp_split_to_ar-
ray(string, pattern[, flags]). The parameters are the same as for regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the lazy dog',
'"\s+') AS foo;
foo

197

Functions and Operators

the
lazy
dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox Jjumps over the lazy dog', '\s+');
regexp_split_to_array
{the, quick,brown, fox, jumps, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo;
foo

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition
of regexp matching that is implemented by regexp_match and regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

Postgres Pro's regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). Postgres Pro supports both forms,
and also implements some extensions that are not in the POSIX standard, but have become widely used
due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset
of EREs, but BREs have several notational incompatibilities (as well as being much more limited). We
first describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how
BREs differ.

Note

Postgres Pro always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

198

Functions and Operators

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9.15. The possible quantifiers and their meanings are shown
in Table 9.16.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.17; some more constraints are described later.

Table 9.15. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible re-
porting

(?: re) as above, but the match is not noted for reporting

(a “non-capturing” set of parentheses) (AREs only)

matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character) matches
that character taken as an ordinary character, e.g.,
\\ matches a backslash character

\c where c is alphanumeric (possibly followed by oth-
er characters) is an escape, see Section 9.7.3.3 (
AREs only; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see below)

x where x is a single character with no other signifi-
cance, matches that character

An RE cannot end with a backslash (\).

Note

If you have standard conforming strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.16. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom

199

Functions and Operators

Quantifier Matches

{m, n} a sequence of mthrough n (inclusive) matches of the
atom; m cannot exceed n

*? non-greedy version of *

+2 non-greedy version of +

27 non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

The forms using { ...} are known as bounds. The numbers m and n within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches.
See Section 9.7.3.5 for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., ** is invalid. A quantifier cannot
begin an expression or subexpression or follow ~ or |.

Table 9.17. Regular Expression Constraints

Constraint Description

~ matches at the beginning of the string

$ matches at the end of the string

(?= re) positive lookahead matches at any point where a

substring matching re begins (AREs only)

(?! re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

(?<= re) positive lookbehind matches at any point where a
substring matching re ends (AREs only)

(?<! re) negative lookbehind matches at any point where no
substring matching re ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ~, it matches any single character not from the rest of
the list. If two characters in the list are separated by -, this is shorthand for the full range of characters
between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It
isillegal for two ranges to share an endpoint, e.g., a—c-e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of arange, enclose itin [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

200

Functions and Operators

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression's list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]*c matches the first five characters of chchcc.

Note

Postgres Pro currently does not support multi-character collating elements. This information de-
scribes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and
.1.) For example, if o and ~ are the members of an equivalence class, then [[=0o=]], [[="=]], and [0"]
are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,
digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character classes defined
in ctype. A locale can provide others. A character class cannot be used as an endpoint of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined
as a sequence of word characters that is neither preceded nor followed by word characters. A word
character is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible
with but not specified by POSIX 1003.2, and should be used with caution in software intended to be
portable to other systems. The constraint escapes described below are usually preferable; they are no
more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come
in several varieties: character entry, class shorthands, constraint escapes, and back references. A \
followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs,
there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter is the one actual incompatibility between EREs and ARESs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9.18.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.19.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as
an escape. They are shown in Table 9.20.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.21). For example, ([bc])\1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered
in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Table 9.18. Regular Expression Character-entry Escapes

Escape Description

\a alert (bell) character, as in C

201

Functions and Operators

Escape Description

\b backspace, as in C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where xis any character) the character whose low-
order 5 bits are the same as those of x, and whose
other bits are all zero

\e the character whose collating-sequence name is
EsC, or failing that, the character with octal value
033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits) the
character whose hexadecimal value is Oxwxyz

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal dig-
its) the character whose hexadecimal value is 0xs-
tuvwxyz

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal digits)
the character whose hexadecimal value is 0xhhh (a
single character no matter how many hexadecimal
digits are used)

\O the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
Oxy

\xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value
is Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings de-
pendent on the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode
code points, for example \u1234 means the character u+1234. For other multibyte encodings, charac-
ter-entry escapes usually just specify the concatenation of the byte values for the character. If the escape
value does not correspond to any legal character in the database encoding, no error will be raised, but

it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,
but \135 does not terminate a bracket expression.

Table 9.19. Regular Expression Class-shorthand Escapes

Escape Description
\d [[:digit:]]
\'s [[:space:]]
\w [[:alnum:]_] (note underscore is included)
\D [*[:digit:]]

202

Functions and Operators

Escape Description
\S ["[:space:]]
\W [“[:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \s, and \w are illegal.
(So, for example, [a—c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent to [a-
c~[:digit:1], is illegal.)

Table 9.20. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning or
end of a word

\Z matches only at the end of the string (see Sec-
tion 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9.21. Regular Expression Back References

Escape Description

\m (where mis a nonzero digit) a back reference to the
m'th subexpression

\mnn (where m is a nonzero digit, and nn is some more
digits, and the decimal value mnn is not greater than
the number of closing capturing parentheses seen
so far) a back reference to the mnn'th subexpression

Note

There is an inherent ambiguity between octal character-entry escapes and back references, which
is resolved by the following heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a
suitable subexpression (i.e., the number is in the legal range for a back reference), and otherwise
is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***:, the rest of the RE
is taken as an ARE. (This normally has no effect in Postgres Pro, since REs are assumed to be AREs;
but it does have an effect if ERE or BRE mode had been specified by the fiags parameter to a regex
function.) If an RE begins with ***=, the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

203

Functions and Operators

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously deter-
mined options — in particular, they can override the case-sensitivity behavior implied by a regex oper-
ator, or the rfiags parameter to a regex function. The available option letters are shown in Table 9.22.
Note that these same option letters are used in the flags parameters of regex functions.

Table 9.22. ARE Embedded-option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5) (
overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

P partial newline-sensitive matching (see Sec-
tion 9.7.3.5)

q rest of RE is a literal (“quoted”) string, all ordinary
characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”) match-

ing (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the **=*: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

* a white-space character or # preceded by \ is retained

* white space or # within a bracket expression is retained

* white space and comments cannot appear within multi-character symbols, such as (2:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the

space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of mul-
ti-character symbols, like (2:. Such comments are more a historical artifact than a useful facility, and
their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial ***= director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

204

Functions and Operators

Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

¢ Adding parentheses around an RE does not change its greediness.

* A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

* A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy
(prefers longest match).

* A quantified atom with a non-greedy quantifier (including {m, n}? with m equal to n) is non-greedy
(prefers shortest match).

* A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

* An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpres-
sion is determined on the basis of the greediness attribute of that subexpression, with subexpressions
starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING ('XY1234Z7Z', 'Y*([0-9]1{1,3})");
Result: 123

SELECT SUBSTRING ('XY12342z', 'Y*?2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v* is greedy. It can match beginning at the v, and
it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of
that, or 123. In the second case, the RE as a whole is non-greedy because yY*? is non-greedy. It can match
beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9]1{1, 3} is greedy but it cannot change the decision as to the overall match length; so it is forced
to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1, 1} and {1, 1} 2 can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE. This is useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example, suppose that we are trying to separate
a string containing some digits into the digits and the parts before and after them. We might try to do
that like this:

SELECT regexp_match ('abc01234xyz"', ' (.*) (\d+) (.*)");
Result: {abc0123,4,xyz}

That didn't work: the first . * is greedy so it “eats” as much as it can, leaving the \d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_match ('abc01234xyz"', '(.*2) (\d+) (.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_match ('abc01234xyz"', ' (2:(.*?) (\d+) (.*)){1,1}");
Result: {abc,01234,xyz}

205

Functions and Operators

Controlling the RE's overall greediness separately from its components' greediness allows great flexi-
bility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not col-
lating elements. An empty string is considered longer than no match at all. For example: bb* matches
the three middle characters of abbbc; (week|wee) (night | knights) matches all ten characters of week-
nights; when (.*).* is matched against abc the parenthesized subexpression matches all three char-
acters; and when (a*) * is matched against bc both the whole RE and the parenthesized subexpression
match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g.,
x becomes [xx]. When it appears inside a bracket expression, all case counterparts of it are added to
the bracket expression, e.g., [x] becomes [xx] and [“x] becomes ["xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ~ and $
will match the empty string after and before a newline respectively, in addition to matching at beginning
and end of string respectively. But the ARE escapes \2 and \z continue to match beginning or end of
string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with new-
line-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended
to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its special
significance inside bracket expressions. All other ARE features use syntax which is illegal or has unde-
fined or unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the POSIX
syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special
treatment for a trailing newline, the addition of complemented bracket expressions to the things affected
by newline-sensitive matching, the restrictions on parentheses and back references in lookahead/look-
behind constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL.:

* In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a prob-
lem because there was no reason to write such a sequence in earlier releases.

* In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \\.

9.7.3.7. Basic Regular Expressions

BRESs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \{ and \}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and) by them-
selves ordinary characters. ~ is an ordinary character except at the beginning of the RE or the beginning
of a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of

206

Functions and Operators

a parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE
or the beginning of a parenthesized subexpression (after a possible leading *). Finally, single-digit back
references are available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively; no other
escapes are available in BRESs.

9.8. Data Type Formatting Functions

The Postgres Pro formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.23 lists them. These functions all follow a common calling conven-
tion: the first argument is the value to be formatted and the second argument is a template that defines
the output or input format.

Table 9.23. Formatting Functions

Function Return Type Description Example
to_char(timestamp, |text convert time stamp to|to_char (current_
text) string timestamp,
'HH12:MI:SS'")
to_char(interval, text convert interval to string|to_char (interval
text) '15h 2m 12s"',
'HH24:MI:SS'")
to_char(int, text) |[text convert integer to string |to_char (125,
'999")
to_char (double pre-|text convert real/double pre-|to_char (
cision, text) cision to string 125.8::real,
'999D9")
to_char(numeric, text convert numeric to|to_char (-125.8,
text) string '999D99S")
to_date(text, date convert string to date to_date(
text) '05 Dec 2000"',
'DD Mon YYYY')
to_number (text, numeric convert string to numer-|to_number ('12,
text) ic 454 .8-",
'99G999D9S ")
to_timestamp(text, |timestamp with time|convert string to time|to_timestamp (
text) zone stamp '05 Dec 2000",

'DD Mon YYYY')

Note

There is also a single-argument to_timestamp function; see Table 9.30.

Tip
to_timestamp and to_date exist to handle input formats that cannot be converted by simple cast-
ing. For most standard date/time formats, simply casting the source string to the required data

type works, and is much easier. Similarly, to_number is unnecessary for standard numeric repre-
sentations.

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns iden-

207

Functions and Operators

tify the values to be supplied by the input data string. If there are characters in the template string that
are not template patterns, the corresponding characters in the input data string are simply skipped over
(whether or not they are equal to the template string characters).

Table 9.24 shows the template patterns available for formatting date and time values.

Table 9.24. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Or p.m. meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYy last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO 8601 week-numbering year (4 or more digits)
1YY last 3 digits of ISO 8601 week-numbering year
IY last 2 digits of ISO 8601 week-numbering year
I last digit of ISO 8601 week-numbering year
BC, bc, AD Or ad era indicator (without periods)
B.C.,b.c.,A.D.Ora.d. era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lower case month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full capitalized day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

208

Functions and Operators

Pattern Description

DY abbreviated upper case day name (3 chars in Eng-
lish, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in Eng-
lish, localized lengths vary)

dy abbreviated lower case day name (3 chars in Eng-
lish, localized lengths vary)

DDD day of year (001-366)

IDDD day of ISO 8601 week-numbering year (001-371;
day 1 of the year is Monday of the first ISO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

D ISO 8601 day of the week, Monday (1) to Sunday (7)

W week of month (1-5) (the first week starts on the
first day of the month)

WW week number of year (1-53) (the first week starts
on the first day of the year)

W week number of ISO 8601 week-numbering year (
01-53; the first Thursday of the year is in week 1)

cc century (2 digits) (the twenty-first century starts on
2001-01-01)

J Julian Date (integer days since November 24, 4714
BC at local midnight; see Section B.7)

Q quarter

RM month in upper case Roman numerals (I-XII; I=]Jan-
uary)

rm month in lower case Roman numerals (i-xii; i=]Jan-
uary)

TZ upper case time-zone abbreviation (only supported
in to_char)

tz lower case time-zone abbreviation (only supported
in to_char)

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (only supported in to_

char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month
pattern with the rM modifier. Table 9.25 shows the modifier patterns for date/time formatting.

Table 9.25. Template Pattern Modifiers for Date/Time Formatting

age notes)

Modifier Description Example
FM prefix fill mode (suppress leading zeroes|FMMonth

and padding blanks)
TH suffix upper case ordinal number suffix |DDTH, e.g., 12TH
th suffix lower case ordinal number suffix |ppth, e.g., 12th
Fx prefix fixed format global option (see us-|FX Month DD Day

209

Functions and Operators

Modifier Description Example
TM prefix translation mode (print localized |TMMonth
day and month names based on
lc time)
Sp suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width. In Postgres Pro, FM modifies only the next specification, while in Oracle
FM affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

™™ does not include trailing blanks. to_timestamp and to_date ignore the T™ modifier.

to_timestamp and to_date skip multiple blank spaces in the input string unless the Fx option

is used. For example, to_timestamp ('2000 JUN', 'YYYY MON') works, but to_timestam-
p('2000 JUN', 'FXYYYY MON') returns an error because to_timestamp expects one space only.
FX must be specified as the first item in the template.

Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains template patterns. For
example, in '"Hello Year "YYYY', the YyYY will be replaced by the year data, but the single vy in
Year will not be. In to_date, to_number, and to_timestamp, literal text and double-quoted strings
result in skipping the number of characters contained in the string; for example "xx" skips two in-
put characters (whether or not they are xx).

If you want to have a double quote in the output you must precede it with a backslash, for example
"\"YYYY Month\"'. Backslashes are not otherwise special outside of double-quoted strings. With-
in a double-quoted string, a backslash causes the next character to be taken literally, whatever it is
(but this has no special effect unless the next character is a double quote or another backslash).

In to_timestamp and to_date, if the year format specification is less than four digits, e.g., yvyv, and
the supplied year is less than four digits, the year will be adjusted to be nearest to the year 2020,
e.dg., 95 becomes 1995.

In to_timestamp and to_date, negative years are treated as signifying BC. If you write both a neg-
ative year and an explicit Bc field, you get AD again. An input of year zero is treated as 1 BC.

In to_timestamp and to_date, the YYYY conversion has a restriction when processing years with
more than 4 digits. You must use some non-digit character or template after yvvy, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date ('200001131",
'YYYYMMDD ') will be interpreted as a 4-digit year; instead use a non-digit separator after the year,
like to_date ('20000-1131"', 'YYYY-MMDD') Or to_date ('20000Nov31', 'YYYYMonDD').

In to_timestamp and to_date, the cc (century) field is accepted but ignored if there is a yvv, vyyvy
or v, vy field. If cc is used with vy or v then the result is computed as that year in the specified
century. If the century is specified but the year is not, the first year of the century is assumed.

In to_timestamp and to_date, weekday names or numbers (DAY, D, and related field types) are ac-
cepted but are ignored for purposes of computing the result. The same is true for quarter (Q) fields.

In to_timestamp and to_date, an ISO 8601 week-numbering date (as distinct from a Gregorian
date) can be specified in one of two ways:

* Year, week number, and weekday: for example to_date ('2006-42-4"', 'IYYY-IW-ID') returns
the date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

* Year and day of year: for example to_date ('2006-291', 'IYYY-IDDD') also returns
2006-10-19.

Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date
fields is nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year,

210

Functions and Operators

the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year, the
ISO week has no meaning.

Caution

While to_date will reject a mixture of Gregorian and ISO week-numbering date fields,
to_char will not, since output format specifications like Yyyy-MM-DD (IYYY-IDDD) can be
useful. But avoid writing something like 1vyy-MM-DD; that would yield surprising results near
the start of the year. (See Section 9.9.1 for more information.)

In to_timestamp, millisecond (Ms) or microsecond (Us) fields are used as the seconds digits after
the decimal point. For example to_timestamp ('12.3', 'Ss.MS') is not 3 milliseconds, but 300,
because the conversion treats it as 12 + 0.3 seconds. So, for the format ss.Ms, the input values
12.3, 12.30, and 12.300 specify the same number of milliseconds. To get three milliseconds, one
must write 12.003, which the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp ('15:12:02.020.001230"', 'HH24:MI:SS.MS.US')
is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230 sec-
onds.

to_char (..., 'ID')'s day of the week numbering matches the extract (isodow from ...) func-
tion, but to_char (..., 'D')'s does not match extract (dow from ...)'s day numbering.

to_char (interval) formats HH and HH12 as shown on a 12-hour clock, for example zero hours and
36 hours both output as 12, while HH24 outputs the full hour value, which can exceed 23 in an in-
terval value.

Table 9.26 shows the template patterns available for formatting numeric values.

Table 9.26. Template Patterns for Numeric Formatting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if insignif-
icant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

TH OT th ordinal number suffix

\Y% shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

211

Functions and Operators

0 specifies a digit position that will always be printed, even if it contains a leading/trailing zero. 9
also specifies a digit position, but if it is a leading zero then it will be replaced by a space, while if it
is a trailing zero and fill mode is specified then it will be deleted. (For to_number (), these two pat-
tern characters are equivalent.)

If the format provides fewer fractional digits than the number being formatted, to_char () will
round the number to the specified number of fractional digits.

The pattern characters s, 1, D, and G represent the sign, currency symbol, decimal point, and thou-
sands separator characters defined by the current locale (see lc monetary and lc numeric). The
pattern characters period and comma represent those exact characters, with the meanings of deci-
mal point and thousands separator, regardless of locale.

If no explicit provision is made for a sign in to_char ()'s pattern, one column will be reserved for
the sign, and it will be anchored to (appear just left of) the number. If s appears just left of some
9's, it will likewise be anchored to the number.

A sign formatted using sG, pPL, or MI is not anchored to the number; for example, to_char (-12,
'MI9999') produces '- 12' but to_char(-12, '$9999"') produces ' -12'. (The Oracle imple-
mentation does not allow the use of MI before 9, but rather requires that 9 precede MI.)

TH does not convert values less than zero and does not convert fractional numbers.
PL, SG, and TH are Postgres Pro extensions.

In to_number, if non-data template patterns such as L or TH are used, the corresponding number of
input characters are skipped, whether or not they match the template pattern, unless they are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-data
characters.

Vv with to_char multiplies the input values by 10~n, where n is the number of digits following v. v
with to_number divides in a similar manner. to_char and to_number do not support the use of v
combined with a decimal point (e.g., 99.9v99 is not allowed).

EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format
string (e.g., 9. 99EEEE is a valid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, ¥M99. 99 is
the 99.99 pattern with the FM modifier. Table 9.27 shows the modifier patterns for numeric formatting.

Table 9.27. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example
FM prefix fill mode (suppress trailing zeroes|FM99. 99
and padding blanks)

TH suffix upper case ordinal number suffix | 999TH

th suffix lower case ordinal number suffix [999th

Table 9.28 shows some examples of the use of the to_char function.

Table 9.28. to_char Examples

Expression Result

to_char (current_timestamp, 'Day, 'Tuesday , 06 05:39:18"
DD HH12:MI:SS')

to_char (current_timestamp, 'FMDay, 'Tuesday, 6 05:39:18"
FMDD HH12:MI:SS')

to_char(-0.1, ' =.10"

to_char(-0.1, 'FM9.99") -1

to_char(-0.1, 'FM90.99") '-0.1"

212

Functions and Operators

Expression Result
to_char(0.1, '0.9") ' 0.1
to_char (12, '9990999.9") ' 0012.0"
to_char (12, 'FM9990999.9") '0012."
to_char (485, '999") ' 485"
to_char (-485, '999") '-485"
to_char (485, '9 9 9'") ''4 8 5"
to_char (1485, '9,999") ' 1,485"
to_char (1485, '9G999"'") "1 485"
to_char(148.5, '999.999") ' 148.500'
to_char(148.5, 'FM999.999") '148.5"
to_char(148.5, 'FM999.990") '148.500"
to_char(148.5, '999D999") ' 148,500
to_char(3148.5, '9G999D999") ' 3 148,500
to_char (-485, '999s"'") '485-"
to_char (-485, '999MI'") '485-"
to_char (485, '999MI') 1485 !
to_char (485, 'FM999MI') '485"
to_char (485, 'PL999'") '+485"
to_char (485, 'SG999") '+485"
to_char (-485, 'SG999") '-485"
to_char(-485, '95G99'") '4-85"
to_char (-485, '999PR'") '<485>"
to_char (485, 'L999') 'DM 485"
to_char (485, 'RN') ! CDLXXXV'
to_char (485, 'FMRN') 'CDLXXXV'
to_char (5.2, 'FMRN') 'V

to_char (482, '999th'") ' 482nd’'
to_char (485, '"Good number:"999") 'Good number: 485"
to_char (485.8, '"Pre:"999" Post:" .999") 'Pre: 485 Post: .800'
to_char (12, '99v999"'") ' 12000°"
to_char(12.4, '99v999") ' 12400°
to_char(12.45, '99v9'") ' 125"
to_char (0.0004859, '9.99EEEE') ' 4.86e-04"

9.9. Date/Time Functions and Operators

Table 9.30 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9.29 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information

on date/time data types from Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types.
Dates and timestamps (with or without time zone) are all comparable, while times (with or without time

213

Functions and Operators

zone) and intervals can only be compared to other values of the same data type. When comparing a
timestamp without time zone to a timestamp with time zone, the former value is assumed to be given in
the time zone specified by the TimeZone configuration parameter, and is rotated to UTC for comparison
to the latter value (which is already in UTC internally). Similarly, a date value is assumed to represent
midnight in the TimeZone zone when comparing it to a timestamp.

All the functions and operators described below that take time or timestamp inputs actually come in
two variants: one that takes time with time zone Or timestamp with time zone, and one that takes
time without time zone Or timestamp without time zone. For brevity, these variants are not shown
separately. Also, the + and * operators come in commutative pairs (for example both date + integer
and integer + date); we show only one of each such pair.

Table 9.29. Date/Time Operators

Operator Example Result

+ date '2001-09-28'" + integer|date '2001-10-05"'
] '7]

+ date '2001-09-28' + interval|timestamp '2001-09-28
'l hour' 01:00:00"

+ date '2001-09-28" + time|timestamp '2001-09-28
'03:00' 03:00:00"

+ interval 'l day' + interval|interval 'l day 01:00:00'
'l hour'

+ timestamp '2001-09-28 01:00'|timestamp '2001-09-29
+ interval '23 hours' 00:00:00"

+ time '01:00' + interval '3|time '04:00:00"
hours'

- - interval '23 hours' interval '-23:00:00'

- date '2001-10-01' - date|integer '3’ (days)
'2001-09-28"

- date '2001-10-01'" - integer|date '2001-09-24"'
A\l 7 A\l

- date '2001-09-28' - interval|timestamp '2001-09-27
'l hour' 23:00:00"

- time '05:00' - time '03:00' interval '02:00:00'

- time '05:00' - interval '2|time '03:00:00"
hours'

- timestamp '2001-09-28 23:00'|timestamp '2001-09-28
- interval '23 hours' 00:00:00"

- interval 'l day' - interval|interval 'l day -01:00:00"
'l hour'

- timestamp '2001-09-29 03:00'|interval 'l day 15:00:00'
- timestamp '2001-09-27
12:00"

* 900 * interval 'l second' interval '00:15:00'

* 21 * interval 'l day' interval '21 days'

* double precision '3.5' * in-|interval '03:30:00'
terval 'l hour'

/ interval 'l hour' / double|interval '00:40:00'
precision '1.5"

214

Functions and Operators

Table 9.30. Date/Time Functions

not +/-infinity)

'2001-02-16")

Function Return Type Description Example Result
age (timestamp, interval Subtract argu-|age (timestamp 43 years 9 mons 27
timestamp) ments, producing|'2001-04-10", days
a “symbolic” result|timestamp
that uses years and|'1957-06-13")
months, rather than
just days
age (timestamp) |interval Subtract from cur-|age (timestamp 43 years 8 mons 3
rent_date (at|'1957-06-13") days
midnight)
clock_ timestamp with|Current date and
timestamp () time zone time (changes dur-
ing statement ex-
ecution); see Sec-
tion 9.9.4
current_date date Current date; see
Section 9.9.4
current_time time with time|Currenttime of day;
zone see Section 9.9.4
current_ timestamp with|Current date and
timestamp time zone time (start of cur-
rent transaction);
see Section 9.9.4
date_part (double precision |Get subfield (equiv-|date_part (20
text, timestamp) alent to extract);|'hour’, time-
see Section 9.9.1 stamp '2001-02-16
20:38:40")
date_part (double precision |Get subfield (equiv-|date_part (3
text, interval) alent to extract);|'month', inter-—
see Section 9.9.1 val '2 years 3
months')
date_trunc(timestamp Truncate to speci-|date_trunc(2001-02-16
text, timestamp) fied precision; see|'hour', time— |20:00:00
also Section 9.9.2 |stamp '2001-02-16
20:38:40")
date_trunc(interval Truncate to speci-|date_trunc(2 days 03:00:00
text, interval) fied precision; see|'hour', interval
also Section 9.9.2 '2 days 3 hours 40
minutes')
extract (field double precision |Get subfield; see|extract (hour 20
from timestamp) Section 9.9.1 from time—
stamp '2001-02-16
20:38:40")
extract (field double precision |Get subfield; see|extract (month 3
from interval) Section 9.9.1 from interval '2
years 3 months')
isfinite (date) boolean Test for finite date (|isfinite (date true

215

Functions and Operators

Function Return Type Description Example Result
isfinite(boolean Test for finite time|isfinite(true
timestamp) stamp (not +/-infin-|t imestamp
ity) '2001-02-16
21:28:30")
isfinite(boolean Test for finite inter-|isfinite(true
interval) val interval '4
hours"')
justify_days (interval Adjust interval so|justify_days(1 mon 5 days
interval) 30-day time periods|interval '35
are represented as|days"')
months
justify_hours (interval Adjust interval so|justify_hours (1 day 03:00:00
interval) 24-hour time peri-|interval '27
ods are represented |hours')
as days
justify_ interval Adjust interval us-|justify_ 29 days 23:00:00
interval (ing justify_days |interval (
interval) and justify_ |interval 'l mon
hours, with addi-|-1 hour")
tional sign adjust-
ments
localtime time Current time of day;
see Section 9.9.4
localtimestamp timestamp Current date and
time (start of cur-
rent transaction);
see Section 9.9.4
make_date (|date Create date from|make date (2013-07-15
year int, month year, month and day|2013, 7, 15)
int, day int) fields
make_inter- |interval Create interval|make_interval (10 days
val(years int from years, months, |days => 10)
DEFAULT 0, weeks, days, hours,
months int DE- minutes and sec-
FAULT 0, weeks onds fields
int DEFAULT O,
days int DE-
FAULT O, hours
int DEFAULT O,
mins int DEFAULT
0, secs double
precision DEFAULT
0.0)
make_time (time Create time from|make time (8, 08:15:23.5
hour int, min hour, minute and| 15, 23.5)
int, sec double seconds fields
precision)
make_time- |[timestamp Create timestamp|make_ 2013-07-15
stamp (year int, from year, month,|timestamp (08:15:23.5
month int, day day, hour, minute 2013, 7, 15,
int, hour int, and seconds fields |g, 15, 23.5)

216

Functions and Operators

sec double preci-

specified, the cur-

Function Return Type Description Example Result
min int, sec
double precision)
make_time- |[timestamp with|Create timestamp|make_ 2013-07-15
stamptz (year time zone with time zone from |t imestampt z (08:15:23.5+401
int, month int, year, month, day|2013, 7, 15,
day int, hour hour, minute and|g, 15, 23.5)
int, min int, seconds fields; if
timezone 1S not

timestamp

00:00:00+00)

to

sion, [timezone ‘ ;
text 1) rent time zone is
used
now () timestamp with|Current date and
time zone time (start of cur-
rent transaction);
see Section 9.9.4
statement__ timestamp with|Current date and
timestamp () time zone time (start of
current statement);
see Section 9.9.4
timeofday () text Current date and
time (like clock_
timestamp, but as
a text string); see
Section 9.9.4
transaction_ timestamp with|Current date and
timestamp () time zone time (start of cur-
rent transaction);
see Section 9.9.4
to_timestamp (timestamp with|Convert Unix epoch|to_timestamp (2010-09-13
double precision) |time zone (seconds since 1284352323) 04:32:03+00
1970-01-01

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl1,
(startl1,

endl)
lengthl)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date,
time, or time stamp followed by an interval. When a pair of values is provided, either the start or the end
can be written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time
period is considered to represent the half-open interval start <= time < end, unless start and end are
equal in which case it represents that single time instant. This means for instance that two time periods

OVERLAPS

OVERLAPS

(start2,

endZ2)

(start2, length?2)

with only an endpoint in common do not overlap.

SELECT (DATE '2001
(DATE '2001
Result: true
SELECT (DATE '2001
(DATE '2001
Result: false
SELECT (DATE '2001
(DATE '2001

-02-16",
-10-30",

-02-16",
-10-30",

-10-29",
-10-30",

DATE '2001-12-21")
DATE '2002-10-30");
INTERVAL '100 days')
DATE '2002-10-30");
DATE '2001-10-30")

DATE '2001-10-31'");

OVERLAPS

OVERLAPS

OVERLAPS

217

Functions and Operators

Result: false

SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
(DATE '2001-10-30', DATE '2001-10-31");

Result: true

When adding an interval value to (or subtracting an interval value from) a timestamp with time zone
value, the days component advances or decrements the date of the timestamp with time zone by the
indicated number of days, keeping the time of day the same. Across daylight saving time changes (when
the session time zone is set to a time zone that recognizes DST), this means interval '1 day' does not
necessarily equal interval '24 hours'. For example, with the session time zone set to America/Denver:

SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval 'l day';
Result: 2005-04-03 12:00:00-06

SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '24 hours';
Result: 2005-04-03 13:00:00-06

This happens because an hour was skipped due to a change in daylight saving time at 2005-04-03
02:00:00 in time zone America/Denver.

Note there can be ambiguity in the months field returned by age because different months have differ-
ent numbers of days. Postgres Pro's approach uses the month from the earlier of the two dates when
calculating partial months. For example, age ('2004-06-01", '2004-04-30") uses April to yield 1 mon
1 day, while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction is to convert each value to a number of seconds using EXTRACT (EPOCH FROM ...), then
subtract the results; this produces the number of seconds between the two values. This will adjust for
the number of days in each month, timezone changes, and daylight saving time adjustments. Subtraction
of date or timestamp values with the “-” operator returns the number of days (24-hours) and hours/
minutes/seconds between the values, making the same adjustments. The age function returns years,
months, days, and hours/minutes/seconds, performing field-by-field subtraction and then adjusting for
negative field values. The following queries illustrate the differences in these approaches. The sample
results were produced with timezone = 'US/Eastern’; there is a daylight saving time change between
the two dates used:

SELECT EXTRACT (EPOCH FROM timestamptz '2013-07-01 12:00:00"') -

EXTRACT (EPOCH FROM timestamptz '2013-03-01 12:00:00");
Result: 10537200
SELECT (EXTRACT (EPOCH FROM timestamptz '2013-07-01 12:00:00') -

EXTRACT (EPOCH FROM timestamptz '2013-03-01 12:00:00"))

/ 60 / 60 / 24;
Result: 121.958333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01 12:00:00"';
Result: 121 days 23:00:00
SELECT age (timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01 12:00:00");
Result: 4 mons

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must be a
value expression of type timestamp, time, Or interval. (Expressions of type date are cast to timestamp
and can therefore be used as well.) field is an identifier or string that selects what field to extract
from the source value. The extract function returns values of type double precision. The following
are valid field names:

century

The century

SELECT EXTRACT (CENTURY FROM TIMESTAMP '2000-12-16 12:21:13"');

218

Functions and Operators

Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP '2001-02-16 20:38:40"');
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from
-1 century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral
Saint-Peter of Roma, Vatican.

day

For timestamp values, the day (of the month) field (1 - 31) ; for interval values, the number of days

SELECT EXTRACT (DAY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 16

SELECT EXTRACT (DAY FROM INTERVAL '40 days 1 minute');
Result: 40

decade
The year field divided by 10
SELECT EXTRACT (DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

dow
The day of the week as Sunday (0) to Saturday (6)
SELECT EXTRACT (DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5

Note that ext ract's day of the week numbering differs from that of the to_char (..., 'D') function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT (DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47

epoch

For timestamp with time =zone values, the number of seconds since 1970-01-01 00:00:00 UTC
(negative for timestamps before that); for date and timestamp values, the nominal number of sec-
onds since 1970-01-01 00:00:00, without regard to timezone or daylight-savings rules; for interval
values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08");
Result: 982384720.12

SELECT EXTRACT (EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12");
Result: 982355920.12

SELECT EXTRACT (EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800

You can convert an epoch value back to a timestamp with time zone with to_timestamp:

SELECT to_timestamp (982384720.12);
Result: 2001-02-17 04:38:40.12400

Beware that applying to_timestamp to an epoch extracted from a date or timestamp value could
produce a misleading result: the result will effectively assume that the original value had been given
in UTC, which might not be the case.

219

Functions and Operators

hour
The hour field (0 - 23)
SELECT EXTRACT (HOUR FROM TIMESTAMP '2001-02-16 20:38:40"'");
Result: 20
isodow
The day of the week as Monday (1) to Sunday (7)
SELECT EXTRACT (ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7
This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.
isoyear
The ISO 8601 week-numbering year that the date falls in (not applicable to intervals)
SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-01");
Result: 2005

SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-02");
Result: 2006

Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the ISO year may be different from the Gregorian year.
See the week field for more information.

This field is not available in PostgreSQL releases prior to 8.3.
julian
The Julian Date corresponding to the date or timestamp (not applicable to intervals). Timestamps

that are not local midnight result in a fractional value. See Section B.7 for more information.

SELECT EXTRACT (JULIAN FROM DATE '2006-01-01");

Result: 2453737

SELECT EXTRACT (JULIAN FROM TIMESTAMP '2006-01-01 12:00");
Result: 2453737.5

microseconds
The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds
SELECT EXTRACT (MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000
millennium
The millennium
SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3
Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME '17:12:28.5'");
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP '2001-02-16 20:38:40"'");
Result: 38

220

Functions and Operators

month
For timestamp values, the number of the month within the year (1 - 12) ; for interval values, the
number of months, modulo 12 (0 -11)

SELECT EXTRACT (MONTH FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL '2 years 3 months');
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL '2 years 13 months');
Result: 1

quarter
The quarter of the year (1 - 4) that the date is in
SELECT EXTRACT (QUARTER FROM TIMESTAMP '2001-02-16 20:38:40'");
Result: 1
second
The seconds field, including fractional parts (O - 591)

SELECT EXTRACT (SECOND FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 40

SELECT EXTRACT (SECOND FROM TIME '17:12:28.5'");
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC. (Technically, Postgres Pro does not use UTC because
leap seconds are not handled.)

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

week

The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on
Mondays and the first week of a year contains January 4 of that year. In other words, the first Thursday
of a year is in week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or
53rd week of the previous year, and for late-December dates to be part of the first week of the next
year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of the
52nd week of year 2005, while 2012-12-31 is part of the first week of 2013. It's recommended to use
the isoyear field together with week to get consistent results.

SELECT EXTRACT (WEEK FROM TIMESTAMP '2001-02-16 20:38:40"'");
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from 2D years should be done
with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP '2001-02-16 20:38:40");

160 if leap seconds are implemented by the operating system

221

Functions and Operators

Result: 2001

Note

When the input value is +/-Infinity, extract returns +/-Infinity for monotonically-increasing fields
(epoch, julian, year, isoyear, decade, century, and millennium). For other fields, NULL is re-
turned. Postgres Pro versions before 9.6 returned zero for all cases of infinite input.

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part ('field', source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40");
Result: 16

SELECT date_part ('hour', INTERVAL '4 hours 3 minutes');
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the trunc function for numbers.

date_trunc('field', source)

source is a value expression of type timestamp or interval. (Values of type date and time are cast
automatically to timestamp or interval, respectively.) field selects to which precision to truncate the
input value. The return value is of type timestamp or interval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month
quarter

year

decade
century
millennium

Examples:

SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40");
Result: 2001-02-16 20:00:00

SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40");
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

222

Functions and Operators

The AT TIME ZONE converts time stamp without time zone to/from time stamp with time zone, and time
values to different time zones. Table 9.31 shows its variants.

Table 9.31. AT TIME ZONE Variants

Expression Return Type Description
timestamp without time zone|timestamp with time =zone Treat given time stamp without
AT TIME ZONE zone time zone as located in the speci-

fied time zone

timestamp with time zone AT|timestamp without time zone |Convert given time stamp with
TIME ZONE zone time zone to the new time zone,
with no time zone designation

time with time zone AT TIME|time with time =zone Convert given time with time zone
ZONE zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., 'Ameri-
ca/Los_Angeles') or as an interval (e.g., INTERVAL '-08:00"). In the text case, a time zone name can
be specified in any of the ways described in Section 8.5.3.

Examples (assuming the local time zone is America/Los_Angeles):

SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 18:38:40

SELECT TIMESTAMP '2001-02-16 20:38:40-05"'" AT TIME ZONE 'Asia/Tokyo' AT TIME ZONE
'America/Chicago’;
Result: 2001-02-16 05:38:40

The first example adds a time zone to a value that lacks it, and displays the value using the current
TimeZone setting. The second example shifts the time stamp with time zone value to the specified time
zone, and returns the value without a time zone. This allows storage and display of values different from
the current TimeZone setting. The third example converts Tokyo time to Chicago time. Converting time
values to other time zones uses the currently active time zone rules since no date is supplied.

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct timestamp AT
TIME ZONE zone.

9.9.4. Current Date/Time

Postgres Pro provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and LOCALTIMESTAMP
deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a precision
parameter, which causes the result to be rounded to that many fractional digits in the seconds field.
Without a precision parameter, the result is given to the full available precision.

223

Functions and Operators

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same
time stamp.

Note

Other database systems might advance these values more frequently.

Postgres Pro also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functions is:

transaction_timestamp ()
statement_timestamp ()
clock_timestamp ()
timeofday ()

now ()

transaction_timestamp () is equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect what it
returns. statement_timestamp () returns the start time of the current statement (more specifically, the
time of receipt of the latest command message from the client). statement_timestamp () and transac—
tion_timestamp () return the same value during the first command of a transaction, but might differ
during subsequent commands. clock_timestamp () returns the actual current time, and therefore its
value changes even within a single SQL command. timeofday () is a historical Postgres Pro function.
Like clock_timestamp (), it returns the actual current time, but as a formatted text string rather than a
timestamp with time zone value. now () is a traditional Postgres Pro equivalent to transaction_time-
stamp ().

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP 'now'; —-- but see tip below

Tip
Do not use the third form when specifying a value to be evaluated later, for example in a DEFAULT
clause for a table column. The system will convert now to a timestamp as soon as the constant is

parsed, so that when the default value is needed, the time of the table creation would be used!
The first two forms will not be evaluated until the default value is used, because they are function

224

Functions and Operators

calls. Thus they will give the desired behavior of defaulting to the time of row insertion. (See also
Section 8.5.1.4.)

9.9.5. Delaying Execution

The following functions are available to delay execution of the server process:

pPg_sleep (seconds)
prg_sleep_for (interval)
pg_sleep_until (timestamp with time zone)

pg_sleep makes the current session's process sleep until seconds seconds have elapsed. seconds is
a value of type double precision, so fractional-second delays can be specified. pg_sleep_for is a
convenience function for larger sleep times specified as an interval. pg_sleep_until is a convenience
function for when a specific wake-up time is desired. For example:

SELECT pg_sleep(1.5);
SELECT pg_sleep_for ('S5 minutes');
SELECT pg_sleep_until ('tomorrow 03:00");

Note

The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value.
The sleep delay will be at least as long as specified. It might be longer depending on factors such
as server load. In particular, pg_sleep_until is not guaranteed to wake up exactly at the specified
time, but it will not wake up any earlier.

Warning

Make sure that your session does not hold more locks than necessary when calling pg_sleep or
its variants. Otherwise other sessions might have to wait for your sleeping process, slowing down
the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.32. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'purple');
Table 9.32. Enum Support Functions
Function Description Example Example Result
enum_first (anyenum) Returns the first value of|enum_first (red

the input enum type null::rainbow)
enum_last (anyenum) Returns the last value of|enum_last (purple

the input enum type

null::rainbow)

enum_range (anyenum)

Returns all values of the
input enum type in an or-
dered array

enum_range (
null::rainbow)

{red, orange,
yellow,green,blue,
purple}

enum_range (anyenum,
anyenum)

Returns the range be-
tween the two given
enum values, as an or-
dered array. The values
must be from the same
enum type. If the first pa-

enum_range (
'orange'::rainbow,
'green'::rainbow)

{orange,yellow,
greent

enum_range (NULL,
'green'::rainbow)

{red, orange,
yellow,greent

225

Functions and Operators

Function

Description

Example

Example Result

rameter is null, the result
will start with the first
value of the enum type.
If the second parameter
is null, the result will end
with the last value of the

enum_range (
'orange'::rainbow,
NULL)

{orange, yellow,
green,blue,purple}

enum type.

Notice that except for the two-argument form of enum_range, these functions disregard the specific value
passed to them; they care only about its declared data type. Either null or a specific value of the type
can be passed, with the same result. It is more common to apply these functions to a table column or

function argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators

The geometric types point, box, 1seg, line, path, polygon, and circle have alarge set of native support

functions and operators, shown in Table 9.33, Table 9.34, and Table 9.35.

types.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the point, box,
polygon, and circle types. Some of these types also have an = operator, but = compares for equal
areas only. The other scalar comparison operators (<= and so on) likewise compare areas for these

Table 9.33. Geometric Operators

Operator Description Example
+ Translation box '((0,0), (1,1))" +
point ' (2.0,0)"
- Translation box '((0,0),(1,1))" -
point '(2.0,0)"
* Scaling/rotation box '((0,0),(1,1))" *
point ' (2.0,0)"
/ Scaling/rotation box '((0,0),(2,2))" /
point ' (2.0,0)"
Point or box of intersection box "((1,-1), (-1,1))"
box ' ((1,1), (=2,-2))"
Number of points in path or poly-|# path ' ((1,0), (0,1), (
gon -1,0))"
@-@ Length or circumference @-@ path '((0,0), (1,
0))"
Q@ Center @@ circle '((0,0),10)"
4 Closest point to first operand on|point ' (0,0)' ## lseg ' ((
second operand 2,0),(0,2))"
<> Distance between circle '((0,0),1)' <->
circle ' ((5,0),1)"
&& Overlaps? (One point in common|box ' ((0,0), (1,1))"' &&
makes this true.) box '((0,0), (2,2))"'
<< Is strictly left of? circle '((0,0),1)'" <<
circle '"((5,0),1)"

226

Functions and Operators

Operator Description Example

>> Is strictly right of? circle " ((5,0),1)" >>
circle '((0,0),1)"

&< Does not extend to the right of? |box ' ((0,0), (1,1))"' &<
box ' ((0,0),(2,2))"

&> Does not extend to the left of? box '((0,0),(3,3))"' &>
box ' ((0,0),(2,2))"'

<< Is strictly below? box ' ((0,0), (3,3))" <<|
box ' ((3,4),(5,5))"

| >> Is strictly above? box ' ((3,4),(5,5))" |>>
box ' ((0,0), (3,3))"'

£<| Does not extend above? box '((0,0), (1,1))" &<|
box ' ((0,0),(2,2))"

| &> Does not extend below? box ' ((0,0),(3,3))" |&>
box ' ((0,0),(2,2))"

< Is below (allows touching)? circle " ((0,0),1)" <
circle '((0,5),1)"

>N Is above (allows touching)? circle '((0,5),1)" >n
circle '((0,0),1)"

24 Intersects? lseg '((-1,0),(1,0)) "' ?
box '((-2,-2),(2,2))"

72— Is horizontal? ?- lseg '((-1,0), (1,
0))"

?2— Are horizontally aligned? point '(1,0)' ?- point '(
0,0)"

2 Is vertical? ? | lseg '((-1,0), (1,
0))!'

? Are vertically aligned? point '(0,1)' ?| point '(
0,0)"

?2- Is perpendicular? lseg '((0,0), (0,
1))" 2-1 lseg '((0,0), (
1,0))"

211 Are parallel? lseg "((=1,0), (1,
0))" 211 1seg '((-1,2), (
1,2))"

@> Contains? circle '((0,0),2)" @>
point '(1,1)"

<@ Contained in or on? point '(1,1)' <@ circle ' (
(06,0),2)"

~= Same as? polygon '((0,0), (1,
1))' ~= polygon ' ((1,1),
(0,0))"

Note

Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called ~ and @.
These names are still available, but are deprecated and will eventually be removed.

227

Functions and Operators

Table 9.34. Geometric Functions

box)

Function Return Type Description Example

area(object) double precision area area (box '((0,0),
(1, 1))")

center (object) point center center (box ' ((0,
0),(1,2))")

diameter (circle) double precision diameter of circle diameter (circle '(
(0,0),2.0)")

height (box) double precision vertical size of box height (box ' ((0,
0),(1,1))")

isclosed(path) boolean a closed path? isclosed(path ' ((
0,0),(1,1), (2,
0"

isopen(path) boolean an open path? isopen (path ' (0,
0), (1,1), (2,
01"

length (object) double precision length length (path ' ((-1,
0),(1,0))")

npoints (path) int number of points npoints (path '[(O,
0), (1,1), (2,
01"

npoints (polygon) int number of points npoints (polygon ' (
(1,1),(0,0))")

pclose(path) path convert path to closed |pclose(path [(0,
0), (1,1), (2,
01"

popen (path) path convert path to open popen (path ' ((0,
0), (1,1), (2,
o))"

radius (circle) double precision radius of circle radius (circle ' ((
0,0),2.0)")

width (box) double precision horizontal size of box width (box ' ((0,
o), (1,1))")

Table 9.35. Geometric Type Conversion Functions

Function Return Type Description Example

box (circle) box circle to box box (circle ' ((O,
0),2.0)")

box (point) box point to empty box box (point ' (0,0)")

box (point, point) box points to box box (point '(0,0)',
point '(1,1)")

box (polygon) box polygon to box box (polygon ' ((0,
0), (1,1), (2,
0"

bound_box (box, box boxes to bounding box |bound_box (box ' ((

0,00, (L, 1)) ",
box ' ((3,3), (

4,4))")

228

Functions and Operators

Function Return Type Description Example

circle(box) circle box to circle circle (box '((0,
0), (1, 1))")

circle(point, dou-|circle center and radius to cir-|circle (point ' (0,

ble precision) cle 0)', 2.0)

circle(polygon) circle polygon to circle circle (polygon ' ((
0,0),(1,1), (2,
o))"

line(point, point) |line points to line line (point '(-1,
0)', point '(1,
0"

lseg(box) lseg box diagonal to line seg-|1seg (box ' ((-1,

ment 0),(2,0))")

lseg(point, point) |lseg points to line segment |1seg(point '(-1,
0)'s point '(1,
0"

path (polygon) path polygon to path path (polygon '
0,0),(1,1), (2,
o))"

point (double preci-|point construct point point (23.4, -44.5)

sion, double preci-

sion)

point (box) point center of box point (box ' ((-1,
0),(1,0))")

point (circle) point center of circle point (circle '
0,0),2.0)")

point (lseq) point center of line segment |point (lseg '((-1,
0),(1,0))")

point (polygon) point center of polygon point (polygon ' ((
0,0),(1,1), (2,
o))"

polygon (box) polygon box to 4-point polygon |polygon (box ' ((0,
0),(1,1))")

polygon(circle) polygon circle to 12-point poly-|polygon (circle ' ((

gon 0,0),2.0)")

polygon (npts, cir—-|polygon circle to npts-point poly-|polygon (12, circle

cle) gon '((0,0),2.0)")

polygon(path) polygon path to polygon polygon (path "

0,0),(1,1), (2,
0"

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t.p is a point column then SELECT pl[0]

coordinate and UPDATE t SET p[l1l] =
box Or 1seg can be treated as an array of two point values.

The area function works for the types box, circle, and path. The area function only works on the
path data type if the points in the path are non-intersecting. For example, the path ' ((0,0), (0,1),
(2,1),(2,2),(1,2),(1,0), (0,0)) '::PATH will not work; however, the following visually identical path
"((0,0), (0,1),(1,1),(1,2),(2,2),(2,1),(1,1), (1,0), (0,0)) '::PATH will work. If the concept of

FROM t retrieves the X
. changes the Y coordinate. In the same way, a value of type

Functions and Operators

an intersecting versus non-intersecting path is confusing, draw both of the above paths side by side on
a piece of graph paper.

9.12. Network Address Functions and Operators

Table 9.36 shows the operators available for the cidr and inet types. The operators <<, <<=, >>, >>=,
and ss test for subnet inclusion. They consider only the network parts of the two addresses (ignoring
any host part) and determine whether one network is identical to or a subnet of the other.

Table 9.36. cidr and inet Operators

Operator Description Example

< is less than inet '192.168.1.5' < inet
'192.168.1.6"

<= is less than or equal inet '192.168.1.5' <= inet
'192.168.1.5"

= equals inet '192.168.1.5' = inet
'192.168.1.5"

>= is greater or equal inet '192.168.1.5' >= inet
'192.168.1.5"

> is greater than inet '192.168.1.5' > inet
'192.168.1.4"

<> is not equal inet '192.168.1.5' <> inet
'192.168.1.4"

<< is contained by inet '192.168.1.5' << inet
'192.168.1/24"

<<= is contained by or equals inet '192.168.1/24' <<= inet
'192.168.1/24"

>> contains inet '192.168.1/24' >> inet
'192.168.1.5"

>>= contains or equals inet '192.168.1/24' >>= inet
'192.168.1/24"

&& contains or is contained by inet '192.168.1/24' && inet
'192.168.1.80/28"

~ bitwise NOT ~ inet '192.168.1.6"'

& bitwise AND inet '192.168.1.6' & inet
'0.0.0.255"

bitwise OR inet '192.168.1.6' | inet

'0.0.0.255"

+ addition inet '192.168.1.6"' + 25

- subtraction inet '192.168.1.43' - 36

- subtraction inet '192.168.1.43' - inet
'192.168.1.19"

Table 9.37 shows the functions available for use with the cidr and inet types. The abbrev, host, and
text functions are primarily intended to offer alternative display formats.

Table 9.37. cidr and inet Functions

Function

Return Type

Description

Example

Result

abbrev (

inet)

text

abbreviated display
format as text

abbrev (inet
'10.1.0.0/16")

10.1.0.0/16

230

Functions and Operators

Function Return Type Description Example Result
abbrev (cidr) text abbreviated display|abbrev (cidr 10.1/16
format as text '10.1.0.0/16")
broadcast (inet) |inet broadcast address|broadcast (192.168.1.255/24
for network '192.168.1.5/24")
family (inet) int extract family of ad-| family ('::1") 6
dress; 4 for IPv4, 6
for IPv6
host (inet) text extract IP address|host (192.168.1.5
as text '192.168.1.5/24")
hostmask (inet) inet construct host|hostmask (0.0.0.3
mask for network |'192.168.23.20/30[")
masklen(inet) int extract netmask|masklen (24
length '192.168.1.5/24")
netmask (inet) inet construct netmask|netmask (255.255.255.0
for network '192.168.1.5/24")
network (inet) cidr extract network |network (192.168.1.0/24
part of address '192.168.1.5/24")
set_masklen (inet set netmask length|set_masklen(192.168.1.5/16
inet, int) for inet value '192.168.1.5/24",
106)
set_masklen (cidr set netmask length|set_masklen(192.168.0.0/16
cidr, int) for cidr value '192.168.1.0/24":|:cidr,
16)
text (inet) text extract IP address|text (inet 192.168.1.5/32
and netmask length|'192.168.1.5")
as text
inet_same_ boolean are the addresses inet_same_ false
family (inet, from the same fam-|family (
inet) ily? '192.168.1.5/24",
Yl
inet_merge (cidr the smallest net-|inet_merge(192.168.0.0/22
inet, inet) work which in-{'192.168.1.5/24",
cludes both of the|r192.168.2.5/24")
given networks

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr, it
is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet value
to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a valid cidr
value. In addition, you can cast a text value to inet or cidr using normal casting syntax: for example,

inet (expression) Or colname: :cidr.

Table 9.38 shows the functions available for use with the macaddr type. The function trunc (macaddr)
returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining
prefix with a manufacturer.

Table 9.38. macaddr Functions

Function

Return Type

Description

Example

Result

trunc (macaddr)

macaddr

set last 3 bytes to
Zero

trunc (macaddr
'12:34:56:78:90:a

12:34:56:00:00:00
')

231

Functions and Operators

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical order-

ing, and the bitwise arithmetic operators (~, & and |) for NOT, AND and OR.

Table 9.39 shows the functions available for use with the macaddrs8 type. The function trunc (macaddrs8)

returns a MAC address with the last 5 bytes set to zero. This can be used to associate the remaining

prefix with a manufacturer.

Table 9.39. macaddr8 Functions

clusion in an IPv6
address

'00:34:56:ab:cd:e
£f")

Function Return Type Description Example Result
trunc(macaddr8) |macaddr8 set last 5 bytes to|trunc (macaddrs8 12:34:56:00:00:00|:
Zero '12:34:56:78:90:ap:cd:e-
f£f')
macaddr8_ macaddrs8 set 7th bit to one, al-|macaddrs_ 02:34:56:ff:fe:ab:
set7bit (so known as modi-|set7bit (
macaddr8) fied EUI-64, for in-|\macaddrs

The macaddrs8 type also supports the standard relational operators (>, <=, etc.) for ordering, and the

bitwise arithmetic operators (~, & and |) for NOT, AND and OR.

9.13. Text Search Functions and Operators

Table 9.40, Table 9.41 and Table 9.42 summarize the functions and operators that are provided for full

text searching. See Chapter 12 for a detailed explanation of Postgres Pro's text search facility.

Table 9.40. Text Search Operators

Operator Return Type Description Example Result
@@ boolean tsvector matches|to_tsvector(t
tsquery ? 'fat cats ate
rats"') @@ to_
tsquery ('cat &
rat')
ere@ boolean deprecated Syn-|to_tsvector (t
onym for ee 'fat cats ate
rats') @Q@Q@ to_
tsquery ('cat &
rat')
|| tsvector concatenate tsvec—|'a:1 b:2'::tsvec—|'a':1 'D':2,5
torS tor || 'c:1 d:2|'c':3 'd':4
b:3'::tsvector
§&6& tsquery AND tsquerys to-|'fat | rat'::t—|('"fat' | 'rat')
gether squery &&|& 'cat'
'cat'::tsquery
|| tsquery OR tsquerys to-|'fat | rat'::t—|('"fat' | 'rat')
gether squery [1|l 'cat'
'cat'::tsquery
H tsquery negate a tsquery 'l "cat'::tsquery|!'cat'
<=> tsquery tsquery followed|to_tsquery ("fat' <-> 'rat'
by tsquery "fat') <-> to_
tsquery ('rat')

232

00:

cd:

Functions and Operators

Operator Return Type Description Example Result
@> boolean tsquery contains|'cat'::tsquery @>|f
another ? 'cat & rat'::ts-
query
<@ boolean tsquery IS con-|'cat'::tsquery <@|t
tained in ? 'cat & rat'::ts-
query
Note

The tsquery containment operators consider only the lexemes listed in the two queries, ignoring
the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc)
are defined for types tsvector and tsquery. These are not very useful for text searching but allow, for
example, unique indexes to be built on columns of these types.

Table 9.41. Text Search Functions

Function Return Type Description Example Result
array_to_ tsvector convert array oflex-|array_to_ 'cat' 'fat' 'rat'
tsvector (emes to tsvector |tsvector (
text[]) '{fat, cat,

rat}'::text[])
get_current_ regconfig get default text|get_current_ english
ts_config() search configura-|ts_config()

tion

length (integer number of lexemes|length('fat:2, 3
tsvector) in tsvector 4 cat:3

rat:5A"': :tsvec—

tor)
numnode (integer number of lexemes numnode (' (fat 5
tsquery) plus operators in|s rat) | cat'::t-

tsquery squery)

plainto_ tsquery produce tsquery|plainto_ 'fat' & 'rat'
tsquery ([config ignoring punctua-|tsquery (
regconfig ,] tion 'english', 'The
query text) Fat Rats')
phraseto_ tsquery produce tsquery|phraseto_ 'fat' <-> 'rat'
tsquery ([config that searches for|tsquery(
regconfig ,] a phrase, ignoring|'english', 'The
query text) punctuation Fat Rats')
websearch_to_ tsquery produce tsquery|websearch_to_ 'fat' <=> 'rat'
tsquery ([config from a web search|tsquery ('rat'
regconfig ,] StYquuer 'english', '""fat
query text) rat" or rat')
querytree(query |text get indexable part|querytree ('foo 'foo'
tsquery) of a tsquery & ! bar'::ts-

query)
setweight (tsvector assign weight to|setweight ('cat':3A
vector tsvector, each element of| 'fat:2,4 cat:3 |'fat':2A,4A
weight "char") vector 'rat':5A

233

Functions and Operators

Function Return Type Description Example Result
rat:5B'::tsvec—
tor, 'A')
setweight (tsvector assign weight to el-|setweight ('cat':3A 'fat':2,
vector tsvector, ements of vector|'fat:2,4 cat:3 |4 'rat':5A
weight "char", that are listed in|rat:5B'::tsvec-
lexemes text[]) lexemes tor, 'AY,
'{cat,rat}")
strip(tsvector) |tsvector remove positions|strip ('fat:2,4 'cat' 'fat' 'rat'
and weights from|cat:3
tsvector rat:5A': :tsvec—
tor)
to_tsquery ([tsquery normalize words|to_tsquery ("fat' & 'rat'
config regconfig and convert to ts—|'english', 'The
;] query text) query & Fat & Rats')
to_tsvector ([tsvector reduce document|to_tsvector ("fat':2 'rat':3
config regconfig text to tsvector 'english', 'The
,] document Fat Rats')
text)
to_tsvector ([tsvector reduce each string|to_tsvector("fat':2 'rat':3
config regconfig value in the dOCU-'english',
,] document ment to a tsvec—|'{"a": "The Fat
json (b)) tor, and then con-|Rats"}'::json)
catenate those in
document order to
produce a single
tsvector
Jjson (b)_to_ tsvector reduce each Vahméjson_to_ '123':5 'fat':2
tsvector ([con— in the document,|tsvector ("rat':3
fig regcon- specified by fil-|'english',
fig,] document ter to a tsvec—|'{"a": "The Fat
json(b) , filter tor, and then con-|rats", "
json (b)) catenate those in|123}'::9son,
document order to|r["string", "nu-
produce a single|pericnir)

tsvector. filteris
a jsonb array, that
enumerates what
kind of elements
need to be includ-
ed into the resulting
tsvector. Possible
values for filter
are "string" (to in-
clude all string val-
ues), "numeric" (
to include all nu-
meric values in
the string format),
"boolean" (to in-
clude all Boolean
values in the string
format "true"/
"false"), "key" (

234

Functions and Operators

Function Return Type Description Example Result
to include all keys)
or "all" (to in-
clude all above).
These values can be
combined together
to include, e.g., all
string and numeric
values.
ts_delete(tsvector remove gh@n.lex— ts_delete('cat':3 'rat':5A
vector tsvector, eme from vector 'fat:2,14 cat:3
lexeme text) rat:5A': :tsvec—
tor, 'fat')
ts_delete(tsvector remove any ocCcur-|ts_delete ('cat':3
vector tsvector, rence of lexemes in|'fat:2,4 cat:3
lexemes text|[]) lexemes from vec—|rat:5A"'::tsvec—
tor tor, AR-
RAY['fat',
'rat'])
ts_filter(tsvector select only ele-|ts_filter('cat':3B 'rat':5A
vector tsvector, ments with given|'fat:2,4 cat:3b
weights "char"[]) weights from vec—|rat:5A'::tsvec-
tor tor, '{a,b}")
ts_headline ([text display a query|ts_headline('x x y z
config regcon- match y z', 'z':i:its—
fig,] document query)
text, query ts-—
query [, options
text 1)
ts_headline ([text display a query|ts_headline({"a":"x y z</
config regcon- match {"a":"x b>"}
fig,] document z"}'::json,
json(b) , query 'z'::tsquery)
tsquery [, op-—
tions text])
ts_rank ([float4 rank document for|ts_rank(0.818
weights query textsearch,
floatd[],] vec— query)
tor tsvector,
query tsquery [,
normalization in-—
teger 1)
ts_rank_cd ([float4 rank document for|ts_rank_cd(2.01317
weights query using cover|'{0.1, 0.2,
float4[], 1 vec- density 0.4, 1.0},
tor tsvector, textsearch,
query tsquery [, query)
normalization in-—
teger 1)
ts_rewrite tsquery replace target with|ts_rewrite ('a & 'b' & ('foo' |
query tsquery, substitute within|b'::tsquery, 'bar')

target tsquery,

query

'a'::tsquery,

235

Functions and Operators

Function Return Type Description Example Result
substitute ts— 'foo|
query) bar'::tsquery)
ts_rewrite(tsquery replace using tar-|SELECT ts_ |'b' & ('foo' |
query tsquery, gets and substi-|rewrite('a & |'bar')
select text) tutes from a SELECT|b' : :tsquery,
command "SELECT t,s FROM

aliases')
tsquery_ tsquery make query thattsquery_ 'fat' <-> 'cat'
phrase (queryl searches for queryl|phrase (to_
tsquery, query?2 followed by query2|tsquery (
tsquery) (same as <-> opera-|'fat'), to_ts-

tor) query ('cat'))

tsquery_ tsquery make query that|tsquery_ 'fat' <10> 'cat'
phrase (queryl searches for query1 phrase (to_
tsquery, query?2 followed by query2|tsquery (
tsquery, dis-— at distance dis-|'fat'), to_ts-
tance integer) tance query ('cat'),

10)
tsvector_to_ text[] convert tsvector|tsvector_to_ {cat, fat, rat}
array (tsvector) to array of lexemes array('fat:2,4

cat:3

rat:5A"'::tsvec—

tor)
tsvector_ trigger trigger function for|CREATE TRIG-
update_ automatic tsvec-|GER tsvec-—
trigger () tor column update |tor_update_

trigger (

tsvcol, 'Po_

cata-

log.swedish',

title, body)
tsvector_ trigger trigger function for|CREATE TRIG-
update_ automatic tsvec-|GER tsvec-—
trigger_ tor column update |tor_update_
column () trigger_

column (tsvcol,

configcol, ti-

tle, body)
unnest (setof record expand a tsvector|unnest ('fat:2, (cat, {3},
tsvector, OuUT to a set of rows 4 cat:3|{D})
lexeme text, rat:5A"'::tsvec—
OUuT positions tor)
smallint[], OUT

weights text)

Note

All the text search functions that accept an optional regconfig argument will use the configuration
specified by default text search config when that argument is omitted.

236

Functions and Operators

The functions in Table 9.42 are listed separately because they are not usually used in everyday text
searching operations. They are helpful for development and debugging of new text search configura-
tions.

Table 9.42. Text Search Debugging Functions

Function Return Type Description Example Result

ts_debug ([con—|setof record test a configuration |ts_debug ((asciiword,

fig regconfig, 1 'english', 'The |"Word, all
document text, Brightest super—-|ASCII", The,

OUT alias text, novaes') {english__

ouT description stem},english_
text, OUT token stem, {})

text, OUT dic—
tionaries regdic-—
tionaryl[], OouUT
dictionary reg-—
dictionary, OUT
lexemes text[])

ts_lexize(dict |text[] test a dictionary ts_lexize({star}
regdictionary, 'english_

token text) stem', 'stars')

ts_parse (setof record test a parser ts_parse ((1, foo)
parser_name 'default’', 'foo

text, document - bar')

text, OUT tokid
integer, OUT to-

ken text)
ts_parse (setof record test a parser ts_parse (3722, (1, foo)
parser_oid oid, 'foo — bar')

document text,
OUT tokid inte-
ger, OUT token

text)

ts_token_ setof record get token types de-|ts_token_ (1,asciiword,
type (parser_ fined by parser type ('default') |"Word, all
name text, OUT ASCII")

tokid 1integer,
OUT alias text,
ouT description

text)

ts_token_ setof record get token types de-|ts_token_ (1,asciiword,
type (parser_ fined by parser type (3722) "Word, all
oid oid, ouT ASCII")

tokid integer,
OUT alias text,
OouT description

text)

ts_stat (setof record get statistics of a|ts_stat ((foo, 10,
sglquery text, [tsvector column 'SELECT vector|15)
weights text, | from apod')

OUT word text,
OUT ndoc inte-

237

Functions and Operators

Function Return Type Description Example Result

ger, OUT nentry
integer)

9.14. XML Functions

The functions and function-like expressions described in this section operate on values of type xml. See
Section 8.13 for information about the xml type. The function-like expressions xmlparse and xmlseri-
alize for converting to and from type xml are documented there, not in this section.

Use of most of these functions requires Postgres Pro to have been built with configure —--with-1libxml.

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing
in client applications.

9.14.1.1. xmlcomment
xmlcomment (text)

The function xmlcomment creates an XML value containing an XML comment with the specified text as
content. The text cannot contain “--" or end with a “-” so that the resulting construct is a valid XML
comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment ('hello');

xmlcomment

<!--hello——>

9.14.1.2. xmlconcat

xmlconcat (xml[, ...])

The function xmlconcat concatenates a list of individual XML values to create a single value contain-
ing an XML content fragment. Null values are omitted; the result is only null if there are no nonnull
arguments.

Example:

SELECT xmlconcat ('<abc/>', '<bar>foo</bar>"');

xmlconcat

<abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version
declaration, that version is used in the result, else no version is used. If all argument values have the
standalone declaration value “yes”, then that value is used in the result. If all argument values have a
standalone declaration value and at least one is “no”, then that is used in the result. Else the result will
have no standalone declaration. If the result is determined to require a standalone declaration but no
version declaration, a version declaration with version 1.0 will be used because XML requires an XML
declaration to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:

SELECT xmlconcat ('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?
><bar/>"');

238

Functions and Operators

xmlconcat

<?xml version="1.1"?><foo/><bar/>

9.14.1.3. xmlelement

xmlelement (name name [, xmlattributes (value [AS attname] [, ... 1)] [, content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement (name foo);

xmlelement

<foo/>
SELECT xmlelement (name foo, xmlattributes ('xyz' as bar));

xmlelement

<foo bar="xyz"/>
SELECT xmlelement (name foo, xmlattributes (current_date as bar), 'cont', 'ent');

xmlelement

<foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH , where HHHH is the character's Unicode codepoint in hexadecimal
notation. For example:

SELECT xmlelement (name "fooS$bar", xmlattributes('xyz' as "a&b"));

xmlelement

<foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column's name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement (name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement (name test, xmlattributes('constant'), a, b) FROM test;
SELECT xmlelement (name test, xmlattributes (func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xml, complex XML documents can be constructed. For example:

SELECT xmlelement (name foo, xmlattributes('xyz' as bar),
xmlelement (name abc),
xmlcomment ('test'),
xmlelement (name xyz));

xmlelement

239

Functions and Operators

<foo bar="xyz"><abc/><!--test-——><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented
in base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The
particular behavior for individual data types is expected to evolve in order to align the Postgres Pro
mappings with those specified in SQL:2006 and later, as discussed in Section D.3.1.3.

9.14.1.4. xmnlforest
xmlforest (content [AS name] [, ...])

The xmlforest expression produces an XML forest (sequence) of elements using the given names and
content.

Examples:

SELECT xmlforest ('abc' AS foo, 123 AS bar);

xmlforest

<foo>abc</foo><bar>123</bar>

SELECT xmlforest (table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>
<table_name>pg_authid</table_name><column_name>rolsuper</column_name>

As seen in the second example, the element name can be omitted if the content value is a column refer-
ence, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xm1.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi (name target [, content])

The xmlpi expression creates an XML processing instruction. The content, if present, must not contain
the character sequence ?>.

Example:

SELECT =xmlpi (name php, 'echo "hello world";');
<?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot (xml, version text | no value [, standalone yes|no|no value])

240

Functions and Operators

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified, it
replaces the value in the root node's version declaration; if a standalone setting is specified, it replaces
the value in the root node's standalone declaration.

SELECT xmlroot (xmlparse (document '<?xml version="1.1"?><content>abc</content>"),
version '1.0', standalone yes);

xmlroot

<?xml version="1.0" standalone="yes"?>
<content>abc</content>

9.14.1.7. xmlagg

xmlagg (xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like xmlconcat does, except that concatenation
occurs across rows rather than across expressions in a single row. See Section 9.20 for additional infor-
mation about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>"');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
xmlagg

<foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
xmlagg

<bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
xmlagg

<bar/><foo>abc</foo>

9.14.2. XML Predicates

The expressions described in this section check properties of xml values.

9.14.2.1. 1S DOCUMENT

xml IS DOCUMENT

The expression 1S DOCUMENT returns true if the argument XML value is a proper XML document, false
if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

9.14.2.2. IS NOT DOCUMENT

xml IS NOT DOCUMENT

241

Functions and Operators

The expression 1S NOT DOCUMENT returns false if the argument XML value is a proper XML document,
true if it is not (that is, it is a content fragment), or null if the argument is null.

9.14.2.3. XMLEXISTS
XMLEXISTS (text PASSING [BY REF] xml [BY REF])

The function xmlexists evaluates an XPath 1.0 expression (the first argument), with the passed XML
value as its context item. The function returns false if the result of that evaluation yields an empty node-
set, true if it yields any other value. The function returns null if any argument is null. A nonnull value
passed as the context item must be an XML document, not a content fragment or any non-XML value.

Example:

SELECT =xmlexists('//town[text () = ''Toronto'']' PASSING BY REF '<towns><town>Toronto</
town><town>Ottawa</town></towns>"');

xmlexists

The BY REF clauses are accepted in Postgres Pro, but are ignored, as discussed in Section D.3.2. In the
SQL standard, the xmlexists function evaluates an expression in the XML Query language, but Postgres
Pro allows only an XPath 1.0 expression, as discussed in Section D.3.1.

9.14.2.4. xnl_is well formed

xml_is_well_ formed (text)
xml_is_well_formed_document (text)
xml_is_well_ formed_content (text)

These functions check whether a text string is well-formed XML, returning a Boolean result. xm-
1 is well formed_document checks for a well-formed document, while xml is well formed_ content
checks for well-formed content. xml_is_well_formed does the former if the xmloption configuration
parameter is set to DOCUMENT, or the latter if it is set to CONTENT. This means that xml1_is_well_ formed
is useful for seeing whether a simple cast to type xm1 will succeed, whereas the other two functions are
useful for seeing whether the corresponding variants of xMLPARSE will succeed.

Examples:

SET xmloption TO DOCUMENT;
SELECT xml_is_well_ formed('<>");
xml_is_well_ formed

SELECT xml_is_well_formed('<abc/>");
xml_is_well_ formed

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
xml_is_well_ formed

242

Functions and Operators

SELECT xml_is_well_formed_document ('<pg:foo xmlns:pg="http://postgresqgl.org/
stuff">bar</pg:foo>"');
xml_is_well_ formed_document

SELECT xml_is_well_formed_document ('<pg:foo xmlns:pg="http://postgresqgl.org/
stuff">bar</my:foo>");
xml_is_well_ formed_document

(1 row)

The last example shows that the checks include whether namespaces are correctly matched.

9.14.3. Processing XML

To process values of data type xml1, Postgres Pro offers the functions xpath and xpath_exists, which
evaluate XPath 1.0 expressions, and the xMLTABLE table function.

9.14.3.1. xpath

xpath (xpath, xml [, nsarray])

The function xpath evaluates the XPath 1.0 expression xpath (a text value) against the XML value xm1.
It returns an array of XML values corresponding to the node-set produced by the XPath expression. If
the XPath expression returns a scalar value rather than a node-set, a single-element array is returned.

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be
a two-dimensional text array with the length of the second axis being equal to 2 (i.e., it should be an
array of arrays, each of which consists of exactly 2 elements). The first element of each array entry is
the namespace name (alias), the second the namespace URI. It is not required that aliases provided in
this array be the same as those being used in the XML document itself (in other words, both in the XML
document and in the xpath function context, aliases are local).

Example:
SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>"',
ARRAY [ARRAY['my', 'http://example.com']]);
xpath
{test}
(1 row)

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text ()', 'test',
ARRAY [ARRAY ['mydefns', 'http://example.com']]);
xpath
{test}
(1 row)

9.14.3.2. xpath_exists

xpath_exists (xpath, xml [, nsarrayl)

243

Functions and Operators

The function xpath_exists is a specialized form of the xpath function. Instead of returning the individual
XML values that satisfy the XPath 1.0 expression, this function returns a Boolean indicating whether the
query was satisfied or not (specifically, whether it produced any value other than an empty node-set).
This function is equivalent to the xMLEXISTS predicate, except that it also offers support for a namespace
mapping argument.

Example:

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>"',
ARRAY [ARRAY['my', 'http://example.com']]);

xpath_exists

9.14.3.3. xmltable

xmltable ([XMLNAMESPACES (namespace uri AS namespace namel, ...1), |
row_expression PASSING [BY REF] document_expression [BY REF]
COLUMNS name { type [PATH column_expression] [DEFAULT default_expression]
[NOT NULL | NULL]
| FOR ORDINALITY }
(r -.-.1
)

The xmltable function produces a table based on the given XML value, an XPath filter to extract rows,
and a set of column definitions.

The optional XMLNAMESPACES clause is a comma-separated list of namespaces. It specifies the XML name-
spaces used in the document and their aliases. A default namespace specification is not currently sup-
ported.

The required row_expression argument is an XPath 1.0 expression that is evaluated, passing the doc-
ument_expression as its context item, to obtain a set of XML nodes. These nodes are what xmltable
transforms into output rows. No rows will be produced if the document_expression is null, nor if the
row_expression produces an empty node-set or any value other than a node-set.

document_expression provides the context item for the row_expression. It must be a well-formed XML
document; fragments/forests are not accepted. The BY REF clause is accepted but ignored, as discussed
in Section D.3.2. In the SQL standard, the xmltable function evaluates expressions in the XML Query
language, but Postgres Pro allows only XPath 1.0 expressions, as discussed in Section D.3.1.

The mandatory coLumMNSs clause specifies the list of columns in the output table. Each entry describes a
single column. See the syntax summary above for the format. The column name and type are required;
the path, default and nullability clauses are optional.

A column marked FOR ORDINALITY will be populated with row numbers, starting with 1, in the order
of nodes retrieved from the row_expression's result node-set. At most one column may be marked For
ORDINALITY.

Note

XPath 1.0 does not specify an order for nodes in a node-set, so code that relies on a particular
order of the results will be implementation-dependent. Details can be found in Section D.3.1.2.

The column_expression for a column is an XPath 1.0 expression that is evaluated for each row, with the
current node from the row_expression result as its context item, to find the value of the column. If no
column_expression is given, then the column name is used as an implicit path.

244

Functions and Operators

If a column's XPath expression returns a non-XML value (limited to string, boolean, or double in XPath
1.0) and the column has a Postgres Pro type other than xm1, the column will be set as if by assigning the
value's string representation to the Postgres Pro type. In this release, an XPath boolean or double result
must be explicitly cast to string (that is, the XPath 1.0 string function wrapped around the original
column expression); Postgres Pro can then successfully assign the string to an SQL result column of
boolean or double type. These conversion rules differ from those of the SQL standard, as discussed in
Section D.3.1.3.

In this release, SQL result columns of xml type, or column XPath expressions evaluating to an XML
type, regardless of the output column SQL type, are handled as described in Section D.3.2; the behavior
changes significantly in Postgres Pro 12.

If the path expression returns an empty node-set (typically, when it does not match) for a given row,
the column will be set to NULL, unless a default_expression is specified; then the value resulting from
evaluating that expression is used.

Columns may be marked NOT NULL. If the column_expression for a NOT NULL column does not match
anything and there is no DEFAULT or the default_expression also evaluates to null, an error is reported.

A default_expression, rather than being evaluated immediately when xmltable is called, is evaluated
each time a default is needed for the column. If the expression qualifies as stable or immutable, the
repeat evaluation may be skipped. This means that you can usefully use volatile functions like nextval
in default_expression.

Examples:

CREATE TABLE xmldata AS SELECT
xml $$
<ROWS>
<ROW id="1">
<COUNTRY_ID>AU</COUNTRY_ID>
<COUNTRY_NAME>Australia</COUNTRY_NAME>
</ROW>
<ROW id="5">
<COUNTRY_ID>JP</COUNTRY_ID>
<COUNTRY_NAME>Japan</COUNTRY_NAME>
<PREMIER_NAME>Shinzo Abe</PREMIER_NAME>
<SIZE unit="sgq mi">145935</SIZE>
</ROW>
<ROW id="6">
<COUNTRY_ID>SG</COUNTRY_ID>
<COUNTRY_NAME>Singapore</COUNTRY_NAME>
<SIZE unit="sqg_km">697</SIZE>
</ROW>
</ROWS>
$$ AS dataj;

SELECT xmltable.*
FROM xmldata,
XMLTABLE ('//ROWS/ROW'

PASSING data

COLUMNS id int PATH '@id',
ordinality FOR ORDINALITY,
"COUNTRY_NAME" text,
country_id text PATH 'COUNTRY_ID',

size_sqg_km float PATH 'SIZE[Qunit = "sqg km"]',
size_other text PATH
'concat (SIZE[Qunit!="sgq_km"], " ", SIZE[Qunit!="sqg_km"]/

Qunit) ',

245

Functions and Operators

premier_name text PATH 'PREMIER_NAME' DEFAULT 'not

specified') ;
id | ordinality | COUNTRY_NAME | country_id | size_sqg km | size_other | premier_name
————ee e e ————— e ————— e
+ _______________
1 | 1 | Australia | AU \ \ | not
specified
5 2 | Japan | JP \ | 145935 sg_mi | Shinzo Abe
6 | 3 | Singapore | SG \ 697 | | not
specified

The following example shows concatenation of multiple text() nodes, usage of the column name as XPath
filter, and the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xmlelements AS SELECT
xml $$
<root>
<element> Hello<!-- xyxxz -->2a2<?aaaaa?> <!-—-x—--> Dbbb<x>xxx</x>CC </element>
</root>
$$ AS data;

SELECT xmltable.*
FROM xmlelements, XMLTABLE ('/root' PASSING data COLUMNS element text);
element

Hello2a2 bbbCC

The following example illustrates how the xMLNAMESPACES clause can be used to specify a list of name-
spaces used in the XML document as well as in the XPath expressions:

WITH xmldata (data) AS (VALUES ('
<example xmlns="http://example.com/myns" xmlns:B="http://example.com/b">
<item foo="1" B:bar="2"/>
<item foo="3" B:bar="4"/>
<item foo="4" B:bar="5"/>
</example>"'::xml)
)
SELECT xmltable.*
FROM XMLTABLE(XMLNAMESPACES('http://example.com/myns' AS x,
'http://example.com/b' AS "B"),
'/x:example/x:item’
PASSING (SELECT data FROM xmldata)
COLUMNS foo int PATH '@foo',
bar int PATH '@B:bar');

foo | bar
_____ +_____
1 2
3 | 4
4 | 5
(3 rows)

9.14.4. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:

table_to_xml (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml (query text, nulls boolean, tableforest boolean, targetns text)

246

Functions and Operators

cursor_to_xml (cursor refcursor, count int, nulls boolean,
tableforest boolean, targetns text)

The return type of each function is xm1l.

table_to_xml maps the content of the named table, passed as parameter tb1. The regclass type accepts
strings identifying tables using the usual notation, including optional schema qualifications and double
quotes. query_to_xml executes the query whose text is passed as parameter query and maps the result
set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the parameter
cursor. This variant is recommended if large tables have to be mapped, because the result value is built
up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:

<tablename>
<row>
<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</row>

<row>
</row>

</tablename>
If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>
<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</tablename>

<tablename>

</tablename>

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the
first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which
will be important in many applications. The second format tends to be more useful in the cursor_to_xml
function if the result values are to be reassembled into one document later on. The functions for produc-
ing XML content discussed above, in particular xmlelement, can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null
values in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace declara-
tion will be added to the result value. If false, columns containing null values are simply omitted from
the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

247

Functions and Operators

The following functions return XML Schema documents describing the mappings performed by the cor-
responding functions above:

table_to_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xmlschema (cursor refcursor, nulls boolean, tableforest boolean, targetns
text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one docu-
ment (or forest), linked together. They can be useful where self-contained and self-describing results
are wanted:

table_to_xml_and_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns
text)

query_to_xml_and_xmlschema (query text, nulls boolean, tableforest boolean, targetns
text)

In addition, the following functions are available to produce analogous mappings of entire schemas or
the entire current database:

schema_to_xml (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xml_and_xmlschema (schema name, nulls boolean, tableforest boolean, targetns
text)

database_to_xml (nulls boolean, tableforest boolean, targetns text)
database_to_xmlschema (nulls boolean, tableforest boolean, targetns text)
database_to_xml_and_xmlschema (nulls boolean, tableforest boolean, targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>
tablel-mapping

table2-mapping

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>
<schemalname>
</éé£ema1name>
<schemaZname>

</schema2name>

248

Functions and Operators

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Example 9.1 shows an XSLT stylesheet
that converts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular
rendition of the table data. In a similar manner, the results from these functions can be converted into
other XML-based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML

<?xml version="1.0"?2>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/1999/xhtml"

<xsl:output method="xml"
doctype-system="http://www.w3.0rg/TR/xhtmll1/DTD/xhtmll-strict.dtd"
doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
indent="yes" />

<xsl:template match="/*">
<xsl:variable name="schema" select="//xsd:schema"/>
<xsl:variable name="tabletypename"
select="S$schema/xsd:element [@name=name (current ())]/QAtype"/>
<xsl:variable name="rowtypename"
select="$schema/xsd:complexType [@name=$tabletypename] /xsd:sequence/
xsd:element [@name="row'] /Qtype" />

<html>
<head>
<title><xsl:value-of select="name (current ())"/></title>
</head>
<body>
<table>
<tr>
<xsl:for-each select="$schema/xsd:complexType[@name=Srowtypename]/
xsd:sequence/xsd:element/@name">

<th><xsl:value-of select="."/></th>
</xsl:for—-each>
</tr>

<xsl:for-each select="row">
<tr>
<xsl:for-each select="*">
<td><xsl:value—-of select="."/></td>
</xsl:for—-each>
</tr>
</xsl:for—-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

9.15. JSON Functions and Operators

249

Functions and Operators

Table 9.43 shows the operators that are available for use with the two JSON data types (see Section 8.14).

Table 9.43. json and jsonb Operators

Operator Right Operand |Description Example Example Result
Type
-> int Get JSON array ele-| ' [{"a":"foo"}, {"c":"baz"}
ment (indexed from|{"b":"bar"},
zero, negative inte-|{"c":"baz"}] "9~
gers count from the|son->2
end)
-> text Get JSON object|'{"a": {"b":"foo"}
field by key {"b":"foo"}}"'::3-
son->"'a'
—->> int Get JSON array ele-|' [1, 2, 3
ment as text 3]'::json->>2
—->> text Get JSON object|'{"a":1, 2
field as text "b":2} ' -
son—->>'p"'
#> text[] Get JSON object at|'{"a": {"b":|{"c": "foo"}
specified path {"c":
"fOO"}}}'::j—
son#>"'{a,b}’
#>> text[] Get JSON object at|'{"a":[1,2,3], 3
specified path as|"pb":[4,s5,
text 6]1}'::json#>>"{a,
2}
Note

There are parallel variants of these operators for both the json and jsonb types. The field/el-
ement/path extraction operators return the same type as their left-hand input (either json or
jsonb), except for those specified as returning text, which coerce the value to text. The field/
element/path extraction operators return NULL, rather than failing, if the JSON input does not
have the right structure to match the request; for example if no such element exists. The field/
element/path extraction operators that accept integer JSON array subscripts all support negative
subscripting from the end of arrays.

The standard comparison operators shown in Table 9.1 are available for jsonb, but not for json. They
follow the ordering rules for B-tree operations outlined at Section 8.14.4. See also Section 9.20 for the
aggregate function json_agg which aggregates record values as JSON, the aggregate function json_ob-
ject_agg which aggregates pairs of values into a JSON object, and their jsonb equivalents, jsonb_agg
and jsonb_object_agg.

Some further operators also exist only for jsonb, as shown in Table 9.44. Many of these operators can be
indexed by jsonb operator classes. For a full description of jsonb containment and existence semantics,
see Section 8.14.3. Section 8.14.4 describes how these operators can be used to effectively index jsonb
data.

Table 9.44. Additional jsonb Operators

Operator Right Operand Type Description Example
@> jsonb Does the left JSON value|'{"a":1, "b":2}'::j-
contain the right JSON|sonb @> '{"b":2}'::j-
sonb

250

Functions and Operators

Operator Right Operand Type Description Example
path/value entries at the
top level?

<@ jsonb Are the left JSON path/|'{"b":2}"'::jsonb <@
value entries contained|'{"a":1, "b":2}'::j-
at the top level within the|sonb
right JSON value?

? text Does the string exist as|'{"a":1, "b":2}'::j-
a top-level key within the|sonb 2 'b’

JSON value?

? text [] Do any of these array|'{"a":1, "b":2,
strings exist as top-level|"c":31'::9sonb ?| ar-
keys? ray['b', 'c']

?& text [] Do all of these array|'(["a", "b"] -
strings exist as top-level|sonb ?2& array['a',
keys? "b']

| jsonb Concatenate two jsonb|'["a", "b"]'::jsonb
values into a new jsonb||]| '["c", "d"]'::j-
value sonb

- text Delete key/value pair or|'{"a": "b"}'::jsonb -
string element from left| 4"
operand. Key/value pairs
are matched based on
their key value.

- text[] Delete multiple key/val-|'{"a": "o, "N
ue pairs or string ele-|"d"}'::jsonb - '{a,
ments from left operand. | c}'::text[]

Key/value pairs are
matched based on their
key value.

- integer Delete the array element|' ["a", "b"]'::jsonb
with specified index (|- 1
Negative integers count
from the end). Throws an
error if top level contain-
er is not an array.

#- text[] Delete the field or ele-|'["a", {"b":1}]'::3-
ment with specified path|sonb #- '{1,b}"’

(for JSON arrays, nega-
tive integers count from
the end)

Note

The | | operator concatenates two JSON objects by generating an object containing the union of
their keys, taking the second object's value when there are duplicate keys. All other cases produce
a JSON array: first, any non-array input is converted into a single-element array, and then the
two arrays are concatenated. It does not operate recursively; only the top-level array or object
structure is merged.

Table 9.45 shows the functions that are available for creating json and jsonb values. (There are no
equivalent functions for jsonb, of the row_to_json and array_to_json functions. However, the to_j-
sonb function supplies much the same functionality as these functions would.)

251

Functions and Operators

Table 9.45. JSON Creation Functions

Function

Description

Example

Example Result

to_json (anyelement)

to_Jjsonb(
anyelement)

Returns the value as
json Or Jjsonb. Arrays
and composites are con-
verted (recursively) to
arrays and objects; oth-
erwise, if there is a cast
from the type to json,
the cast function will
be used to perform the
conversion; otherwise, a
scalar value is produced.
For any scalar type oth-
er than a number, a
Boolean, or a null val-
ue, the text representa-
tion will be used, in such
a fashion that it is a valid
json Or jsonb value.

to_json('Fred said

"Hi."'::text)

"Fred said \"Hi.\""

array_to_Jjson (
anyarray [, pretty_
bool])

Returns the array as a
JSON array. A Postgres
Pro multidimensional ar-
ray becomes a JSON ar-
ray of arrays. Line feeds
will be added between
dimension-1 elements if

pretty_bool is true.

array_to_json (
"{{1,5},{99,
100}}'::int[])

([1,51,099,1001]

row_to_json (record
[, pretty_booll])

Returns the row as a
JSON object. Line feeds
will be added between
level-1 elements if pret-

row_to_json (row (
1,'foo'))

{"fl":l, "f2":"foo"}

text[])

actly one dimension with
an even number of mem-
bers, in which case they
are taken as alternat-
ing key/value pairs, or
two dimensions such that
each inner array has

json_object ('{{a,
1},{b, "def"},{c,
3.51}")

ty_bool is true.
json_build_array (Builds a possibly-hetero-|json_build_array ((1, 2, "3", 4, 5]
VARIADIC "any") geneously-typed JSON|1,2,'3", 4, 5)
array out of a variadic ar-
jsonb_build_array (gument list.
VARIADIC "any")
json_build_object (Builds a JSON object out|json_build_object ({"foo": 1, "bar": 2}
VARIADIC "any") of a variadic argument|'foo', 1, 'bar’',?2)
list. By convention, the
jsonb_build_ argument list consists of
object (VARIADIC alternating keys and val-
"any") ues.
json_object (text[]) Builds a JSON object out|json_object ('{a, {"a": nyw, "Hr:
of a text array. The ar-|1, b, "def", c, "def", "c": "3.5"}
jsonb_object (ray must have either ex-(3.51")

252

Functions and Operators

Function Description

exactly two elements,
which are taken as a key/

Example Example Result

value pair.
json_object (keys This form of json_ob- |json_object ('{a, {"a": "1", "p": "2"}
text[], values |ject takes keys and val-|b}', '{1,2}")
text[]) ues pairwise from two

separate arrays. In all
other respects it is iden-
, values |tical tothe one-argument
) form.

jsonb_object (keys
text []
text[]

Note

array_to_json and row_to_json have the same behavior as to_json except for offering a pret-
ty-printing option. The behavior described for to_json likewise applies to each individual value
converted by the other JSON creation functions.

Note

The hstore extension has a cast from hstore to json, so that hstore values converted via the JSON
creation functions will be represented as JSON objects, not as primitive string values.

Table 9.46 shows the functions that are available for processing json and jsonb values.

Note

Functions manipulating JSONB do not accept the '\u0000' character. To handle this, you can
specify a unicode character in the unicode nul character replacement in jsonb configuration pa-
rameter to replace this character on the fly.

Table 9.46. JSON Processing Functions

Function Return Type Description Example Example Result
json_array_ int Returns the number|json_array_ 5
length (json) of elements in the|length('[1, 2,
outermost JSON ar-{3, {"f1":1,
jsonb_array_ ray. "f2":[5,61},
length (jsonb) 41)
json_each (setof key text, |Expands the outer-|select * from| key | value
json) value json most JSON object|json_each(= |-——-- to———
into a set of key/val-| ' {man:vfoom, a | "foo"
Jjsonb_each (setof key text, |ue pairs. "HU:"bar"}') b | "bar"
jsonb) value Jjsonb
json_each_ setof key text, |Expands the outer-|select * from| key | value
text (json) value text most JSON object|json_each. = |-———- o
into a set of key/|text (a | foo
jsonb_each_ value pairs. The re-| ' (nan.neoon, b | bar
text (jsonb) turned values will|npn. npgpnyr)
be of type text.
json_extract_ json Returns JSON val-|json_extract_ {"f5":99,
path (from_json ue pohmed to path('{"f2": "fo":"foo"}

253

Functions and Operators

Function Return Type Description Example Example Result
json, VARIADIC |jsonb by'_path_elems (|{"£3":1},"f4":
path_elems equivalent to #> op-|{"£5":99,
text[]) erator). "EG":"foo"}}',
'f4')
jsonb_extract_
path (from_json
jsonb, VARIADIC
path_elems
text[])
json_extract_ text Returns JSON val-|json_extract_ foo
path_text (ue pointed to|path_text (
from_json json, by path_elems as|'{"f2":
VARIADIC path_ text (equivalent to|{"f3m:1},"fan:
elems text[]) #>> operator). {"£5":99,

jsonb_extract_
path_text (
from_json

jsonb, VARIADIC
path_elems
text[])

"f6":"foo"}}',
'f4', 'f6')

json_object_

setof text

Returns set of keys

json_object_

json_object_keys

keys (json) in the outermost|ikeys(00|
JSON object. V{"EL":"abe, f1
jSOHb_ObjeCt_ vvfzvv:{vvf3vv:vvau f2
keys (jsonb) mE4M BN
json_populate_ anyelement Expands the ob-|create type my-| a | b
record (base ject in from_json |rowtype as (a c
anyelement, to a row whose|lint, b json, ¢ |-——F+-——————————-
from_json Jjson) columns match the|json); e
record type defined 11 {2,"a b"} |
jsonb_ by base (see note|select ¥ (4,"a b c")
populate_ below). from json_popu-
record (base late_record(
anyelement, null::myrow-
from_json jsonb) type, '{"a": 1,
"bUi o ("2, "a
b"}, "C": {"d":
4, "e" "a b
c"ri')
json_populate_ setof anyelement |Expands the out-|create type my-| a | b
recordset (base ermost array of|rowtype as (a |-———+-——-
anyelement, objects in from |int, b int); 112
from_json Jjson) Jjson to a set 31 4
of rows whose|select *
jsonb_ columns match the|from Jjson_popu-
populate_ record type defined|late_
recordset (base by base (see note|recordset (

anyelement,
from_json jsonb)

below).

null::myrow-—
type, '[{"a":1,
"b":Z},{"a":3,
lvblv:4}Jl) as
int, b int)

(a

254

Functions and Operators

Function Return Type Description Example Example Result
json_array_ setof Jjson Expands a JSON ar-|select * value
elements (json) ray to a set of JSON| from json_ar- |——————————-—
setof jsonb values. ray_elements (1
jsonb_array_ '[1,true, [2, true
elements (jsonb) falsell") [2, false]
json_array_ setof text Expands a JSON ar-|select * value
elements_text (ray to a set of text|from json_ar— |-———————————
json) values. ray_elements_ foo
text (' ["foo", bar
jsonb_array_ "bar"] ")
elements_text (
jsonb)
json_typeof (text Returns the type|json_typeof (number
json) of the outermost|'-123.4")
JSON value as a
jsonb_typeof (text string. Possible
jsonb) types are object,
array, string,
number, boolean,
and null.
json_to_ record Builds an arbitrary|create type my-| a | b |
record (json) record from a JSON |rowtype as (a c | d |
object (see note be-|int, b text); r
jsonb_to_ low). As with all ———t
record (jsonb) functions returning|select ol T — o
record, the caller|from json_to_ |+
must explicitly de-|record/(11 [1,2,3]1 |
fine the structure of| ' {"a":1, "b": {1,2,3} | |
the record with an|[1,2,37,"c": (123,"a b c")
As clause. [1,2,31,
"e":"bar","r":
{"a": 123, "b":
"abc"}}'") as x(
a int, b text, c
int[], d text,
r myrowtype)
json_to_ setof record Builds an arbitrary|select *la | b
recordset (json) set of records from|from json_to_ s
aJSON array of ob- recordset (1 | foo
jsonb_to_ jects (see note be-|'[{ma".1, 2
recordset (low). As with all{wpw.veoony,
jsonb) functions returning| ngn.non,
record, the caller "e"ivbar"}l') as
must explicitly de-|, 5 int, b
fine the structure of | o, .
the record with an
As clause.
json_strip_ json Returns from |json_strip_ [{"f1":1},2,
nulls (from_ json with all ob-|nulls(null, 3]
json json) jsonb ject fields that have|' [{"f1":1,
null values omitted.|"f2":null}, 2,
Other null values|nu1i,3]")

are untouched.

255

Functions and Operators

Function

Return Type

Description

Example

Example Result

jsonb_strip_
nulls (from_
json jsonb)

Jjsonb_set (
target
path text[],
new_value Jjsonb
[, create_miss-—
ing boolean])

jsonb,

jsonb

Returns target
with the section
designated by path
replaced by new_

value, or with
added
if create miss-

ing is true (de-
fault is true) and
the item designat-
ed by path does not
exist. As with the
path oriented oper-
ators, negative inte-
gers that appear in
path count from the
end of JSON arrays.

new_value

Jjsonb_set (
Y[{"f1":1,
"f2":null}, 2,
null,3]1', '{0,
f13y','12, 3,
41", false)

Jjsonb_set (
{"f1":1,
"f2":null},
21", "{0,£3}",
'[2,3,41")

[{"f1":[2,3,
41,"f2":null},
2,null, 3]

[{"flll: 1, nEom.
null, "£3": [2,
3, 41}, 2]

jsonb_insert (
target jsonb,
path text[],
new_value Jjsonb
[, insert_after
boolean])

jsonb

Returns target
with new _value in-
serted. If target
section designated
by path is in a
JSONB array, new_

value will be in-
serted before tar-
get or after if in-
sert_after istrue
(default is false).
If target section
designated by path
is in JSONB obiject,
new_value will be
inserted only if
target does not ex-
ist. As with the
path oriented oper-
ators, negative inte-
gers that appear in
path count from the
end of JSON arrays.

Jjsonb_insert (
v{uau: [0,1,
21y, "{a,
1}', ""new_val-
ue"l)

Jjsonb_insert (
{"a": [0,1,
21, "{a,
1", ""new_val-
ue"', true)

{"a": [O, "new_
value", 1, 2]}

{"a": [O,
1, "new_val-
ue", 21}

Jjsonb_pretty (
from_json jsonb)

text

Returns from_
json as indented
JSON text.

Jjsonb_pretty (

] [{"fl":l,
"f2":null}, 2,
null,3]")

"five 1,
"lel:
null
ty
2,
null,
3

256

Functions and Operators

Note

Many of these functions and operators will convert Unicode escapes in JSON strings to the appro-
priate single character. This is a non-issue if the input is type jsonb, because the conversion was
already done; but for json input, this may result in throwing an error, as noted in Section 8.14.

Note

The functions json[b]_populate_record, json[b]_populate_recordset, json[b]_to_record
and json[b]_to_recordset operate on a JSON object, or array of objects, and extract the values
associated with keys whose names match column names of the output row type. Object fields that
do not correspond to any output column name are ignored, and output columns that do not match
any object field will be filled with nulls. To convert a JSON value to the SQL type of an output
column, the following rules are applied in sequence:

¢ A JSON null value is converted to a SQL null in all cases.

* If the output column is of type json or jsonb, the JSON value is just reproduced exactly.

e If the output column is a composite (row) type, and the JSON value is a JSON object, the
fields of the object are converted to columns of the output row type by recursive application
of these rules.

» Likewise, if the output column is an array type and the JSON value is a JSON array, the ele-
ments of the JSON array are converted to elements of the output array by recursive applica-
tion of these rules.

* Otherwise, if the JSON value is a string literal, the contents of the string are fed to the input
conversion function for the column's data type.

e Otherwise, the ordinary text representation of the JSON value is fed to the input conversion
function for the column's data type.

While the examples for these functions use constants, the typical use would be to reference a
table in the FrROM clause and use one of its §son or jsonb columns as an argument to the function.
Extracted key values can then be referenced in other parts of the query, like WHERE clauses and
target lists. Extracting multiple values in this way can improve performance over extracting them
separately with per-key operators.

Note

All the items of the path parameter of jsonb_set as well as jsonb_insert except the last item
must be present in the target. If create_missing is false, all items of the path parameter of
jsonb_set must be present. If these conditions are not met the target is returned unchanged.

If the last path item is an object key, it will be created if it is absent and given the new value. If
the last path item is an array index, if it is positive the item to set is found by counting from the
left, and if negative by counting from the right - -1 designates the rightmost element, and so on.
If the item is out of the range -array length .. array length -1, and create missing is true, the new
value is added at the beginning of the array if the item is negative, and at the end of the array
if it is positive.

Note

The json_typeof function's null return value should not be confused with a SQL NULL. While
calling json_typeof ('null'::json) will return null, calling json_typeof (NULL: : json) will re-
turn a SQL NULL.

257

Functions and Operators

Note

If the argument to json_strip_nulls contains duplicate field names in any object, the result could
be semantically somewhat different, depending on the order in which they occur. This is not an
issue for jsonb_strip_nulls since jsonb values never have duplicate object field names.

9.16. Sequence Manipulation Functions

This section describes functions for operating on sequence objects, also called sequence generators
or just sequences. Sequence objects are special single-row tables created with CREATE SEQUENCE.
Sequence objects are commonly used to generate unique identifiers for rows of a table. The sequence
functions, listed in Table 9.47, provide simple, multiuser-safe methods for obtaining successive sequence
values from sequence objects.

Table 9.47. Sequence Functions

Function Return Type Description

currval (regclass) bigint Return value most recently ob-
tained with nextval for specified
sequence

lastval () bigint Return value most recently ob-
tained with nextval for any se-
quence

nextval (regclass) bigint Advance sequence and return
new value

setval (regclass, bigint) bigint Set sequence's current value

setval (regclass, bigint, |bigint Set sequence's current value and

boolean) is_called flag

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID by
hand, however, since the regclass data type's input converter will do the work for you. Just write the
sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility with
the handling of ordinary SQL names, the string will be converted to lower case unless it contains double
quotes around the sequence name. Thus:

nextval ('foo') operates on sequence foo
nextval ("FOO"') operates on sequence foo
nextval ('"Foo"") operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval ('myschema.foo') operates on myschema.foo
nextval ('"myschema".foo') same as above
nextval ('foo') searches search path for foo

See Section 8.19 for more information about regclass.

Note

Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not regclass,
and the above-described conversion from a text string to an OID value would happen at run time
during each call. For backward compatibility, this facility still exists, but internally it is now han-
dled as an implicit coercion from text to regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes a
constant of type regclass. Since this is really just an OID, it will track the originally identified se-
quence despite later renaming, schema reassignment, etc. This “early binding” behavior is usually

258

Functions and Operators

desirable for sequence references in column defaults and views. But sometimes you might want
“late binding” where the sequence reference is resolved at run time. To get late-binding behavior,
force the constant to be stored as a text constant instead of regclass:

nextval ('foo'::text) foo is looked up at runtime
Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is
a text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:
nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

If a sequence object has been created with default parameters, successive nextval calls will return
successive values beginning with 1. Other behaviors can be obtained by using special parameters in
the CREATE SEQUENCE command; see its command reference page for more information.

This function requires USAGE or UPDATE privilege on the sequence.

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

This function requires USAGE or SELECT privilege on the sequence.

lastval

Return the value most recently returned by nextval in the current session. This function is identical
to currval, except that instead of taking the sequence name as an argument it refers to whichever
sequence nextval was most recently applied to in the current session. It is an error to call 1astval
if nextval has not yet been called in the current session.

This function requires USAGE or SELECT privilege on the last used sequence.

setval

Reset the sequence object's counter value. The two-parameter form sets the sequence's last_value
field to the specified value and sets its is_called field to true, meaning that the next nextval will
advance the sequence before returning a value. The value reported by currval is also set to the
specified value. In the three-parameter form, is_called can be set to either true or false. true
has the same effect as the two-parameter form. If it is set to false, the next nextval will return
exactly the specified value, and sequence advancement commences with the following nextval. Fur-
thermore, the value reported by currval is not changed in this case. For example,

SELECT setval('foo', 42); Next nextval will return 43
SELECT setval ('foo', 42, true); Same as above
SELECT setval ('foo', 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

This function requires UPDATE privilege on the sequence.

Caution

To avoid blocking concurrent transactions that obtain numbers from the same sequence, the value
obtained by nextval is not reclaimed for re-use if the calling transaction later aborts. This means

259

Functions and Operators

that transaction aborts or database crashes can result in gaps in the sequence of assigned values.
That can happen without a transaction abort, too. For example an INSERT with an ON CONFLICT
clause will compute the to-be-inserted tuple, including doing any required nextval calls, before
detecting any conflict that would cause it to follow the oN CONFLICT rule instead. Thus, Postgres
Pro sequence objects cannot be used to obtain “gapless” sequences.

Likewise, sequence state changes made by setval are immediately visible to other transactions,
and are not undone if the calling transaction rolls back.

If the database cluster crashes before committing a transaction containing a nextval or setval
call, the sequence state change might not have made its way to persistent storage, so that it is
uncertain whether the sequence will have its original or updated state after the cluster restarts.
This is harmless for usage of the sequence within the database, since other effects of uncommitted
transactions will not be visible either. However, if you wish to use a sequence value for persistent
outside-the-database purposes, make sure that the nextval call has been committed before doing
so.

9.17. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in Postgres Pro.

Tip
If your needs go beyond the capabilities of these conditional expressions, you might want to con-
sider writing a server-side function in a more expressive programming language.

9.17.1. CASE

The SQL caASE expression is a generic conditional expression, similar to if/else statements in other pro-
gramming languages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns
a boolean result. If the condition's result is true, the value of the CASE expression is the result that
follows the condition, and the remainder of the CASE expression is not processed. If the condition's result
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields
true, the value of the cASE expression is the result of the ELSE clause. If the ELSE clause is omitted and
no condition is true, the result is null.

An example:

SELECT * FROM test;

SELECT a,
CASE WHEN a=1 THEN 'one'
WHEN a=2 THEN 'two'
ELSE 'other'

260

Functions and Operators

END
FROM test;
a | case
___+ _______
1 | one
2 | two
3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

The first expression is computed, then compared to each of the value expressions in the WHEN clauses
until one is found that is equal to it. If no match is found, the resuit of the ELSE clause (or a null value)
is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN 'one'
WHEN 2 THEN 'two'
ELSE 'other'

END
FROM test;
a | case
e
1 | one
2 | two
3 | other

A cAsE expression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

Note

As described in Section 4.2.14, there are various situations in which subexpressions of an expres-
sion are evaluated at different times, so that the principle that “case evaluates only necessary
subexpressions” is not ironclad. For example a constant 1/0 subexpression will usually result in a
division-by-zero failure at planning time, even if it's within a CASE arm that would never be entered
at run time.

9.17.2. COALESCE
COALESCE (value [, ...]1)

The coarescCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved
for display, for example:

SELECT COALESCE (description, short_description, ' (none)')

261

Functions and Operators

This returns description ifitis not null, otherwise short_description ifitis not null, otherwise (none).

The arguments must all be convertible to a common data type, which will be the type of the result (see
Section 10.5 for details).

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result;
that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard func-
tion provides capabilities similar to NvL. and IFNULL, which are used in some other database systems.

9.17.3. NULLIF

NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if valuel equals value2; otherwise it returns valuei. This can
be used to perform the inverse operation of the COALESCE example given above:
SELECT NULLIF (value, ' (none)')

In this example, if value is (none), null is returned, otherwise the value of value is returned.

The two arguments must be of comparable types. To be specific, they are compared exactly as if you had
written valuel = value2, so there must be a suitable = operator available.

The result has the same type as the first argument — but there is a subtlety. What is actually returned is
the first argument of the implied = operator, and in some cases that will have been promoted to match
the second argument's type. For example, NULLIF (1, 2.2) yields numeric, because there is no integer
= numeric operator, only numeric = numeric.

9.17.4. GREATEST and LEAST

GREATEST (value [, ...])
LEAST (value [, ...1)

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of
the result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL
only if all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.18. Array Functions and Operators

Table 9.48 shows the operators available for array types.

Table 9.48. Array Operators

Operator Description Example Result

= equal ARRAY[1.1,2.1, t
3.11::int[] = AR-
RAY[1,2, 3]

<> not equal ARRAY[1,2,3] <> AR- |t
RAY[1,2,4]

< less than ARRAY[1,2,3] < AR- |t
RAY[1,2,4]

> greater than ARRAY[1,4,3] > AR- t
RAY[1,2,4]

<= less than or equal ARRAY[1,2,3] <= AR- |t
RAY[1,2, 3]

>= greater than or equal ARRAY[1,4,3] >= AR- |t
RAY[1,4, 3]

262

Functions and Operators

catenation

Operator Description Example Result
@> contains ARRAY[1,4,3] @> AR- |t
RAY[3,1, 3]
<@ is contained by ARRAY[2,2,7] <@ AR- |t
RAY[1,7,4,2,6]
8 & overlap (have elements|arRrRAY[1,4,3] && AR- |t
in common) RAY[2,1]
| array-to-array concate-|ARRAY[1,2,3] || AR- {1,2,3,4,5,6}
nation RAY[4,5, 6]
| array-to-array concate-|ARRAY[1,2,3] || AR- {{1,2,3},1{4,5,
nation RAY[[4,5,6]1,1(7, 6},17,8,9}}
8,911
| element-to-array con-{3 || ARRAY[4,5,6] {3,4,5,6}
catenation
[array-to-element con-|ARRAY[4,5,6] || 7 {4,5,6,7}

The array ordering operators (<, >=, etc) compare the array contents element-by-element, using the
default B-tree comparison function for the element data type, and sort based on the first difference. In
multidimensional arrays the elements are visited in row-major order (last subscript varies most rapidly).
If the contents of two arrays are equal but the dimensionality is different, the first difference in the
dimensionality information determines the sort order. (This is a change from versions of PostgreSQL
prior to 8.2: older versions would claim that two arrays with the same contents were equal, even if the

number of dimensions or subscript ranges were different.)

The array containment operators (<@ and @>) consider one array to be contained in another one if each
of its elements appears in the other one. Duplicates are not treated specially, thus ARRAY[1] and AR-

RAY[1, 1] are each considered to contain the other.

See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about

which operators support indexed operations.

Table 9.49 shows the functions available for use with array types. See Section 8.15 for more information

and examples of the use of these functions.

Table 9.49. Array Functions

Function Return Type Description Example Result
array_append (anyarray append an element|array_append ({1,2,3}
anyarray, to the end of an ar-|aARrRAY (1,21, 3)
anyelement) ray
array_cat (anyarray concatenate two ar-|array_cat ({1,2,3,4,5}
anyarray, an-— rays ARRAY[1,2,3],
yarray) ARRAY[4,5])
array_ndims (int returns the number|array_ndims (2
anyarray) of dimensions of the|arrAY [[1, 2,

array 31, [4,5,6]11])
array_dims (an- |text returns a text rep-|array_dims ([1:21[1:3]
yarray) resentation of ar-|arRravy[[1,2,

ray's dimensions 3], [4,5,611)
array_fill (anyarray returns an array ini-|array_£fill (7, [2:41={7,7,7}
anyelement, tialized with Sup-|ARRAY[3], AR-
int[] [, int[1]) plied value and di-|ray[2])

mensions, option-

263

Functions and Operators

Function Return Type Description Example Result

ally with lower

bounds other than 1
array_length (int returns the length|array_length/(3
anyarray, int) of the requested ar-|array(1, 2, 3],

ray dimension 1)
array_lower (int returns lower|array_lower (0
anyarray, int) bound of the re-|'[0:2]=1{1, 2,

quested array di-|3}'::int[], 1)

mension
array_posi- int returns the sub-|larray_ 2
tion(anyarray, script of the first|position ¢
anyelement [, occurrence of the|array['sun',
int]) second argument in| 'mon ', 'tue’,

the array, starting|ryeqr, 'thu’,

at the element indi- "fri','sat'],

cated by the third| .)

argument or at the

first element (array

must be one-dimen-

sional)
array_posi- int[] returns an array|array_ {1,2,4}
tions (of subscripts of all|positions (
anyarray, occurrences of the|arrav['a', 'a’,
anyelement) second argumentin|'gr, 'a'], 'A')

the array given as

first argument (ar-

ray must be one-di-

mensional)
array_prepend (|anyarray append an element|array_prepend({1,2,3}
anyelement, an- to the beginning of|1, aARRAY[2, 3])
yarray) an array
array_remove (anyarray remove all ele-larray_remove ({1, 3}
anyarray, ments equal to the|arrayi(1, 2, 3,
anyelement) given value from|2], 2)

the array (array

must be one-dimen-

sional)
array_replace (|anyarray replace each array|array_replace ({1,2,3,4}
anyarray, element equal to|arraYI[1,2,5,
anyelement, the given value with |47, 5, 3)
anyelement) a new value
array_to_ text concatenates array|array_to_ 1,2,3,*%,5
string (elements using sup- strj_ng (
anyarray, text plied delimiter and|arrav(1, 2, 3,
[, textl]) optional null string |nyurn, 57, ',

] , [|)

array_upper (int returns upper|array_upper (4
anyarray, int) bound of the re-|array[1, 8,3,

quested array di-
mension

71, 1)

264

Functions and Operators

Function Return Type Description Example Result
cardinality(an- |int returns the total|cardinality(4
yarray) number of elements|arRraY [[1, 2],

in the array, or 0 if| (3, 477])
the array is empty

string_to_ar- text[] splits string into ar-|string_to_ {xx,NULL, zz}
ray(text, text ray elements using|array (
[, text]) Supplled dehmiter 'XX’VA’VnyANZZ ',

and optional null|r.rcv = ryyr)

string
unnest (an- setof anyelement |expand an array to|unnest (1
yarray) a set of rows ARRAY[1,2]) 2

(2 rows)

unnest (an- setof anyele-|expand multiple ar-|unnest (1 foo
yarray, anyarray|ment, anyelement |IdyS (possibly of dif-| ARRAY (1,271, 2 bar
[, ...1) [, ...] ferent types) to a|arRrRAY['foo!', NULL baz

set of rows. This is| 'par', 'baz'])
only allowed in the
FROM clause; see
Section 7.2.1.4

(3 rows)

In array_position and array_positions, each array element is compared to the searched value using
IS NOT DISTINCT FROM semantics.

In array_position, NULL is returned if the value is not found.

In array_positions, NULL is returned only if the array is NULL; if the value is not found in the array,
an empty array is returned instead.

In string_to_array, if the delimiter parameter is NULL, each character in the input string will become
a separate element in the resulting array. If the delimiter is an empty string, then the entire input string
is returned as a one-element array. Otherwise the input string is split at each occurrence of the delimiter
string.

In string_to_array, if the null-string parameter is omitted or NULL, none of the substrings of the input
will be replaced by NULL. In array_to_string, if the null-string parameter is omitted or NULL, any null
elements in the array are simply skipped and not represented in the output string.

Note

There are two differences in the behavior of string to_array from pre-9.1 versions of Post-
greSQL. First, it will return an empty (zero-element) array rather than NULL when the input string
is of zero length. Second, if the delimiter string is NULL, the function splits the input into individ-
ual characters, rather than returning NULL as before.

See also Section 9.20 about the aggregate function array_agg for use with arrays.

9.19. Range Functions and Operators

See Section 8.17 for an overview of range types.

Table 9.50 shows the operators available for range types.

265

Functions and Operators

Table 9.50. Range Operators

int8range (10, 20)

Operator Description Example Result
= equal int4range(1,5) = t
'[1,4]"'::int4range
<> not equal numrange (1.1,2.2) t
<> numrange (1.1,
2.3)
< less than int4range (1,10) < t
int4range (2, 3)
> greater than int4range (1, 10) > |t
int4range (1,5)
<= less than or equal numrange (1.1,2.2) t
<= numrange (1.1,
2.2)
>= greater than or equal numrange (1.1,2.2) t
>= numrange (1.1,
2.0)
Q> contains range int4range (2, 4) e> |t
int4range (2, 3)
@> contains element '[2011-01-01, t
2011-03-01) '::tsrange
@>
'2011-01-10"::time—
stamp
<@ range is contained by int4range (2, 4) <@ |t
int4range (1,7)
<@ element is contained by |42 <@ int4range (1, f
7)
&& overlap (have points in|int8range (3,7) && |t
common) int8range (4,12)
<< strictly left of int8range (1,10) << |t
int8range (100, 110)
>> strictly right of int8range (50, 60) >> |t
int8range (20, 30)
&< does not extend to the|int8range (1,20) &< |t
right of int8range (18, 20)
&> does not extend to the|int8range (7,20) &> |t
left of int8range (5,10)
-|- is adjacent to numrange (1.1,2.2) t
ol numrange (2.2,
3.3)
+ union numrange (5, 15) + [5,20)
numrange (10, 20)
* intersection int8range (5, 15) * [10,15)
int8range (10, 20)
- difference int8range (5,15) - [5,10)

266

Functions and Operators

The simple comparison operators <, >, <=, and >= compare the lower bounds first, and only if those are
equal, compare the upper bounds. These comparisons are not usually very useful for ranges, but are
provided to allow B-tree indexes to be constructed on ranges.

The left-of/right-of/adjacent operators always return false when an empty range is involved; that is, an
empty range is not considered to be either before or after any other range.

The union and difference operators will fail if the resulting range would need to contain two disjoint sub-
ranges, as such a range cannot be represented.

Table 9.51 shows the functions available for use with range types.

Table 9.51. Range Functions

Function Return Type Description Example Result
lower (anyrange) |range's element|lower bound of|lower (1.1
type range numrange (1.1,
2.2))
upper (anyrange) |range's element|upper bound of|upper 2.2
type range numrange (1.1,
2.2))
isempty (boolean is the range empty?|isempty (false
anyrange) numrange (1.1,
2.2))
lower_inc boolean is the lower bound|lower_ inc(true
anyrange) inclusive? numrange (1.1,
2.2))
upper_inc (boolean is the upper bound|upper_inc(false
anyrange) inclusive? numrange (1.1,
2.2))
lower_inf (boolean is the lower bound|lower_inf (' (true
anyrange) infinite? ,) '::daterange)
upper_inf (boolean is the upper bound |upper_inf (' (true
anyrange) infinite? ,) '::daterange)
range_merge (anyrange the smallest range|range_merge ([1,4)
anyrange, which includes both| ' [1,
anyrange) of the given ranges |2) ' : :int4range,
"3,
4) '::int4range)

The lower and upper functions return null if the range is empty or the requested bound is infinite. The
lower_inc, upper_inc, lower_inf, and upper_inf functions all return false for an empty range.

9.20. Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in general-purpose
aggregate functions are listed in Table 9.52 and statistical aggregates in Table 9.53. The built-in with-
in-group ordered-set aggregate functions are listed in Table 9.54 while the built-in within-group hypo-
thetical-set ones are in Table 9.55. Grouping operations, which are closely related to aggregate func-
tions, are listed in Table 9.56. The special syntax considerations for aggregate functions are explained
in Section 4.2.7. Consult Section 2.7 for additional introductory information.

267

Functions and Operators

Table 9.52. General-Purpose Aggregate Functions

Function

Argument Type(s)

Return Type

Partial Mode

Description

array_agg (
expression)

any non-array type

array of the argu-
ment type

No

input values, in-
cluding nulls, con-
catenated into an
array

array_agg(

any array type

same as argument
data type

No

input arrays con-
catenated into ar-

agg (
ue)

name,

val—

expression)
ray of one high-
er dimension (in-
puts must all have
same dimensionali-
ty, and cannot be
empty or null)
avg (expression) |smallint, int,|numeric for any|Yes the average (arith-
bigint, real, dou-|integer-type argu- metic mean) of all
ble precision, nu-|ment, double pre- non-null input val-
meric, Or interval |cision for a float- ues
ing-point argument,
otherwise the same
as the argument da-
ta type
bit_and(smallint, int,|same as argument|Yes the bitwise AND of
expression) bigint, orbit data type all non-null input
values, or null if
none
bit_or(smallint, int,|same as argument|Yes the bitwise OR of all
expression) bigint, Or bit data type non-null input val-
ues, or null if none
bool_and(bool bool Yes true if all input val-
expression) ues are true, other-
wise false
bool_or (bool bool Yes true if at least one
expression) input value is true,
otherwise false
count (*) bigint Yes number of input
ToOws
count (any bigint Yes number of input
expression) rows for which the
value of expres-
sion is not null
every (bool bool Yes equivalent to bool_
expression) and
json_agg (any json No aggregates values,
expression) including nulls, as a
JSON array
Jjsonb_agg (any jsonb No aggregates values,
expression) including nulls, as a
JSON array
json_object_ (any, any) json No aggregates name/

value pairs as a
JSON object; values

268

Functions and Operators

Function

Argument Type(s)

Return Type

Partial Mode

Description

can be null, but not
names

jsonb_object_ (any, any) jsonb No aggregates name/
agg (name, val- value pairs as a
ue) JSON object; values
can be null, but not
names
max (expression) |any numeric,|same as argument|Yes maximum value of
string, date/time, |type expression across
network, or enum all non-null input
type, or arrays of values
these types
min(expression) |any numeric, |same as argument|Yes minimum value of
string, date/time, |type expression acCross
network, or enum all non-null input
type, or arrays of values
these types
string_agg(ex-|(text, text) or (|same as argument| No non-null input val-
pression, delim-|bytea, bytea) types ues concatenated
iter) into a string, sepa-
rated by delimiter
sum(expression) |smallint, int,|bigint for small-|Yes sum of expression
bigint, real, dou-|int Or int argu- across all non-null
ble precision, nu-|ments, numeric for input values
meric, interval, Or|bigint arguments,
money otherwise the same
as the argument da-
ta type
xmlagg (xml xml No concatenation of
expression) non-null XML val-

ues (see also Sec-
tion 9.14.1.7)

It should be noted that except for count, these functions return a null value when no rows are selected. In
particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather
than an empty array when there are no input rows. The coalesce function can be used to substitute
zero or an empty array for null when necessary.

Aggregate functions which support Partial Mode are eligible to participate in various optimizations, such
as parallel aggregation.

SELECT bl =

ANY ((SELECT b2 FROM t2 ...))

Note

FROM t1 ...;

Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates every and
any or some. As for any and some, it seems that there is an ambiguity built into the standard syntax:

Here aNY can be considered either as introducing a subquery, or as being an aggregate function,
if the subquery returns one row with a Boolean value. Thus the standard name cannot be given
to these aggregates.

269

Functions and Operators

Note

Users accustomed to working with other SQL database management systems might be disappoint-
ed by the performance of the count aggregate when it is applied to the entire table. A query like:

SELECT count (*) FROM sometable;

will require effort proportional to the size of the table: Postgres Pro will need to scan either the
entire table or the entirety of an index which includes all rows in the table.

The aggregate functions array_agg, json_agg, jsonb_agg, json_object_agg, jsonb_object_agg,
string_agg, and xmlagg, as well as similar user-defined aggregate functions, produce meaningfully dif-
ferent result values depending on the order of the input values. This ordering is unspecified by default,
but can be controlled by writing an ORDER BY clause within the aggregate call, as shown in Section 4.2.7.
Alternatively, supplying the input values from a sorted subquery will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such as a join,
because that might cause the subquery's output to be reordered before the aggregate is computed.

Table 9.53 shows aggregate functions typically used in statistical analysis. (These are separated out
merely to avoid cluttering the listing of more-commonly-used aggregates.) Where the description men-
tions n, it means the number of input rows for which all the input expressions are non-null. In all cases,
null is returned if the computation is meaningless, for example when ~ is zero.

Table 9.53. Aggregate Functions for Statistics

Function Argument Type Return Type Partial Mode Description

corr(Y, X) double precision |double precision |Yes correlation coeffi-
cient

covar_pop(Y, double precision |double precision |Yes population covari-

X) ance

covar_samp(Y, double precision |double precision |Yes sample covariance

X)

regr_avgx(Y, double precision |double precision |Yes average of the inde-

X) pendent variable (
sum(X) /N)

regr_avgy(Y, double precision |double precision |Yes average of the de-

X) pendent variable (
sum(Y)/N)

regr_count (Y, |double precision |bigint Yes number of input

X) rows in which

both expressions
are nonnull

regr_ double precision |double precision |Yes y-intercept of the
intercept (Y, X) least-squares-fit lin-
ear equation deter-
mined by the (X, v)

pairs
regr_r2(Y, X) |double precision |double precision |Yes square of the corre-
lation coefficient
regr_slope(Y, |double precision |double precision |Yes slope of the
X) least-squares-fit lin-

270

Functions and Operators

Function Argument Type Return Type Partial Mode Description
ear equation deter-
mined by the (X%, v)
pairs
regr_sxx (Y,) |double precision |double precision Yes sum(X*2) - sum(
X)~2/N (“sum of
squares” of the
independent vari-
able)
regr_sxy(Y,) |double precision |double precision |Yes sum(X*Y) - sum(
X) * sum(Y)/
N (“sum of prod-
ucts” of indepen-
dent times depen-
dent variable)
regr_syy(Y,) |double precision |double precision |Yes sum(Y*2) - sum(
Y)~2/N (“sum of
squares” of the de-
pendent variable)
stddev (smallint, int,|double precision|Yes historical alias for
expression) bigint, real, dou-|for floating-point stddev_samp
ble precision, or|arguments, other-
numeric wise numeric
stddev_pop (smallint, int,|double precision|Yes population stan-
expression) bigint, real, dou-|for floating-point dard deviation of
ble precision, or|arguments, other- the input values
numeric wise numeric
stddev_samp (smallint, int,|double precision|Yes sample standard
expression) bigint, real, dou-|for floating-point deviation of the in-
ble precision, or|arguments, other- put values
numeric wise numeric
variance(smallint, int,|double precision|Yes historical alias for
expression) bigint, real, dou-|for floating-point var_samp
ble precision, orlarguments, other-
numeric wise numeric
var_pop (smallint, int,|double precision|Yes population variance
expression) bigint, real, dou-|for floating-point of the input values
ble precision, orlarguments, other- (square of the pop-
numeric wise numeric ulation standard de-
viation)
var_samp (smallint, int,|double precision|Yes sample variance of

expression)

bigint, real, dou-
ble precision, Or
numeric

for floating-point
arguments, other-
wise numeric

the input values (
square of the sam-
ple standard devia-
tion)

Table 9.54 shows some aggregate functions that use the ordered-set aggregate syntax. These functions
are sometimes referred to as “inverse distribution” functions.

271

Functions and Operators

Table 9.54. Ordered-Set Aggregate Functions

Function Direct Argu- Aggregated Return Type Partial Mode |Description
ment Type(s) |[Argument
Type(s)
mode () WITHIN any sortable|same as sort ex-|No returns the most
GROUP (ORDER type pression frequent input
BY sort_ex-— value (arbitrari-
pression) ly choosing the
first one if
there are mul-
tiple equally-fre-
quent results)
percentile_ double preci-|double preci-|same as sort ex-|No continuous per-
cont (sion sion Or inter-|pression centile: returns
fraction) val a value corre-
WITHIN GROUP sponding to the
(ORDER BY specified frac-
sort_ tion in the or-
expression) dering, interpo-
lating between
adjacent input
items if needed
percentile_ double preci-|double preci-|array of sort ex-|No multiple contin-
cont (sion[] sion Or inter-|pression's type uous percentile:
fractions) val returns an ar-
WITHIN GROUP ray of results
(ORDER BY matching the
sort_ shape of the
expression) fractions Dpa-
rameter, with
each non-null el-
ement replaced
by the value cor-
responding to
that percentile
percentile_ double preci-|any sortable|same as sort ex-|No discrete per-
disc(sion type pression centile: returns
fraction) the first input
WITHIN GROUP value whose po-
(ORDER BY sition in the
sort_ ordering equals
expression) or exceeds the
specified frac-
tion
percentile_ double preci-|any sortable|array of sort ex-|No multiple dis-
disc(sion(] type pression's type crete per-
fractions) centile: returns
WITHIN GROUP an array of re-
(ORDER BY sults matching
sort_ the shape of
expression) the fractions

parameter, with
each non-null el-
ement replaced
by the input val-

272

Functions and Operators

Function Direct Argu- Aggregated Return Type Partial Mode |Description
ment Type(s) |[Argument
Type(s)

ue correspond-
ing to that per-
centile

All the aggregates listed in Table 9.54 ignore null values in their sorted input. For those that take a
fraction parameter, the fraction value must be between 0 and 1; an error is thrown if not. However,
a null fraction value simply produces a null result.

Each of the aggregates listed in Table 9.55 is associated with a window function of the same name
defined in Section 9.21. In each case, the aggregate result is the value that the associated window
function would have returned for the “hypothetical” row constructed from args, if such a row had been
added to the sorted group of rows computed from the sorted_args.

Table 9.55. Hypothetical-Set Aggregate Functions

Function Direct Argu- Aggregated Return Type Partial Mode |Description

ment Type(s) |Argument

Type(s)

rank (args) VARIADIC "any" |[VARIADIC "any" |bigint No rank of the hy-
WITHIN GROUP pothetical row,
(ORDER BY with gaps for
sorted_args) duplicate rows
dense_rank (VARIADIC "any" |[VARIADIC "any" |bigint No rank of the hy-
args) WITHIN pothetical row,
GROUP (ORDER without gaps
BY sorted_
args)
percent_ VARIADIC "any" |VARIADIC "any" |double preci-|No relative rank of
rank (args) sion the hypotheti-
WITHIN GROUP cal row, ranging
(ORDER BY from 0 to 1
sorted_args)
cume_dist (VARIADIC "any" |[VARIADIC "any" |double preci-|NoO relative rank of
args) WITHIN sion the hypotheti-
GROUP (ORDER cal row, ranging
BY sorted_ from 1/nvto 1
args)

For each of these hypothetical-set aggregates, the list of direct arguments given in args must match the
number and types of the aggregated arguments given in sorted_args. Unlike most built-in aggregates,
these aggregates are not strict, that is they do not drop input rows containing nulls. Null values sort
according to the rule specified in the ORDER BY clause.

Table 9.56. Grouping Operations

Function Return Type Description

GROUPING(args...) integer Integer bit mask indicating which
arguments are not being included
in the current grouping set

Grouping operations are used in conjunction with grouping sets (see Section 7.2.4) to distinguish result
rows. The arguments to the GROUPING operation are not actually evaluated, but they must match exactly
expressions given in the GROUP BY clause of the associated query level. Bits are assigned with the right-

273

Functions and Operators

most argument being the least-significant bit; each bit is 0 if the corresponding expression is included
in the grouping criteria of the grouping set generating the result row, and 1 if it is not. For example:

=> SELECT * FROM items_sold;

make | model | sales
,,,,,,, U W
Foo | GT | 10
Foo | Tour | 20
Bar | City | 15
Bar | Sport | 5

(4 rows)

=> SELECT make, model, GROUPING (make,model), sum(sales) FROM items_sold GROUP BY
ROLLUP (make, model) ;

make model grouping | sum
7777777 -t
Foo | GT \ 0 | 10
Foo | Tour | 0 | 20
Bar | City | 0 | 15
Bar | Sport | 01 5
Foo \ \ 1 | 30
Bar \ \ 1 |1 20

\ \ 3 | 50
(7 rows)

9.21. Window Functions

Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.57. Note that these functions must be invoked using
window function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined general-purpose or statistical aggregate (i.e.,
not ordered-set or hypothetical-set aggregates) can be used as a window function; see Section 9.20 for
a list of the built-in aggregates. Aggregate functions act as window functions only when an ovER clause
follows the call; otherwise they act as non-window aggregates and return a single row for the entire set.

Table 9.57. General-Purpose Window Functions

Function Return Type Description

row_number () bigint number of the current row within
its partition, counting from 1

rank () bigint rank of the current row with gaps;
same as row_number of its first
peer

dense_rank () bigint rank of the current row without
gaps; this function counts peer
groups

percent_rank () double precision relative rank of the current row: (

rank - 1) / (total partition rows - 1)

cume_dist () double precision cumulative distribution: (number
of partition rows preceding or
peer with current row) / total par-
tition rows

ntile(num buckets integer) |integer integer ranging from 1 to the ar-
gument value, dividing the parti-
tion as equally as possible

274

Functions and Operators

Function Return Type Description

lag(value anyelement [, |same type as value returns value evaluated at the
offset integer [, default row that is offset rows before
anyelement 11]) the current row within the parti-

tion; if there is no such row, in-
stead return default (which must
be of the same type as val-
ue). Both offset and default are
evaluated with respect to the cur-
rent row. If omitted, offset de-
faults to 1 and default to null

lead(value anyelement [, |same type as value returns value evaluated at the
offset integer [, default row that is offset rows after the
anyelement]1]) current row within the partition;

if there is no such row, instead
return default (which must be
of the same type as value). Both
offset and default are evalu-
ated with respect to the current
row. If omitted, offset defaults to
1 and default to null

first_value(value any) same type as value returns value evaluated at the
row that is the first row of the win-

dow frame
last_value(value any) same type as value returns value evaluated at the
row that is the last row of the win-

dow frame
nth_value(value any, nth|same type as value returns value evaluated at the
integer) row that is the nth row of the win-

dow frame (counting from 1); null
if no such row

All of the functions listed in Table 9.57 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct when considering only the ORDER BY
columns are said to be peers. The four ranking functions (including cume_dist) are defined so that they
give the same answer for all peer rows.

Note that first_value, last_value, and nth_value consider only the rows within the “window frame”,
which by default contains the rows from the start of the partition through the last peer of the current
row. This is likely to give unhelpful results for last_value and sometimes also nth_value. You can
redefine the frame by adding a suitable frame specification (RANGE, ROWS or GROUPS) to the OVER clause.
See Section 4.2.8 for more information about frame specifications.

When an aggregate function is used as a window function, it aggregates over the rows within the current
row's window frame. An aggregate used with OrRDER BY and the default window frame definition pro-
duces a “running sum” type of behavior, which may or may not be what's wanted. To obtain aggregation
over the whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING. Other frame specifications can be used to obtain other effects.

Note

The SQL standard defines a RESPECT NULLS Or IGNORE NULLS option for lead, lag, first_value,
last_value, and nth_value. This is not implemented in Postgres Pro: the behavior is always the
same as the standard's default, namely RESPECT NULLS. Likewise, the standard's FROM FIRST or

275

Functions and Operators

FROM LAST option for nth_value is not implemented: only the default FrRoM FIRST behavior is
supported. (You can achieve the result of FROM LAST by reversing the ORDER BY ordering.)

cume_dist computes the fraction of partition rows that are less than or equal to the current row and its
peers, while percent_rank computes the fraction of partition rows that are less than the current row,
assuming the current row does not exist in the partition.

9.22. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in Postgres Pro. All of the
expression forms documented in this section return Boolean (true/false) results.

9.22.1. EXISTS

EXISTS (subqguery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of Ex1sTs is “true”; if
the subquery returns no rows, the result of Ex1sTs is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows,
the output list of the subquery is normally unimportant. A common coding convention is to write all
EXISTS tests in the form EXISTS (SELECT 1 WHERE ...).There are exceptions to this rule however, such
as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1
row, even if there are several matching tab2 rows:

SELECT coll
FROM tabl
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.22.2. IN

expression IN (subgquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of 1N is “true” if
any equal subquery row is found. The result is “false” if no equal row is found (including the case where
the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form of 1N is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of 1N is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the case where the subquery returns no rows).

276

Functions and Operators

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are un-
equal if any corresponding members are non-null and unequal; otherwise the result of that row compar-
ison is unknown (null). If all the per-row results are either unequal or null, with at least one null, then
the result of 1N is null.

9.22.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT 1IN is “true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT 1N construct will be null, not true. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EX1STS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT 1IN is a row constructor, as described in Section 4.2.13. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of NOT 1IN is “true” if only unequal subquery rows are found
(including the case where the subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are un-
equal if any corresponding members are non-null and unequal; otherwise the result of that row compar-
ison is unknown (null). If all the per-row results are either unequal or null, with at least one null, then
the result of NOT 1IN is null.

9.22.4. ANY/SOME

expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result,
the result of the ANY construct will be null, not false. This is in accordance with SQL's normal rules for
Boolean combinations of null values.

As with Ex1STS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANy is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including

277

Functions and Operators

the case where the subquery returns no rows). The result is NULL if no comparison with a subquery row
returns true, and at least one comparison returns NULL.

See Section 9.23.5 for details about the meaning of a row constructor comparison.

9.22.5. ALL

expression operator ALL (subguery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL
if no comparison with a subquery row returns false, and at least one comparison returns NULL.

NOT 1IN is equivalent to <> ALL.
As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true for
all subquery rows (including the case where the subquery returns no rows). The result is “false” if the
comparison returns false for any subquery row. The result is NULL if no comparison with a subquery
row returns false, and at least one comparison returns NULL.

See Section 9.23.5 for details about the meaning of a row constructor comparison.

9.22.6. Single-row Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthe-
sized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is taken
to be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.23.5 for details about the meaning of a row constructor comparison.

9.23. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are Postgres Pro extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)
results.

9.23.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's
result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = valuel
OR

278

Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the 1IN construct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

9.23.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's
result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> valueZ
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT 1IN construct will be null, not true as one might
naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null values.

Tip
x NOT IN vy is equivalent to NOT (x IN y) in all cases. However, null values are much more likely

to trip up the novice when working with NoT 1N than when working with 1n. It is best to express
your condition positively if possible.

9.23.3. ANY/SOME (array)

expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand ex-
pression is evaluated and compared to each element of the array using the given operator, which must
yield a Boolean result. The result of ANy is “true” if any true result is obtained. The result is “false” if no
true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANy will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result
is obtained, the result of ANy will be null, not false (again, assuming a strict comparison operator). This
is in accordance with SQL's normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.23.4. ALL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand ex-
pression is evaluated and compared to each element of the array using the given operator, which must
yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including the case where
the array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result

279

Functions and Operators

is obtained, the result of AL, will be null, not true (again, assuming a strict comparison operator). This
is in accordance with SQL's normal rules for Boolean combinations of null values.

9.23.5. Row Constructor Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row constructors must have the
same number of fields. The given operator is applied to each pair of corresponding fields. (Since the
fields could be of different types, this means that a different specific operator could be selected for each
pair.) All the selected operators must be members of some B-tree operator class, or be the negator of an
= member of a B-tree operator class, meaning that row constructor comparison is only possible when
the operatoris =, <>, <, <=, >, or >=, or has semantics similar to one of these.

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members
are non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an unequal
or null pair of elements is found. If either of this pair of elements is null, the result of the row comparison
is unknown (null); otherwise comparison of this pair of elements determines the result. For example,
ROW (1, 2,NULL) < ROW(1, 3,0) yields true, not null, because the third pair of elements are not considered.

Note

Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison like ROW (a,b) < ROW(c, d) was implemented as a < ¢ AND b < d whereas the correct
behavior is equivalenttoa < ¢ OR (a = ¢ AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will always be either true or false, never null.

9.23.6. Composite Type Comparison

record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing
two NULL values or a NULL and a non-NULL. Postgres Pro does this only when comparing the results of
two row constructors (as in Section 9.23.5) or comparing a row constructor to the output of a subquery
(as in Section 9.22). In other contexts where two composite-type values are compared, two NULL field
values are considered equal, and a NULL is considered larger than a non-NULL. This is necessary in
order to have consistent sorting and indexing behavior for composite types.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed when
the operatoris =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific, an operator
can be a row comparison operator if it is a member of a B-tree operator class, or is the negator of the
= member of a B-tree operator class.) The default behavior of the above operators is the same as for 1s
[NOT] DISTINCT FROM for row constructors (see Section 9.23.5).

To support matching of rows which include elements without a default B-tree operator class, the follow-
ing operators are defined for composite type comparison: *=, *<>, *<, *<=, *>, and *>=. These operators

280

Functions and Operators

compare the internal binary representation of the two rows. Two rows might have a different binary
representation even though comparisons of the two rows with the equality operator is true. The ordering
of rows under these comparison operators is deterministic but not otherwise meaningful. These opera-
tors are used internally for materialized views and might be useful for other specialized purposes such
as replication but are not intended to be generally useful for writing queries.

9.24. Set Returning Functions

This section describes functions that possibly return more than one row. The most widely used functions
in this class are series generating functions, as detailed in Table 9.58 and Table 9.59. Other, more
specialized set-returning functions are described elsewhere in this manual. See Section 7.2.1.4 for ways
to combine multiple set-returning functions.

Table 9.58. Series Generating Functions

Function Argument Type Return Type Description

generate_series(
start, stop)

int, bigint Or numeric

setof int, setof big-
int, Oor setof numeric (
same as argument type)

Generate a series of val-
ues, from start to stop
with a step size of one

generate_series (
start, stop,

step)

int, bigint Or numeric

setof int, setof big-
int or setof numeric (
same as argument type)

Generate a series of val-
ues, from start to stop
with a step size of step

generate_series (

timestamp Or timestamp

setof timestamp Or

Generate a series of val-

start, stop, step|with time zone setof timestamp with|ues, from start to stop
interval) time zone (same as ar-|with a step size of step
gument type)

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL inputs.
It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

SELECT * FROM generate_series (5,1,
generate_series

-2);

(3 rows)

SELECT * FROM generate_series (4,3);
generate_series

SELECT generate_series (1.1,
generate_series

281

Functions and Operators

(3 rows)

—— this example relies on the date-plus-integer operator

SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);

dates

2004-02-05
2004-02-12
2004-02-19
(3 rows)

SELECT * FROM generate_series ('2008-03-01 00:00'::timestamp,
'2008-03-04 12:00', '10 hours');

generate_series
00:
10:
20:
06:
16:
02:
12:
22
08:

2008-03-01
2008-03-01
2008-03-01
2008-03-02
2008-03-02
2008-03-03
2008-03-03
2008-03-03
2008-03-04
(9 rows)

00:
00:
00:
00:
00:
00:
00:
00:
00:

Table 9.59. Subscript Generating Functions

Function Return Type Description
generate_subscripts(array |setof int Generate a series comprising the
anyarray, dim int) given array's subscripts.
generate_subscripts(array |setof int Generate a series comprising the
anyarray, dim int, reverse given array's subscripts. When
boolean) reverse is true, the series is re-

turned in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the spec-
ified dimension of the given array. Zero rows are returned for arrays that do not have the requested
dimension, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some ex-
amples follow:

—-— basic usage
SELECT generate_subscripts ('{NULL,1,NULL,2}'::int[],

S

YOows)

—-— presenting an array,

-— value requires a subquery

SELECT * FROM arrays;

the subscript and the subscripted

AS s;

282

Functions and Operators

{100,200, 300}
(2 rows)

SELECT a AS array, s AS subscript, als] AS wvalue
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;

array | subscript | value
_______________ +___________+_______
{-1,-2} \ 1 -1
{-1,-2} \ 2| -2
{100,200, 300} | 1 | 100
{100,200, 300} | 2 200
{100,200, 300} | 3 | 300

(5 rows)

-— unnest a 2D array
CREATE OR REPLACE FUNCTION unnest2 (anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][7]
from generate_subscripts($1,1) gl(i),
generate_subscripts ($1,2) g2 (J);
$$ LANGUAGE sgql IMMUTABLE;
CREATE FUNCTION
SELECT * FROM unnest2 (ARRAY[[1,2],1[3,411);
unnest?2

~ s W N -

(4 rows

When a function in the FroM clause is suffixed by WITH ORDINALITY, a bigint column is appended to
the output which starts from 1 and increments by 1 for each row of the function's output. This is most
useful in the case of set returning functions such as unnest ().

—-— set returning function WITH ORDINALITY

SELECT * FROM pg_ls_dir('.') WITH ORDINALITY AS t(ls,n);
1s | n
———— e +____
pg_serial | 1
pg_twophase | 2
postmaster.opts | 3
pg_notify | 4
postgresgl.conf | 5
prg_tblspc \ 6
logfile |7
base | 8
postmaster.pid | 9
pg_ident.conf | 10
global | 11
pg_xact | 12
pPg_snapshots | 13
pg_multixact | 14
PG_VERSION | 15
pg_wal | 16
pg_hba.conf [17
pg_stat_tmp | 18
Pg_subtrans | 19

283

Functions and Operators

(19 rows)

9.25. System Information Functions

Table 9.60 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 27.2.3 for more information.

Table 9.60. Session Information Functions

Name Return Type Description

current_catalog name name of current database (called
“catalog” in the SQL standard)

current_database () name name of current database

current_gquery () text text of the currently executing
query, as submitted by the client
(might contain more than one
statement)

current_role name equivalent to current_user

current_schema [()] name name of current schema

current_schemas(boolean) name [] names of schemas in search
path, optionally including implicit
schemas

current_user name user name of current execution
context

inet_client_addr () inet address of the remote connection

inet_client_port () int port of the remote connection

inet_server_addr () inet address of the local connection

inet_server_port () int port of the local connection

pPg_backend_pid () int Process ID of the server process
attached to the current session

pg_blocking_pids (int) int[] Process ID(s) that are blocking

specified server process ID from
acquiring a lock

pg_conf_load_time ()

timestamp with time zone

configuration load time

pg_current_logfile (text Primary log file name, or log in
[text]) the requested format, currently in
use by the logging collector
pg_my_temp_schema () oid OID of session's temporary
schema, or O if none
Pg_is_other_temp_ boolean is schema another session's tem-
schema (oid) porary schema?
pg_jit_available() boolean is a JIT compiler extension avail-

able (see Chapter 31) and the jit
configuration parameter set to on.

pg_listening_channels ()

setof text

channel names that the session is
currently listening on

pg_notification_gueue_
usage ()

double

fraction of the asynchronous noti-
fication queue currently occupied
(0-1)

284

Functions and Operators

Name Return Type Description
pg_postmaster_start_ timestamp with time zone server start time

time ()

pg_safe_snapshot_ int[] Process ID(s) that are blocking
blocking_pids(int) specified server process ID from

acquiring a safe snapshot

pg_trigger_depth () int current nesting level of Postgres
Pro triggers (0 if not called, di-
rectly or indirectly, from inside a

trigger)
session_user name session user name
user name equivalent to current_user
version () text Postgres Pro version information.

See also server version num for a
machine-readable version.

pgpro_version () text Postgres Pro version information
pgpro_edition () text name of Postgres Pro edition
pgpro_build() text the commit ID of Postgres Pro

source files

Note

current_catalog, current_role, current_schema, current_user, session_user, and user have
special syntactic status in SQL: they must be called without trailing parentheses. (In Postgres Pro,
parentheses can optionally be used with current_schema, but not with the others.)

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally it is equal to the session user, but it can be changed
with SET ROLE. It also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”. cur-
rent_role and user are synonyms for current_user. (The SQL standard draws a distinction between
current_role and current_user, but Postgres Pro does not, since it unifies users and roles into a single
kind of entity.)

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that are
created without specifying a target schema. current_schemas (boolean) returns an array of the names
of all schemas presently in the search path. The Boolean option determines whether or not implicitly
included system schemas such as pg_catalog are included in the returned search path.

Note
The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

inet_client_addr returns the IP address of the current client, and inet_client_port returns the port
number. inet_server_addr returns the IP address on which the server accepted the current connec-
tion, and inet_server_port returns the port number. All these functions return NULL if the current
connection is via a Unix-domain socket.

285

Functions and Operators

pg_blocking_pids returns an array of the process IDs of the sessions that are blocking the server
process with the specified process ID, or an empty array if there is no such server process or it is
not blocked. One server process blocks another if it either holds a lock that conflicts with the blocked
process's lock request (hard block), or is waiting for a lock that would conflict with the blocked process's
lock request and is ahead of it in the wait queue (soft block). When using parallel queries the result
always lists client-visible process IDs (that is, pg_backend_pid results) even if the actual lock is held or
awaited by a child worker process. As a result of that, there may be duplicated PIDs in the result. Also
note that when a prepared transaction holds a conflicting lock, it will be represented by a zero process
ID in the result of this function. Frequent calls to this function could have some impact on database
performance, because it needs exclusive access to the lock manager's shared state for a short time.

pg_conf_load_time returns the timestamp with time zone when the server configuration files were
last loaded. (If the current session was alive at the time, this will be the time when the session itself re-
read the configuration files, so the reading will vary a little in different sessions. Otherwise it is the time
when the postmaster process re-read the configuration files.)

pg_current_logfile returns, as text, the path of the log file(s) currently in use by the logging collector.
The path includes the log directory directory and the log file name. Log collection must be enabled or
the return value is NULL. When multiple log files exist, each in a different format, pg_current_logfile
called without arguments returns the path of the file having the first format found in the ordered list:
stderr, csvlog. NULL is returned when no log file has any of these formats. To request a specific file format
supply, as text, either csvlog or stderr as the value of the optional parameter. The return value is NULL
when the log format requested is not a configured log destination. The pg_current_logfile reflects
the contents of the current_logfiles file.

pg_my_temp_schema returns the OID of the current session's temporary schema, or zero if it has none
(because it has not created any temporary tables). pg_is_other_temp_schema returns true if the given
OID is the OID of another session's temporary schema. (This can be useful, for example, to exclude other
sessions' temporary tables from a catalog display.)

pg_listening_channels returns a set of names of asynchronous notification channels that the current
session is listening to. pg_notification_queue_usage returns the fraction of the total available space
for notifications currently occupied by notifications that are waiting to be processed, as a double in the
range 0-1. See LISTEN and NOTIFY for more information.

pg_postmaster_start_time returns the timestamp with time zone when the server started.

pg_safe_snapshot_blocking_pids returns an array of the process IDs of the sessions that are blocking
the server process with the specified process ID from acquiring a safe snapshot, or an empty array
if there is no such server process or it is not blocked. A session running a SERIALIZABLE transaction
blocks a SERIALIZABLE READ ONLY DEFERRABLE transaction from acquiring a snapshot until the latter
determines that it is safe to avoid taking any predicate locks. See Section 13.2.3 for more information
about serializable and deferrable transactions. Frequent calls to this function could have some impact
on database performance, because it needs access to the predicate lock manager's shared state for a
short time.

version returns a string describing the Postgres Pro server's version. You can also get this information
from server version or for a machine-readable version, server version num. Software developers should
use server_version_num (available since 8.2) or poserverversion instead of parsing the text version.

pgpro_edition () returns a string, describing Postgres Pro edition i.e. standard or enterprise.

pgpro_version () returns a string, describing Postgres Pro version information.

286

Functions and Operators

Table 9.61 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about pri